CN104698016A - Multi-time horizontal movement staggered spiral industrial CT scanning imaging method - Google Patents

Multi-time horizontal movement staggered spiral industrial CT scanning imaging method Download PDF

Info

Publication number
CN104698016A
CN104698016A CN 201510137023 CN201510137023A CN104698016A CN 104698016 A CN104698016 A CN 104698016A CN 201510137023 CN201510137023 CN 201510137023 CN 201510137023 A CN201510137023 A CN 201510137023A CN 104698016 A CN104698016 A CN 104698016A
Authority
CN
Grant status
Application
Patent type
Prior art keywords
ct
detector
scanning
scan
detection
Prior art date
Application number
CN 201510137023
Other languages
Chinese (zh)
Other versions
CN104698016B (en )
Inventor
沈宽
粱良
邹晓兵
Original Assignee
重庆大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Abstract

The invention relates to a multi-time horizontal movement staggered spiral industrial CT scanning imaging method, and belongs to the technical field of CT scanning. The method comprises the steps that in the scanning period, a carrying rotary table rotates in one direction all the time, the rotary table only needs to transversely horizontally move in the direction parallel to a detector at the two-time spiral scanning interval and does not need to move in the radial direction, and staggered spiral scanning is achieved through a radiation source and the axial reciprocating movement of the detector. The multi-time horizontal movement staggered spiral industrial CT scanning imaging method is suitable for high-precision and rapid three-dimensional imaging of a III generation CT large-size workpiece. High-precision and rapid three-dimensional imaging is achieved through a III generation linear array detector CT system, the detector physical interpolation is not needed in the scanning process, the structure of the CT system is simplified on the premise that the detection precision is guaranteed, the manufacturing cost of the CT system is reduced, and the detecting efficiency is effectively improved.

Description

一种多次平移的交错螺旋工业CT扫描成像方法 One kind of multiple interleaved spiral CT scan imaging method industrial translation

技术领域 FIELD

[0001] 本发明属于CT扫描技术领域,涉及一种多次平移的交错螺旋工业CT扫描成像方法。 [0001] The present invention belongs to the technical field CT scan, interleaved helical CT scan imaging industry relates to a method of translating a plurality of times.

背景技术 Background technique

[0002] 受限于探测器的体积和成本,目前大型高能工业CT设备主要的布局依然是II代、 III代或是II+III代,探测器基本上是线阵探测器,很少有面阵探测器。 [0002] limited to the size and cost of the detector, high-energy main layout large industrial CT apparatus is still generations II, III or II + III generations generation detector is substantially linear array detector, there is little surface array detector. 因此检测效率较低,检测的成本较高。 Thus the detection efficiency is low, the detection of high cost. 高能CT为减少探测器之间的串扰,一般在射线进入探测器之前要先通过一个"隧道型"准直器进行射线准直,由于每1个探测器单元都需有与之相对应的准直器,客观上造成了单位长度探测器数量少,单个探测器成本高、无法进行大规模集成。 In order to reduce crosstalk between high-energy CT detector, generally before the rays enter the detector through the first ray collimator for a "tunnel type" collimator, since each of a detector unit corresponding thereto are required to have a quasi- collimator, objective unit length resulting in fewer number of detectors, the high cost of a single detector, large scale integration can not be performed. 在不增加探测密度的情况下,为提高CT的空间分辨率,常用的方法是进行物理插值(在扫描过程中,通过探测器的摆动或者物体的移动,得到多次扫描数据,然后将这些数据拼成一个扇束数据)。 Without increasing the density of the probe, in order to improve the spatial resolution of the CT, conventional interpolation method is a physical (in the scanning process, by moving or swinging the object detector, to obtain multiple scans of data, then the data makes up a fan-beam data). 如果检测区域不是一个断层,而是某个范围,常用的方法是逐层扫描,由于检测成本的关系,层间距离一般较大。 If the detection area is not a fault, but a range, layer by layer scanning method is used, because of the cost of detection, the interlayer distance is generally larger. 在两层扫描之间,加速器需要停止出束(因为加速器的寿命是有限的,其核心部件的寿命在500~800小时左右),因而检测效率较低。 Between two scans, the need to stop the beam accelerator (accelerator because of limited life, the life of the core member is about 500 to 800 hours), and thus the detection efficiency is low.

发明内容 SUMMARY

[0003] 有鉴于此,本发明的目的在于提供一种多次平移的交错螺旋工业CT扫描成像方法,该方法在保证CT的空间分辨率情况下,能够提高检测效率,降低检测成本。 [0003] In view of this, an object of the present invention to provide an industrial interleaved helical CT scan imaging method of translating a plurality of times, the process of ensuring the spatial resolution of a CT, it is possible to improve the detection efficiency and reduce testing costs.

[0004] 为达到上述目的,本发明提供如下技术方案: [0004] To achieve the above object, the present invention provides the following technical solutions:

[0005] -种多次平移的交错螺旋工业CT扫描成像方法,该方法包括以下步骤: [0005] - industrial species staggered spiral CT scan imaging method of translating a plurality of times, the method comprising the steps of:

[0006] S1 :将待测工件放置到扫描转台上,根据检测要求对待测工件进行固定; [0006] S1: scan the workpiece to be measured placed on the turntable, treated test piece is fixed according to the detection requirements;

[0007] S2 :根据检测要求设置CT扫描的视场大小、检测距离与成像尺寸检测参数;根据检测参数要求计算CT扫描的螺距和扫描转台平移步距; [0007] S2: The testing requirements set CT scan field size, image size detection distance and detection parameters; calculated based on the detected parameter requires a CT scan and the scanning pitch distance venue flat turret;

[0008] S3:根据探测器大小、成像尺寸、采样时间,确定射线源、探测器同步运动速度与检测平台旋转速度; [0008] S3: The detector size, image size, sampling time, determined-ray source, the detector and the synchronous detection platform velocity rotational speed;

[0009] S4 :将射线源、探测器同步移动至待扫描物体的区域的底部,同时进行射线源、探测器同步运动与扫描转台旋转运动; [0009] S4: The source of radiation, the detector be synchronized moves to the bottom of the scanned object area, simultaneously-ray source, the detector synchronously with the scanning movement of rotation of the turret;

[0010] S5 :待射线源、探测器同步运动超出检测范围后即完成第一次螺旋扫描;停止射线源、探测器同步运动,将扫描转台平移一个步距,在平移过程中无需停止转台的旋转运动; [0010] S5: be-ray source, detector motion synchronous detection range after completion of the first helical scan; stop-ray source, the detector synchronized movement, translating a turntable scan step size, during translation without stopping the turntable rotary motion;

[0011] S6:将射线源、探测器向相反方向同步运动再次扫描待测工件完成第二次螺旋扫描; [0011] S6: the radiation source, the detector synchronous scanning motion in the opposite direction again workpiece to be measured to complete the second helical scan;

[0012] S7 :重复S5、S6,直至扫描转台平移N-1步,完成整个螺旋扫描;N为根据检测参数确定需要做N次螺旋扫描; [0012] S7: repeating S5, S6, up to N-1 translating the turret scanning step, to complete the helical scan; N is determined according to parameters detected N times to do the helical scan;

[0013] S8 :对S4和S6采集到的投影数据进行重排; [0013] S8: S4 and S6 of the acquired projection data rearrangement;

[0014] S9 :对S8重排后的数据采用迭代重建算法进行CT图像重建。 [0014] S9: the CT image reconstruction using iterative reconstruction algorithm for rearranging data S8.

[0015] 进一步,所述扫描转台平移的步距为, (1 \ [0015] Further, the scanning translating the turret in steps of, (1 \

[0016] AJ = /?tan -Ay , J [0016] AJ = /? Tan -Ay, J

[0017] 其中,R为弧形探测器的半径,两个相邻探测单元的夹角为AY。 [0017] wherein, R is the radius of the arcuate probe, the angle between two adjacent detection unit to AY.

[0018] 进一步,所述S8中投影数据进行重排的方法为,重建层的投影角范围限制在一个较小的范围内,加速器CT重建层的投影角范围为12° -18°,球管机CT重建层的投影角范围为30° -40°,采用有限角重建方法进行CT图像重建。 [0018] Further, in the projection data S8 rearrangement method, projection angle range of the reconstruction layer is limited to the range of a small projection angle range of the accelerator CT reconstruction layer is 12 ° -18 °, tube projection angle range machine CT reconstruction layer 30 ° -40 °, angle finite reconstruction CT image reconstruction method.

[0019] 进一步,所述S9采用迭代重建算法进行CT图像重建,具体步骤为:采用TV正则化方法对每个螺旋重建,然后将所有结果叠加,再将叠加结果进行校正;在算法实现过程中引入先验彳目息;米用并行加速算法实现快速重建。 [0019] Further, the iterative reconstruction algorithm S9 CT image reconstruction, specific steps: TV regularization method employed for each of the helical reconstruction, then the result of the superposition of all, and then the result of the superposition correction; algorithm in process introducing a priori information mesh left foot; m accelerating fast reconstruction algorithm with parallel.

[0020] 本发明的有益效果在于:本发明提供的一种多次平移的交错螺旋工业CT扫描成像方法,对现有三代线阵螺旋CT机的扫描方式进行了改造,去除了探测器物理插值结构, 以扫描台平移来替代实现图像插值,降低了CT机的硬件成本;扫描中采用待测物体连续旋转、探测器与射线源同步运动方式实现交错螺旋扫描路径,提高了扫描效率,降低了CT检测成本;图像重建采用TV正则化法结合先验知识、重建质量高、分辨率好。 [0020] Advantageous effects of the present invention: one kind of the present invention provides multiple interleaved spiral translatory industrial CT scan imaging method, three generations of conventional linear array scanning spiral CT has been transformed, in addition to the physical detector Interpolation structure to translate scan table implemented instead interpolation, reducing hardware costs CT machine; object to be measured using a continuous scan rotation, motion detector and radiation source synchronous manner interleaved helical scan path, improve the scanning efficiency, reducing CT testing costs; TV image reconstructed using a priori knowledge regularization binding method, the reconstruction of high quality, good resolution.

附图说明 BRIEF DESCRIPTION

[0021] 为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步的详细描述,其中: [0021] To make the objectives, technical solutions, and advantages of the present invention will become more apparent below in conjunction with the accompanying drawings of the present invention will be further described in detail, wherein:

[0022] 图1为本发明所述方法的流程图; [0022] FIG. 1 is a flowchart of the method of the present invention;

[0023] 图2为两次螺旋三维示意图; [0023] FIG. 2 is a schematic two-dimensional spiral;

[0024] 图3为两次螺旋三维俯视图; [0024] FIG. 3 is a plan view of the two-dimensional spiral;

[0025] 图4为四次物理插值的平移示意图。 [0025] FIG. 4 is a schematic diagram of four physical translation interpolation.

具体实施方式 Detailed ways

[0026] 下面将结合附图,对本发明的优选实施例进行详细的描述。 [0026] The accompanying drawings in conjunction with the following, detailed description of embodiments of the present invention is preferably.

[0027] 本发明提供的一种多次平移的交错螺旋工业CT扫描成像方法,该方法的流程如图1所示。 [0027] A present invention provides multiple interleaved spiral CT scan imaging method industrial translation, flow of the method shown in Fig. 由于物体绕转台顺时针旋转等效于射线源和探测器绕转台逆时针旋转,类似地, 物体绕转台逆时针旋转等效于射线源和探测器绕转台顺时针旋转,为描述方便起见,以下的描述都是假设物体固定不动,射线源和探测器绕转台旋转,同时假设射线源和探测器沿转台轴向平移。 Since the object is rotated clockwise around the turret equivalent ray source and detector around the turret rotates counterclockwise, similarly, the object rotates counterclockwise around the turret equivalent ray source and detector around the turret is rotated clockwise, convenience of description, the following are described assuming that the object is fixed, ray source and detector around the turret rotation, and assuming that the turntable ray source and detector along the axial translation. 以下的叙述以4次转台平移来具体说明交错螺旋的扫描原理。 In the following description the turntable 4 to specify translation interleaved helical scan principle. 所述方法包括以下步骤: Said method comprising the steps of:

[0028] S1 :将待测工件放置到扫描转台上,根据检测要求对工件进行必要的固定以防止工件在旋转和平移时发生位置变化; [0028] S1: scan the workpiece to be measured placed on the turntable, the workpiece based on the detection requirements for the necessary change in position of the workpiece is secured against rotation and translation occurs when;

[0029] S2:根据检测要求设置CT扫描的视场大小、源到物体旋转中心的距离、旋转中心到探测器的距离与成像尺寸等检测参数,根据检测参数要求(即成像空间分辨率)计算CT 扫描的螺距和扫描转台平移步距; [0029] S2: Set CT scan field size requirements based on the detection, the distance to the source, the rotation center of the object and the distance from the rotation center to the image size and other parameters of the detection probe, based on the detected parameters required (i.e., the spatial resolution imaging) Calculation CT scans and the scanning pitch distance venue flat turret;

[0030] 图2为第一次和第二次螺旋扫描的结构及其俯视图,图3为4次螺旋扫描时,在起始角或者终止角的俯视图中一个探测单元所对应射线束的示意图。 [0030] FIG. 2 for the first and second helical scanning structure and a plan view, FIG. 3 is four helical scan start angle or in a plan view of a schematic end angle cell corresponding detection beam.

[0031] 假设两个相邻探测单元的夹角为AY,则射线源和探测器每次的平移距离(即扫描转台平移的步距)为 [0031] Suppose the angle detection unit is two adjacent AY, then each ray source and detector translation distance (i.e., the scanning translating the turntable pitches) of

[0032] [0032]

Figure CN104698016AD00051

(1) V ' / (1) V '/

[0033] 该距离由平移的次数决定。 [0033] This distance is determined by the number of translation. 其中R为弧形探测器的半径。 Wherein R is the radius of the arcuate probe.

[0034] S3:根据探测器大小、成像尺寸采样时间,确定射线源、探测器同步运动速度与检测平台旋转速度; [0034] S3: The detector size, the size of the sampling time imaging, radiation source is determined, the moving speed of the detected synchronous detector rotational speed internet;

[0035] S4 :将射线源、探测器同步移动至扫描物体的待测区域的底部,开启射线源;待射线源出束稳定后同时进行射线源、探测器同步运动与扫描转台旋转运动; [0035] S4: the radiation source, the detector area of ​​the synchronous mobile bottom scanning an object to be measured open-ray source; a radiation source for simultaneously until steady-ray source emits a beam, the detector synchronously with the scanning movement of rotation of the turret;

[0036] S5:待射线源、探测器同步运动超出检测范围后即完成第一次螺旋扫描,停止射线源、探测器同步运动,将扫描转台平移一个步距,平移过程中无需停止转台的旋转运动并保持射线源开启状态; [0036] S5: be-ray source, detector motion synchronous detection is completed after the first helical scan range, stop-ray source, the detector synchronized movement, translating a turntable scan step size, the translation process without stopping the rotation of the turntable ray source motion and maintain an open state;

[0037] S6:将射线源、探测器向相反方向同步运动再次扫描待测工件完成第二次螺旋扫描; [0037] S6: the radiation source, the detector synchronous scanning motion in the opposite direction again workpiece to be measured to complete the second helical scan;

[0038] S7 :重复S5、S6,直至扫描转台平移N-1步,完成整个螺旋扫描;N为根据检测参数确定需要做N次螺旋扫描; [0038] S7: repeating S5, S6, up to N-1 translating the turret scanning step, to complete the helical scan; N is determined according to parameters detected N times to do the helical scan;

[0039] 假设待检测区域为有限长的圆柱形,以圆柱体中心建立如图1所示的直角坐标系〇-xyz,根据图2和图3,将交错螺旋的扫描过程描述如下:在检测过程中,射线源和探测器首先沿平行于y轴的方向向y轴的负半轴平移然后射线源和探测器绕物体顺时针旋转,同时射线源和探测器沿平行于z轴的方向的向上移动,得到第一次螺旋扫描;射线源和探测器继续沿顺时针方向旋转,射线源和探测器再次沿平行于y轴的方向向y轴的正半轴平移A d如图4所示,然后射线源和探测器沿平行于z轴的方向的向下移动,得到第二次螺旋扫描;依此类似方式进行第三次和第四次螺旋扫描。 [0039] The detection area is assumed to be a finite length of the cylindrical center of the cylinder in order to establish FIG square-xyz rectangular coordinate system shown in FIG. 1, according to FIG. 2 and FIG. 3, the spiral interlacing process described as follows: the detection direction during ray source and detector along a first axis and parallel to the y ray source and detector about the object rotates clockwise in the negative y-axis translation of axle, while ray source and detector in a direction parallel to the z-axis direction, upward movement, to give the first helical scan; ray source and detector continue to rotate in a clockwise direction, again translating ray source and detector in the positive y-axis of axle 4 a d a direction parallel to the y-axis shown in FIG. then move downwardly in a direction parallel to the z-axis direction of the ray source and detector, to give a second helical scan; so in a similar manner for the third and fourth helical scan.

[0040] S8 :对S4和S6采集到的投影数据进行重排; [0040] S8: S4 and S6 of the acquired projection data rearrangement;

[0041] 投影数据进行重排的方法为:将重建层的投影角范围限制在一个较小的范围内,加速器CT重建层的投影角范围为12° -18°,球管机CT重建层的投影角范围为30° -40°,而不是传统的180°或者360°,采用有限角重建方法进行CT图像重建。 [0041] The projection data rearrangement method: projection angle range to limit the reconstructed layer in a small range, the projection angle range of the accelerator CT reconstruction layer is 12 ° -18 °, dryer tube CT reconstruction layer projection angle range of 30 ° -40 °, rather than the conventional 180 ° or 360 °, finite angle reconstruction CT image reconstruction method.

[0042] S9 :对S8重排后的数据采用迭代重建算法进行CT图像重建。 [0042] S9: the CT image reconstruction using iterative reconstruction algorithm for rearranging data S8.

[0043] 迭代重建算法进行CT图像重建,具体步骤为:采用TV正则化方法对每个螺旋重建,然后将所有结果叠加,再将叠加结果进行校正;在算法实现过程中引入先验信息;采用并行加速算法实现快速重建。 [0043] The iterative reconstruction algorithm for CT image reconstruction, specific steps: TV regularization method employed for each of the helical reconstruction, then the result of the superposition of all, and then the result of the superposition correction; introduced a priori information in the process algorithm; using parallel to accelerate the rapid reconstruction algorithm.

[0044] 由上述的描述过程可知,在检测过程中,考虑到某些特定的检测对象,如固体火箭发动机等,只能绕一个方向旋转,射线源和探测器始终绕物体顺时针方向旋转,射线源和探测器在两次螺旋扫描之间需要做一次平移运动,通过射线源和探测器沿平行于转台轴线的方向上下平移形成了交错螺旋结构。 [0044] From the above described procedure, the detection process, taking into account the specific detection target, such as a solid rocket engines, only one direction of rotation about, ray source and detector rotate about the object is always in the clockwise direction, ray source and detector between two helical scan need to do a translational movement, vertical translation interleaved helical structure formed by the ray source and detector along a direction parallel to the turret axis. 在图像重建阶段,由于采用了改进的重建算法,只需要知道每次旋转的起始角、扫描长度、螺距和轴向平移的方向,考虑到大多数情况下,转台是不能径向平移的,本发明所述方法不需要转台径向平移,也不需要转台在下次扫描前回到起始位置,更关键的是加速器只需要在扫描开始和结束时开关一次,中间不需要停止出束, 从而提高了检测效率,节约了检测成本。 In the image reconstruction phase, thanks to the improved reconstruction algorithm, only need to know the start of each rotation angle, scan length, pitch and axial translation direction, taking into account the majority of cases, the turret is not translatable radially, the method of the present invention does not require radial translation of the turntable, the turntable does not need to return to the starting position before the next scan, but the key is the accelerator switch only once at the beginning and end of the scan, the beam without intermediate stops, thereby improving the detection efficiency and save testing costs. 同时,这种扫描方式不需要探测器进行物理插值, 简化了CT系统的机械结构和控制算法,有效降低CT系统的成本。 At the same time, this method does not require scanning probe physical interpolation, to simplify the mechanical structure and the control algorithm of the CT system, reduce the cost of the CT system.

[0045] 最后说明的是,以上优选实施例仅用以说明本发明的技术方案而非限制,尽管通过上述优选实施例已经对本发明进行了详细的描述,但本领域技术人员应当理解,可以在形式上和细节上对其作出各种各样的改变,而不偏离本发明权利要求书所限定的范围。 [0045] Finally is noted that the foregoing preferred embodiments are intended to illustrate and not limit the present invention, although the invention has been described in detail by the above preferred embodiments, those skilled in the art will appreciate, it may be It is made various changes in form and detail without departing from the scope of the claims of the invention as defined.

Claims (4)

  1. 1. 一种多次平移的交错螺旋工业CT扫描成像方法,其特征在于:该方法包括以下步骤: 51 :将待测工件放置到扫描转台上,根据检测要求对待测工件进行固定; 52 :根据检测要求设置CT扫描的视场大小、检测距离与成像尺寸检测参数;根据检测参数要求计算CT扫描的螺距和扫描转台平移步距; 53 :根据探测器大小、成像尺寸、采样时间,确定射线源、探测器同步运动速度与检测平台旋转速度; 54 :将射线源、探测器同步移动至待扫描物体的区域的底部,同时进行射线源、探测器同步运动与扫描转台旋转运动; 55 :待射线源、探测器同步运动超出检测范围后即完成第一次螺旋扫描;停止射线源、 探测器同步运动,将扫描转台平移一个步距,在平移过程中无需停止转台的旋转运动; 56 :将射线源、探测器向相反方向同步运动再次扫描待测工件完成第二次螺旋 A translation of multiple interleaved spiral industrial CT scan imaging method characterized in that: the method comprising the steps of: 51: placing the workpiece to be measured to the scan turntable, treated test piece is fixed according to the detection requirements; 52: The CT scans required to set the detection field size, image size detection distance and detection parameters; calculated based on the detection of CT scans and scan parameters required pitch level of the venue from the turntable; 53: the detector size, image size, sampling time, determined ray source , synchronous detector velocity detected rotational speed internet; 54: a radiation source, the synchronization detector moves to the bottom region of the object to be scanned, the same time-ray source, the detector synchronously with the scanning movement of rotation of the turntable; 55: rays to be source, detector motion synchronous detection range after completion of the first helical scan; stop-ray source, the detector synchronized movement, translating a turntable scan step size, the translation process without stopping the rotation of the turntable; 56: the radiation source synchronous detector scanning motion in the opposite direction again to complete a second helical workpiece to be measured 扫描; 57 :重复S5、S6,直至扫描转台平移N-1步,完成整个螺旋扫描;N为根据检测参数确定需要做N次螺旋扫描; 58 :对S4和S6采集到的投影数据进行重排; 59 :对S8重排后的数据采用迭代重建算法进行CT图像重建。 Scan; 57: Repeat S5, S6, until scanning turret translational N-1 step, to complete the helical scan; N according to the detection parameter determination needs to be done N times the helical scan; 58: to S4 and S6 collected projection data rearrangement ; 59: the CT image reconstruction using iterative reconstruction algorithm for rearranging data S8.
  2. 2. 根据权利要求1所述的一种多次平移的交错螺旋工业CT扫描成像方法,其特征在于:所述扫描转台平移的步距为, The industrial one of said helical scanning CT imaging method as claimed in claim interleaving multiple translation, wherein: said translatable scanning increments of the turntable,
    Figure CN104698016AC00021
    其中,R为弧形探测器的半径,两个相邻探测单元的夹角为AY。 Wherein, R is the radius of the arcuate probe, the angle between two adjacent detection unit to AY.
  3. 3. 根据权利要求1所述的一种多次平移的交错螺旋工业CT扫描成像方法,其特征在于:所述S8中投影数据进行重排的方法为,将重建层的投影角范围限制在较小的范围内,加速器CT重建层的投影角范围为12° -18°,球管机CT重建层的投影角范围为30° -40°,采用有限角重建方法进行CT图像重建。 1 according to one of the industrial spiral CT scan imaging method of interleaving multiple translational claim, wherein: said projection data S8 is a method for the rearrangement, the projection angle range to limit the reconstructed layer than within a small range, the projection angle range of the accelerator CT reconstruction layer is 12 ° -18 °, the projection angle range tube CT reconstruction unit layer is 30 ° -40 °, angle finite reconstruction CT image reconstruction method.
  4. 4. 根据权利要求1所述的一种多次平移的交错螺旋工业CT扫描成像方法,其特征在于:所述S9采用迭代重建算法进行CT图像重建,具体步骤为:采用TV正则化方法对每个螺旋重建,然后将所有结果叠加,再将叠加结果进行校正;在算法实现过程中引入先验信息; 采用并行加速算法实现重建。 1 according to one of the helical scanning CT imaging method industrial interleaving multiple translational claim, wherein: said iterative reconstruction algorithm S9 CT image reconstruction, specific steps: TV regularization method employed for each helical reconstruction, then all results overlay, then the result of the superposition correction; introduced a priori information in the process algorithm; accelerating a parallel reconstruction algorithm.
CN 201510137023 2015-03-26 2015-03-26 Translating one kind of multiple interleaved helical scan imaging method industrial ct CN104698016B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201510137023 CN104698016B (en) 2015-03-26 2015-03-26 Translating one kind of multiple interleaved helical scan imaging method industrial ct

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201510137023 CN104698016B (en) 2015-03-26 2015-03-26 Translating one kind of multiple interleaved helical scan imaging method industrial ct

Publications (2)

Publication Number Publication Date
CN104698016A true true CN104698016A (en) 2015-06-10
CN104698016B CN104698016B (en) 2017-04-05

Family

ID=53345365

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201510137023 CN104698016B (en) 2015-03-26 2015-03-26 Translating one kind of multiple interleaved helical scan imaging method industrial ct

Country Status (1)

Country Link
CN (1) CN104698016B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105136823A (en) * 2015-07-07 2015-12-09 重庆大学 Large diameter pipeline wall outside CT local scanning imaging method
CN105445300A (en) * 2015-12-16 2016-03-30 天津三英精密仪器有限公司 Full-field rod-shaped sample CT scanning device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5463666A (en) * 1993-11-12 1995-10-31 General Electric Company Helical and circle scan region of interest computerized tomography
US5805659A (en) * 1996-09-30 1998-09-08 Siemens Corporate Research, Inc. Method and apparatus for spiral scan region of interest imaging
US5878103A (en) * 1997-06-30 1999-03-02 Siemens Corporate Research, Inc. Adaptive detector masking for speed-up of cone beam reconstruction
CN101393145A (en) * 2008-10-22 2009-03-25 重庆大学 Cone beam double-helix CT Scanning and imaging method for large sized object
CN103163165A (en) * 2013-02-28 2013-06-19 重庆大学 Second generation computed tomography (CT) scanning imaging method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5463666A (en) * 1993-11-12 1995-10-31 General Electric Company Helical and circle scan region of interest computerized tomography
US5805659A (en) * 1996-09-30 1998-09-08 Siemens Corporate Research, Inc. Method and apparatus for spiral scan region of interest imaging
US5878103A (en) * 1997-06-30 1999-03-02 Siemens Corporate Research, Inc. Adaptive detector masking for speed-up of cone beam reconstruction
CN101393145A (en) * 2008-10-22 2009-03-25 重庆大学 Cone beam double-helix CT Scanning and imaging method for large sized object
CN103163165A (en) * 2013-02-28 2013-06-19 重庆大学 Second generation computed tomography (CT) scanning imaging method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王珏 等: "安全检查用螺旋CT扫描同步控制研究", 《核电子学与探测技术》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105136823A (en) * 2015-07-07 2015-12-09 重庆大学 Large diameter pipeline wall outside CT local scanning imaging method
CN105136823B (en) * 2015-07-07 2017-12-05 重庆大学 Ct wall of the outer large-diameter pipe partial scan imaging method
CN105445300A (en) * 2015-12-16 2016-03-30 天津三英精密仪器有限公司 Full-field rod-shaped sample CT scanning device

Also Published As

Publication number Publication date Type
CN104698016B (en) 2017-04-05 grant

Similar Documents

Publication Publication Date Title
US6415012B1 (en) Multi-slice X-ray computed tomography apparatus
US7106825B2 (en) Apparatus and method for reconstruction of volumetric images in a divergent scanning computed tomography system
US5740224A (en) Cone beam synthetic arrays in three-dimensional computerized tomography
US5463666A (en) Helical and circle scan region of interest computerized tomography
US5291402A (en) Helical scanning computed tomography apparatus
US5493593A (en) Tilted detector microscopy in computerized tomography
US6275561B1 (en) Computer tomagraphy method with helicoidal scanning of an examination area
US4969110A (en) Method of using a priori information in computerized tomography
US20130251097A1 (en) Method and system for spectral computed tomography (ct) with sparse photon counting detectors
US6269141B1 (en) Computer tomography apparatus with a conical radiation beam and a helical scanning trajectory
US5960055A (en) Fast cone beam image reconstruction using a detector weight list
US5319693A (en) Three dimensional computerized tomography scanning configuration for imaging large objects with smaller area detectors
JP2001242253A (en) Radiation detector and x-ray ct device
US6130930A (en) Exact region of interest cone beam imaging without circle scans
US20080056437A1 (en) Acquisition and reconstruction of projection data using a stationary CT geometry
US5504792A (en) Method and system for masking cone beam projection data generated from either a region of interest helical scan or a helical scan
US6922457B2 (en) Computer tomography apparatus
US4907152A (en) Method of improving CT resolution
US6885764B2 (en) High Speed Z-smoothing method and apparatus for CT imaging system
US20060045234A1 (en) Sampling in volumetric computed tomography
JP2001095793A (en) X-ray ct apparatus
Kingston et al. Reliable automatic alignment of tomographic projection data by passive auto‐focus
JPH09262230A (en) X ray ct apparatus
US5469486A (en) Projection domain reconstruction method for helical scanning computed tomography apparatus with multi-column detector array employing overlapping beams
CN101303225A (en) Projection rotating center measurement method suitable for 2D-CT scanning system

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
GR01