CN104692457A - A kind of litchi-like micro-nano hierarchical structure TiO2 crystal and its synthesis method - Google Patents
A kind of litchi-like micro-nano hierarchical structure TiO2 crystal and its synthesis method Download PDFInfo
- Publication number
- CN104692457A CN104692457A CN201510035292.7A CN201510035292A CN104692457A CN 104692457 A CN104692457 A CN 104692457A CN 201510035292 A CN201510035292 A CN 201510035292A CN 104692457 A CN104692457 A CN 104692457A
- Authority
- CN
- China
- Prior art keywords
- tio
- micro
- hierarchical structure
- crystal
- nano hierarchical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 title claims abstract description 45
- 239000013078 crystal Substances 0.000 title claims abstract description 39
- 238000001308 synthesis method Methods 0.000 title claims abstract description 6
- 229910010413 TiO 2 Inorganic materials 0.000 claims abstract description 35
- 239000002243 precursor Substances 0.000 claims abstract description 35
- 239000002245 particle Substances 0.000 claims abstract description 9
- 239000002904 solvent Substances 0.000 claims abstract description 7
- 239000011259 mixed solution Substances 0.000 claims description 26
- 239000000843 powder Substances 0.000 claims description 24
- 239000000243 solution Substances 0.000 claims description 20
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 17
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 claims description 14
- 239000000203 mixture Substances 0.000 claims description 10
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 9
- 239000007864 aqueous solution Substances 0.000 claims description 7
- 238000003756 stirring Methods 0.000 claims description 7
- 238000002360 preparation method Methods 0.000 claims description 4
- 235000015742 Nephelium litchi Nutrition 0.000 claims description 2
- 238000010189 synthetic method Methods 0.000 claims 2
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 claims 1
- 244000108452 Litchi chinensis Species 0.000 claims 1
- 125000005211 alkyl trimethyl ammonium group Chemical group 0.000 claims 1
- BXWNKGSJHAJOGX-UHFFFAOYSA-N hexadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCO BXWNKGSJHAJOGX-UHFFFAOYSA-N 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 4
- 230000001699 photocatalysis Effects 0.000 abstract description 3
- 238000004140 cleaning Methods 0.000 abstract 1
- 238000012986 modification Methods 0.000 abstract 1
- 230000004048 modification Effects 0.000 abstract 1
- 238000007146 photocatalysis Methods 0.000 abstract 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 14
- 239000000463 material Substances 0.000 description 7
- RBTBFTRPCNLSDE-UHFFFAOYSA-N 3,7-bis(dimethylamino)phenothiazin-5-ium Chemical compound C1=CC(N(C)C)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 RBTBFTRPCNLSDE-UHFFFAOYSA-N 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 229960000907 methylthioninium chloride Drugs 0.000 description 5
- 239000002086 nanomaterial Substances 0.000 description 5
- 238000001000 micrograph Methods 0.000 description 4
- 238000001878 scanning electron micrograph Methods 0.000 description 4
- 238000001179 sorption measurement Methods 0.000 description 4
- 244000183278 Nephelium litchi Species 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 description 2
- 238000002835 absorbance Methods 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000000593 degrading effect Effects 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 238000013032 photocatalytic reaction Methods 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000013375 chromatographic separation Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000005447 environmental material Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 239000011941 photocatalyst Substances 0.000 description 1
- 238000013033 photocatalytic degradation reaction Methods 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G23/00—Compounds of titanium
- C01G23/04—Oxides; Hydroxides
- C01G23/047—Titanium dioxide
- C01G23/053—Producing by wet processes, e.g. hydrolysing titanium salts
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/30—Particle morphology extending in three dimensions
- C01P2004/32—Spheres
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/62—Submicrometer sized, i.e. from 0.1-1 micrometer
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Inorganic Chemistry (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
本发明涉及一种荔枝状微纳米分级结构TiO2晶体及其合成方法。先制备均匀分散的球形无定型前驱体TiO2,然后将前驱体TiO2与溶剂在水热环境中结晶得到荔枝状微纳米分级结构的TiO2晶体。制得的TiO2晶体为球形,直径为500-700nm,球形表面均匀分布有直径为10-20nm的球状凸起。该TiO2晶体具有锐钛矿结构,在太阳能电池、光催化、自清洁等方面有重要的应用。同时该方法为其它粒子的表面分级修饰提供了一种新的思路。The invention relates to a TiO2 crystal with litchi-like micro-nano hierarchical structure and a synthesis method thereof. The uniformly dispersed spherical amorphous precursor TiO 2 is first prepared, and then the precursor TiO 2 and a solvent are crystallized in a hydrothermal environment to obtain TiO 2 crystals with litchi-like micro-nano hierarchical structure. The prepared TiO2 crystal is spherical, with a diameter of 500-700nm, and spherical protrusions with a diameter of 10-20nm are evenly distributed on the spherical surface. The TiO 2 crystal has an anatase structure and has important applications in solar cells, photocatalysis, and self-cleaning. At the same time, this method provides a new idea for the surface graded modification of other particles.
Description
技术领域 technical field
本发明涉及一种TiO2微纳米材料,尤其是一种荔枝状微纳米分级结构TiO2晶体及其合成方法 The invention relates to a TiO2 micro-nano material, in particular to a litchi-like micro-nano hierarchical structure TiO2 crystal and its synthesis method
技术背景 technical background
二氧化钛(TiO2)具有优异的光电性能和物理特性,在色谱分离、锂离子电池、染料敏化太阳能电池、气体传感器、催化等领域有着广泛的应用,其成本低廉及环境友好性也受到了研究者的青睐,因此一直是信息能源及环境材料的研究热点。 Titanium dioxide (TiO 2 ) has excellent photoelectric properties and physical properties, and has a wide range of applications in chromatographic separation, lithium-ion batteries, dye-sensitized solar cells, gas sensors, catalysis and other fields, and its low cost and environmental friendliness have also been studied Therefore, it has always been a research hotspot in information energy and environmental materials.
由于球形形态具有均匀紧密堆积,表面曲率、流动性等可调的特性,单分散球形TiO2材料已经显示出许多真实的和新兴的应用。利用液相法,已经合成了多种形貌的TiO2粉体颗粒,如采用sol-gel传统工艺结合表面活性剂合成球形TiO2粒子,利用聚苯乙烯球、SiO2球、C球、PMMA球等预制模板合成多孔TiO2球。但是上述制备工艺多为合成微米级的单分散TiO2球,对于纳米级别的单分散球还是存在形貌及分散性不可控、工艺较复杂等缺点。 Monodisperse spherical TiO2 materials have shown many real and emerging applications due to spherical morphology with uniform close packing, tunable surface curvature, fluidity, etc. Using the liquid phase method, TiO 2 powder particles with various shapes have been synthesized. For example, spherical TiO 2 particles are synthesized by using the traditional sol-gel process combined with surfactants, using polystyrene balls, SiO 2 balls, C balls, PMMA Spheres and other prefabricated templates to synthesize porous TiO 2 spheres. However, most of the above-mentioned preparation processes are for the synthesis of micron-scale monodisperse TiO 2 spheres, and for nano-scale monodisperse spheres, there are still disadvantages such as uncontrollable morphology and dispersibility, and complicated processes.
材料的微观结构及其空间的排布方式将对材料的性能产生重要影响,低维纳米结构材料的制备在纳米结构领域占据主导地位,而具有次级纳米结构的化合物因其新颖的结构和独特的化学物理性质以及形貌和尺寸对性质的极大影响使得它可能在光、电、磁等方面将具有更新颖的性质。因此,对TiO2颗粒形貌的次级结构的研究也越来越广泛,其应用领域也具有了更广阔的前景。 The microstructure of the material and its spatial arrangement will have an important impact on the performance of the material. The preparation of low-dimensional nanostructure materials occupies a dominant position in the field of nanostructures, and compounds with secondary nanostructures are due to their novel structures and unique The chemical and physical properties and the great influence of shape and size on properties make it possible to have more novel properties in terms of light, electricity, and magnetism. Therefore, the research on the secondary structure of TiO2 particle morphology is becoming more and more extensive, and its application field has a broader prospect.
本发明基于工艺简单化的原则,通过先合成微米级单分散前驱体材料,再在温和的液相环境中修饰材料的次级微观结构,合成了具有新意形貌的TiO2粉体颗粒,期望能得到更广泛的应用。 The present invention is based on the principle of process simplification, by first synthesizing micron-scale monodisperse precursor materials, and then modifying the secondary microstructure of materials in a mild liquid phase environment, and synthesizing TiO2 powder particles with novel shapes, expecting can be applied more widely.
发明内容 Contents of the invention
本发明提供一种荔枝状微纳米分级结构TiO2晶体及其合成方法,其特征在于,所述荔枝状微纳米分级结构TiO2晶体为球形,球形表面分布有小粒径的球状凸起,晶型为锐钛矿型; The invention provides a TiO2 crystal with litchi-shaped micro-nano hierarchical structure and a synthesis method thereof, which is characterized in that the TiO2 crystal with litchi-shaped micro-nano hierarchical structure is spherical, and spherical protrusions with small particle sizes are distributed on the surface of the spherical shape. The type is anatase;
所述荔枝状微纳米分级结构TiO2球形直径为500-700nm,所述球状凸起的直径为10-20nm。 The TiO 2 spherical diameter of the lychee-shaped micro-nano hierarchical structure is 500-700nm, and the diameter of the spherical protrusion is 10-20nm.
优选的,荔枝状微纳米分级结构TiO2晶体制备步骤如下: Preferably, the preparation steps of litchi-like micro-nano hierarchical structure TiO crystals are as follows:
(1)室温条件下,将W/V/V为1.5-2:25:75的PVP、水及正丙醇制成混合液A,将Ti(SO4)2溶液缓慢倒入混合液A中,搅拌均匀后,70℃水浴加热3h-6h得到混合液B,混合液B冷却至室温后,离心、洗涤,在摩尔浓度为1-2mol/L KOH溶液中60℃陈化12h,离心、洗涤、 烘干后得到前驱体TiO2粉末C; (1) At room temperature, make a mixed solution A with PVP, water and n-propanol with a W/V/V of 1.5-2:25:75, and slowly pour the Ti(SO 4 ) 2 solution into the mixed solution A , after stirring evenly, heat in a water bath at 70°C for 3h-6h to obtain the mixed solution B, after the mixed solution B is cooled to room temperature, centrifuge and wash, age in a KOH solution with a molar concentration of 1-2mol/L at 60°C for 12h, centrifuge and wash , obtain precursor TiO2 powder C after drying;
(2)将前驱体粉末C和溶剂D混合均匀,前驱体粉末C和溶剂D质量体积比W/V为0.4:20,置入水热釜在180℃下加热2h,离心、洗涤、烘干后得到荔枝状微纳米分级结构TiO2晶体粉末。 (2) Mix the precursor powder C and the solvent D evenly, the mass volume ratio of the precursor powder C and the solvent D is 0.4:20, put it into a hydrothermal kettle and heat it at 180°C for 2 hours, centrifuge, wash and dry Finally, TiO 2 crystal powder with litchi-like micro-nano hierarchical structure is obtained.
优选的,所述步骤(1)中,Ti(SO4)2溶液摩尔浓度为0.8mol/L,Ti(SO4)2溶液与该步骤中所述混合溶液A体积比V/V为1:2。 Preferably, in the step (1), the molar concentration of the Ti(SO 4 ) 2 solution is 0.8mol/L, and the volume ratio V/V between the Ti(SO 4 ) 2 solution and the mixed solution A described in this step is 1: 2.
优选的,所述步骤(2)中,溶剂D为乙二醇、0.01g/mL十六烷基三甲基溴化铵水溶液或体积比V/V为1:1的DMF/水溶液中的一种。 Preferably, in the step (2), the solvent D is one of ethylene glycol, 0.01g/mL cetyltrimethylammonium bromide aqueous solution or the DMF/water solution whose volume ratio V/V is 1:1 kind.
本发明的主要优点如下: The main advantages of the present invention are as follows:
(1)制得的荔枝状微纳米分级结构TiO2晶体的球形直径为500-700nm,属于微纳米级,大的颗粒直径使得TiO2晶体用作催化剂时易于回收。 (1) The obtained lychee-like TiO 2 crystal with micro-nano hierarchical structure has a spherical diameter of 500-700nm, belonging to the micro-nano scale, and the large particle diameter makes it easy to recycle when the TiO 2 crystal is used as a catalyst.
(2)荔枝状分级结构是通过对前驱体的表面修饰得到的,最终产物保留了前驱体的形貌,并形成了次级微观结构,有利于提高材料的比表面积,进一步提高其光催化特性。 (2) The lychee-like hierarchical structure is obtained by modifying the surface of the precursor. The final product retains the morphology of the precursor and forms a secondary microstructure, which is conducive to increasing the specific surface area of the material and further improving its photocatalytic properties. .
附图说明 Description of drawings
图1是实施例1中前驱体TiO2的扫描电子显微镜图; Fig. 1 is the scanning electron micrograph of precursor TiO in embodiment 1 ;
图2是实施例1中荔枝状微纳米分级结构TiO2晶体的扫描电子显微镜图; Fig. 2 is litchi-shaped micro-nano hierarchical structure TiO in embodiment 1 The scanning electron microscope picture of crystal;
图3是实施例1中前驱体TiO2及荔枝状微纳米分级结构TiO2的XRD图; Fig. 3 is the XRD figure of precursor TiO in embodiment 1 and lychee shape micro-nano hierarchical structure TiO ;
图4是实施例2中荔枝状微纳米分级结构TiO2晶体的扫描电子显微镜图; Fig. 4 is litchi shape micro-nano hierarchical structure TiO in embodiment 2 Scanning electron microscope picture of crystal;
图5是实施例3中荔枝状微纳米分级结构TiO2晶体的扫描电子显微镜图; Fig. 5 is litchi-shaped micro-nano hierarchical structure TiO in embodiment 3 Scanning electron microscope figure of crystal;
图6是实施例5中前驱体TiO2的扫描电子显微镜图; Fig. 6 is the scanning electron micrograph of precursor TiO in embodiment 5;
图7是实施例6中前驱体TiO2的扫描电子显微镜图; Fig. 7 is the scanning electron micrograph of precursor TiO in embodiment 6;
图8是实施例7中降解亚甲基蓝的测试结果。 Fig. 8 is the test result of degrading methylene blue in embodiment 7.
具体实施方式 Detailed ways
实施例1 Example 1
(1)将2gPVP、25mL水和75mL正丙醇配制成混合液A,将50mL 0.8mol/L的Ti(SO4)2水溶液缓慢倒入混合液A中,搅拌均匀后,70℃水浴加热3h-6h得到混合液B,混合液B冷却至室温后,离心、洗涤,在1mol/L KOH溶液中60℃陈化12h,离心、洗涤、烘干后得到TiO2前驱体粉末C; (1) Mix 2g PVP, 25mL water and 75mL n-propanol to prepare mixed solution A, slowly pour 50mL 0.8mol/L Ti(SO 4 ) 2 aqueous solution into mixed solution A, stir well, and heat in a water bath at 70°C for 3h -6h to obtain the mixed solution B, after the mixed solution B is cooled to room temperature, centrifuge and wash, age in 1mol/L KOH solution at 60°C for 12h, centrifuge, wash and dry to obtain TiO 2 precursor powder C;
(2)将0.4g前驱体粉末C加入到20mL体积比为1:1的DMF/水溶液中混合均匀,倒入25mL的水热釜在180℃下加热2h,离心、洗涤、烘干后得到荔枝状微纳米分级结构TiO2晶体粉末。 (2) Add 0.4g of precursor powder C to 20mL of DMF/water solution with a volume ratio of 1:1 and mix evenly, pour into a 25mL hydrothermal kettle and heat at 180°C for 2h, centrifuge, wash and dry to obtain litchi TiO 2 crystal powder with micro-nano hierarchical structure.
图1为本实施例中前驱体TiO2粉末的扫描电子显微镜图,可以看出前驱体TiO2为均匀分 布的球形,直径约为700nm。 Fig. 1 is the scanning electron micrograph of the precursor TiO2 powder in this embodiment, it can be seen that the precursor TiO2 is a uniformly distributed spherical shape with a diameter of about 700nm.
图2为本实施例得到的荔枝状微纳米分级结构TiO2晶体的扫描电子显微镜图,可以看出,该TiO2晶体整体为球形,直径约为700nm,球形表面均匀分布有直径约20nm的球状凸起。 Fig. 2 is the scanning electron microscope picture of the litchi-shaped micro-nano hierarchical structure TiO2 crystal obtained in this embodiment. It can be seen that the TiO2 crystal is spherical as a whole, with a diameter of about 700nm, and the spherical surface is evenly distributed with spherical particles with a diameter of about 20nm. raised.
图3为本实施例前驱体TiO2及荔枝状微纳米分级结构TiO2晶体的XRD图,可以看出,前驱体TiO2的XRD谱图基本不出峰,说明前驱体TiO2未形成结晶,属于无定型态。荔枝状微纳米分级结构TiO2晶体为锐钛矿型,没有杂相,表明晶体结构完整,峰形略有宽化,表明有纳米结构生成。 Fig. 3 is the XRD figure of the precursor TiO of the present embodiment and litchi-like micro-nano hierarchical structure TiO crystal, as can be seen, the XRD spectrum of the precursor TiO basically does not have a peak, indicating that the precursor TiO has not formed crystallization, Belongs to the amorphous state. Litchi-like micro-nano hierarchical structure TiO 2 crystals are anatase type, without impurity phase, indicating that the crystal structure is complete, and the peak shape is slightly broadened, indicating that nanostructures are generated.
实施例2 Example 2
(1)将2.0gPVP、25mL水和75mL正丙醇配制成混合液A,将50mL 0.8mol/L的Ti(SO4)2水溶液缓慢倒入混合液A中,搅拌均匀后,70℃水浴加热3h-6h得到混合液B,混合液B冷却至室温后,离心、洗涤,在1.0mol/L KOH溶液中60℃陈化12h,离心、洗涤、烘干后得到TiO2前驱体粉末C; (1) Mix 2.0g PVP, 25mL water and 75mL n-propanol to prepare mixed solution A, slowly pour 50mL 0.8mol/L Ti(SO 4 ) 2 aqueous solution into mixed solution A, stir well, and heat in a water bath at 70°C 3h-6h to obtain the mixed solution B, after the mixed solution B is cooled to room temperature, centrifuge and wash, age in 1.0mol/L KOH solution at 60°C for 12h, centrifuge, wash and dry to obtain the TiO 2 precursor powder C;
(2)将4g前驱体粉末C加入到20mL体积为20mL的乙二醇溶液中混合均匀,倒入25mL的水热釜在180℃下加热2h,离心、洗涤、烘干后得到荔枝状微纳米分级结构TiO2晶体粉末。 (2) Add 4g of precursor powder C to 20mL of ethylene glycol solution with a volume of 20mL and mix evenly, pour into a 25mL hydrothermal kettle and heat at 180°C for 2h, centrifuge, wash, and dry to obtain litchi-shaped micro-nano Hierarchical TiO 2 crystal powder.
得到的荔枝状微纳米分级结构TiO2晶体的扫描电子显微镜图如图4所示。可以看出,该TiO2晶体整体为球形,直径约为500nm,球形表面均匀分布有直径约10nm的球状凸起。 The scanning electron microscope image of the obtained litchi-like micro-nano hierarchical structure TiO 2 crystal is shown in Fig. 4 . It can be seen that the TiO 2 crystal is generally spherical, with a diameter of about 500 nm, and spherical protrusions with a diameter of about 10 nm are evenly distributed on the spherical surface.
实施例3 Example 3
(1)将2gPVP、25mL水和75mL正丙醇配制成混合液A,将50mL 0.8mol/L的Ti(SO4)2水溶液缓慢倒入混合液A中,搅拌均匀后,70℃水浴加热3h-6h得到混合液B,混合液B冷却至室温后,离心、洗涤,在1mol/LKOH溶液中60℃陈化12h,离心、洗涤、烘干后得到TiO2前驱体粉末C; (1) Mix 2g PVP, 25mL water and 75mL n-propanol to prepare mixed solution A, slowly pour 50mL 0.8mol/L Ti(SO 4 ) 2 aqueous solution into mixed solution A, stir well, and heat in a water bath at 70°C for 3h -6h to obtain the mixed solution B, after the mixed solution B is cooled to room temperature, centrifuge and wash, age in 1mol/L KOH solution at 60°C for 12h, centrifuge, wash and dry to obtain TiO 2 precursor powder C;
(2)将0.4g前驱体粉末C加入到20mL 0.01g/mL十六烷基三甲基溴化铵水溶液中混合均匀,倒入25mL的水热釜在180℃下加热2h,离心、洗涤、烘干后得到荔枝状微纳米分级结构TiO2晶体粉末。 (2) Add 0.4g of precursor powder C to 20mL 0.01g/mL cetyltrimethylammonium bromide aqueous solution and mix evenly, pour into a 25mL hydrothermal kettle and heat at 180°C for 2h, centrifuge, wash, After drying, TiO 2 crystal powder with litchi-like micro-nano hierarchical structure is obtained.
得到的荔枝状微纳米分级结构TiO2晶体的扫描电子显微镜图如图5所示。可以看出,该TiO2晶体整体为球形,直径约为600nm,球形表面均匀分布有直径约10nm的球状凸起。 The scanning electron microscope image of the obtained litchi-like micro-nano hierarchical structure TiO 2 crystal is shown in FIG. 5 . It can be seen that the TiO 2 crystal is generally spherical, with a diameter of about 600 nm, and spherical protrusions with a diameter of about 10 nm are evenly distributed on the spherical surface.
实施例4 Example 4
(1)将200gPVP、2500mL水和7500mL正丙醇配制成混合液A,将5000mL 0.8mol/L的Ti(SO4)2水溶液缓慢倒入混合液A中,搅拌均匀后,70℃水浴加热3h-6h得到混合液B,混合液B冷却至室温后,离心、洗涤,在1mol/L KOH溶液中60℃陈化12h,离心、洗涤、烘干后得到TiO2前驱体粉末C; (1) Mix 200g PVP, 2500mL water and 7500mL n-propanol to prepare mixed solution A, slowly pour 5000mL 0.8mol/L Ti(SO 4 ) 2 aqueous solution into mixed solution A, stir well, and heat in a water bath at 70°C for 3h -6h to obtain the mixed solution B, after the mixed solution B is cooled to room temperature, centrifuge and wash, age in 1mol/L KOH solution at 60°C for 12h, centrifuge, wash and dry to obtain TiO 2 precursor powder C;
(2)将40g前驱体粉末C加入到2000mL体积比为1:1的DMF/水溶液中混合均匀,倒入2500mL的水热釜在180℃下加热2h,离心、洗涤、烘干后得到荔枝状微纳米分级结构TiO2晶体粉末。 (2) Add 40g of precursor powder C to 2000mL of DMF/water solution with a volume ratio of 1:1 and mix evenly, pour into a 2500mL hydrothermal kettle and heat at 180°C for 2h, centrifuge, wash, and dry to obtain a litchi-like TiO 2 crystal powder with micro-nano hierarchical structure.
本实施例得到的前驱体TiO2粉末的扫描电子显微镜图、荔枝状微纳米分级结构TiO2晶体的扫描电子显微镜图及前驱体TiO2及荔枝状微纳米分级结构TiO2晶体的XRD图同实施例1中的图1-图3。 The scanning electron microscope picture of the precursor TiO2 powder obtained in this embodiment, the scanning electron microscope picture of the litchi-shaped micro-nano hierarchical structure TiO2 crystal and the XRD figure of the precursor TiO2 and the litchi-shaped micro-nano hierarchical structure TiO2 crystal are the same as the implementation Figures 1-3 in Example 1.
实施例5 Example 5
本实施例作为对比实施例,检测PVP添加量对荔枝状微纳米分级结构TiO2晶体的影响,PVP加入量为1.5g,其余条件同实施例1,得到的前驱体TiO2的扫描电子显微镜图如图6所示,可以看出,该前驱体TiO2存在团聚现象,原因是表面活性剂浓度不高,空间位阻效果不明显。 This embodiment is used as a comparative example to detect the effect of PVP addition on litchi-like micro-nano hierarchical structure TiO 2 crystals. The PVP addition is 1.5g, and the rest of the conditions are the same as in Example 1. The scanning electron microscope image of the obtained precursor TiO As shown in Figure 6, it can be seen that the precursor TiO 2 has agglomeration phenomenon, because the surfactant concentration is not high and the steric hindrance effect is not obvious.
实施例6 Example 6
本实施例作为对比实施例,检测陈化时步骤(1)中KOH添加浓度对陈化时荔枝状微纳米分级结构TiO2晶体的影响,KOH添加浓度为2mol/L,其余条件同实施例1。得到的前驱体TiO2的扫描电子显微镜图如图7所示,可以看出,该前驱体TiO2形貌不均匀,球体上有小颗粒或凹坑存在。原因是KOH浓度过大,对前驱体有腐蚀作用。 This embodiment is used as a comparative example to detect the effect of KOH addition concentration in step (1) during aging on the influence of lychee-like micro-nano hierarchical structure TiO2 crystals during aging. The KOH addition concentration is 2mol/L, and all the other conditions are the same as in Example 1 . The scanning electron microscope image of the obtained precursor TiO 2 is shown in Figure 7. It can be seen that the shape of the precursor TiO 2 is not uniform, and there are small particles or pits on the sphere. The reason is that the concentration of KOH is too high, which has a corrosive effect on the precursor.
实施例7 Example 7
将实施例1-3进行降解亚甲基蓝实验:50mg复合光催化剂降解30mL、20mg/L的亚甲基蓝溶液,以紫外灯为光源照射,每15分钟取样一次,离心后测吸光度(先在黑暗条件下搅拌30min取样,以暗中吸附后的溶液吸光度作为空白),共取样6次。结果如图8所示,3个实施例样品均能在60min内将亚甲基蓝溶液完全降解,降解效果最好的是实施例1,在45min即降解完全。 Embodiment 1-3 is carried out degrading methylene blue experiment: 50mg composite photocatalyst degrades the methylene blue solution of 30mL, 20mg/L, irradiates with ultraviolet lamp as light source, takes a sample once every 15 minutes, measures absorbance after centrifugation (stirs 30min under dark condition first Sampling, taking the absorbance of the solution after dark adsorption as blank), a total of 6 samples were taken. The results are shown in Figure 8. The samples of the three examples can completely degrade the methylene blue solution within 60 minutes, and the best degradation effect is that of Example 1, which is completely degraded within 45 minutes.
实施例组1-3具有良好的光催化降解亚甲基蓝的效率,原因是在于实施例1-3样品的吸附性非常大,而在光催化反应中表面吸附能力对催化活性有很大的影响,较强吸附能力的TiO2可以增大光催化反应速率,而荔枝状微纳米分级结构TiO2晶体表面结构则增加了表面积,提高光催化速率。 Embodiment group 1-3 has the efficiency of good photocatalytic degradation methylene blue, and reason is that the adsorption property of embodiment 1-3 sample is very big, and in photocatalytic reaction surface adsorption ability has very big influence to catalytic activity, relatively The strong adsorption capacity of TiO 2 can increase the photocatalytic reaction rate, while the litchi-like micro-nano hierarchical TiO 2 crystal surface structure increases the surface area and improves the photocatalytic rate.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510035292.7A CN104692457B (en) | 2015-01-23 | 2015-01-23 | A kind of litchi-like micro-nano hierarchical structure TiO2 crystal and its synthesis method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510035292.7A CN104692457B (en) | 2015-01-23 | 2015-01-23 | A kind of litchi-like micro-nano hierarchical structure TiO2 crystal and its synthesis method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104692457A true CN104692457A (en) | 2015-06-10 |
CN104692457B CN104692457B (en) | 2016-04-06 |
Family
ID=53340076
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510035292.7A Expired - Fee Related CN104692457B (en) | 2015-01-23 | 2015-01-23 | A kind of litchi-like micro-nano hierarchical structure TiO2 crystal and its synthesis method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104692457B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105600822A (en) * | 2016-03-31 | 2016-05-25 | 天津城建大学 | Preparation method of litchi-like hierarchical-structure {001}-surface-exposed TiO2 powder |
CN107445201A (en) * | 2017-09-11 | 2017-12-08 | 广东工业大学 | A kind of preparation method of rear-earth-doped anatase titanium dioxide micro-nano-sphere |
CN109794290A (en) * | 2019-01-31 | 2019-05-24 | 天津城建大学 | A kind of spiral type titanyl oxalate photocatalyst and preparation method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102795664A (en) * | 2012-08-10 | 2012-11-28 | 东华大学 | Preparation method of mesoporous titanium dioxide microballoons with controllable particle size |
CN103739013A (en) * | 2014-01-07 | 2014-04-23 | 天津大学 | Porous spherical titanium dioxide with controllable diameter and preparation and application thereof |
-
2015
- 2015-01-23 CN CN201510035292.7A patent/CN104692457B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102795664A (en) * | 2012-08-10 | 2012-11-28 | 东华大学 | Preparation method of mesoporous titanium dioxide microballoons with controllable particle size |
CN103739013A (en) * | 2014-01-07 | 2014-04-23 | 天津大学 | Porous spherical titanium dioxide with controllable diameter and preparation and application thereof |
Non-Patent Citations (2)
Title |
---|
扈玫珑等: "粒径可控球形TiO2的制备", 《物理化学学报》 * |
王鸿雁等: "《有色金属冶金技术问答》", 30 June 2013, 化学工业出版社 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105600822A (en) * | 2016-03-31 | 2016-05-25 | 天津城建大学 | Preparation method of litchi-like hierarchical-structure {001}-surface-exposed TiO2 powder |
CN107445201A (en) * | 2017-09-11 | 2017-12-08 | 广东工业大学 | A kind of preparation method of rear-earth-doped anatase titanium dioxide micro-nano-sphere |
CN107445201B (en) * | 2017-09-11 | 2019-01-08 | 广东工业大学 | A kind of preparation method of rear-earth-doped anatase titanium dioxide micro-nano-sphere |
CN109794290A (en) * | 2019-01-31 | 2019-05-24 | 天津城建大学 | A kind of spiral type titanyl oxalate photocatalyst and preparation method thereof |
CN109794290B (en) * | 2019-01-31 | 2021-08-27 | 天津城建大学 | Spiral titanyl oxalate photocatalyst and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN104692457B (en) | 2016-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104069844B (en) | Grading three-dimensional porous graphene/titanium dioxide photocatalyst and preparation method thereof | |
CN105170097A (en) | A kind of TiO2/ZIF-8 core-shell structure nanocomposite material and its preparation method | |
CN102795661B (en) | A kind of preparation method of graded flower-shaped ZnIn2S4 ternary compound | |
Chang et al. | Regulation of the adsorption affinity of metal-organic framework MIL-101 via a TiO2 coating strategy for high capacity adsorption and efficient photocatalysis | |
CN104772136B (en) | A kind of pucherite and preparation method and application | |
CN103480395B (en) | Preparation and application of a core-shell structure bismuth sulfide@bismuth oxide composite microsphere | |
CN108726579B (en) | Cobalt titanate porous material with core-shell structure and preparation method thereof | |
CN111701599B (en) | montmorillonite/TiO2@MoS2Preparation method of composite catalyst, product obtained by preparation method and application of composite catalyst | |
CN102895964A (en) | Preparation method of blue flaky titanium dioxide nano material | |
CN103949274B (en) | A kind of Co0.85Se catalyst material and preparation method | |
CN105271395A (en) | Ultrathin titanium dioxide nanometer sheet and preparation method thereof | |
CN110407192A (en) | Preparation of three-dimensional ordered hierarchical porous carbon photonic crystals using metal-organic frameworks | |
CN103447052B (en) | Preparation and application of hollow tree-like bismuth oxide-bismuth sulfide complex | |
CN105289457B (en) | A kind of hollow structure TiO2The preparation method and applications of nano material | |
CN107381632A (en) | A kind of preparation method of three-dimensional flower-shaped titanium dioxide nano material | |
CN104787800B (en) | A kind of flowered-spherical titanium dioxide and preparation method thereof | |
CN106076303A (en) | Graphene oxide/nano titania pin composite and its preparation method and application | |
CN104692457B (en) | A kind of litchi-like micro-nano hierarchical structure TiO2 crystal and its synthesis method | |
CN104001491B (en) | A kind of CeO2/TiO2 nanocomposite hollow sphere catalyst and preparation method thereof | |
CN105854898A (en) | Preparation method of cellulose-based core-shell CdS/ZnO (cadmium-sulfur/zinc oxide) photocatalyst | |
CN106391027B (en) | TiO with self assembly flower-like microsphere structure2-Ni(OH)2Photochemical catalyst and the preparation method and application thereof | |
CN102995120B (en) | A kind of nano TiO2 single crystal material, its preparation method and application | |
CN107008337B (en) | Non-stoichiometric copper bismuthate nano material and preparation method and application thereof | |
CN106179419A (en) | A kind of preparation method of two-dimensional magnetic nano-photocatalyst | |
CN103626226B (en) | A method for preparing hollow nano titanium dioxide without template |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20160406 Termination date: 20200123 |
|
CF01 | Termination of patent right due to non-payment of annual fee |