CN104680583B - A kind of method that sea-floor relief automatically generates - Google Patents
A kind of method that sea-floor relief automatically generates Download PDFInfo
- Publication number
- CN104680583B CN104680583B CN201310636913.8A CN201310636913A CN104680583B CN 104680583 B CN104680583 B CN 104680583B CN 201310636913 A CN201310636913 A CN 201310636913A CN 104680583 B CN104680583 B CN 104680583B
- Authority
- CN
- China
- Prior art keywords
- mrow
- msub
- msup
- mtr
- mtd
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T17/00—Three dimensional [3D] modelling, e.g. data description of 3D objects
- G06T17/05—Geographic models
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Geometry (AREA)
- Software Systems (AREA)
- Remote Sensing (AREA)
- Computer Graphics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
- Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
Abstract
The present invention discloses a kind of method that submarine topography data automatically generates, which dives unmanned untethered device(AUV)The bathymetric data of acquisition automatically generates sea-floor relief.The invention is divided into 2 stages, and the 1st stage was to obtain bathymetric data using AUV, and the 2nd stage was to automatically generate sea-floor relief according to the AUV bathymetric datas obtained.The present invention is easy to operate, can effectively realize and automatically generate sea-floor relief according to the AUV bathymetric datas obtained, the terrain result of generation more truly reacts sea-floor relief feature.
Description
Technical field
The present invention relates to underwater robot technical field, more particularly to one kind to be given birth to automatically using underwater robot aeronautical data
Into the method for sea-floor relief.
Background technology
Underwater robot keel depth is up to thousands of rice, and navigation area sea-floor relief is complicated, seabed submerged reef and seamount range
Presence very big threat is brought to the navigation safety of underwater robot.And traditional electronic chart is for the terrain information in seabed
Compare shortage, so according to the aeronautical data of underwater robot, by data mining and fusion, automatic drawing robot cruising ground
The work of seabed map, which seems, in domain is even more important.It is when underwater robot maiden voyage is in the sea area, aeronautical data is offline
Processing, can automatically generate the bottom relief map in the navigation area;When underwater robot is navigated by water in the region again,
The aeronautical data of the flight number can correct the bottom relief map of last generation automatically.As underwater robot is in the navigation area
The increase of number of trips, the bottom relief map automatically generated can be more perfect.The bottom relief map emulation sea of generation can be utilized
Base ring border, nevigation safety of the verification underwater robot under complicated marine environment, and can be that underwater robot uses sea
Bottom topographical navigation provides reference.
Traditional sea-floor relief generation method is to pay close attention to the bathymetric data processing of unordered discrete point, does not account for continuous water
The processing of deep data, does not utilize the association process submarine topography data of continuous data, particularly when ocean floor topographic survey number well
During according to having overlapping, data fusion can not be carried out well, cause generation sea-floor relief can not actual response seabed landform
Feature.
The content of the invention
In order to overcome the shortcomings of existing method, the technical problem to be solved in the present invention is the navigation number according to underwater robot
According to by data processing, generation submarine topography data, more truly reacts sea-floor relief feature.
The used to achieve the above object technical solution of the present invention is:A kind of method that sea-floor relief automatically generates, bag
Include following steps:
Sound the depth of the water data;
Bathymetric data is converted into the data under sea chart coordinate system;
By bathymetric data gridding;
Respectively the interpolating function on bathymetric data is established in X, Y direction grid;
The grid data of Y direction and X-direction is subjected to data fusion, the depth Z after being merged;
Submarine topography data is constructed using the depth Z after fusion.
The aeronautical data for obtaining bathymetric data and deriving from AUV, is sounded the depth of the water by depth gauge and the high sonar equipment of survey
Data.
It is described that bathymetric data is converted into sea chart coordinate system, comprise the following steps:
Using the southwestern endpoint of bathymetric data as coordinate origin (X0,Y0,Z0), latitude, longitude and the depth number of coordinate origin
According to for
Latitude, longitude and the depth data of other measurement points beBe converted into the data of sea chart coordinate system for (X,
Y,Z):
Wherein, X represents the north orientation distance apart from origin, and Y represents the east orientation distance apart from origin, and Z represents water depth value.
It is described by bathymetric data gridding, be specially:
The resolution ratio for defining sea chart region is m*n, i.e., divides m grid in the X-axis direction, divides n in the Y-axis direction
Grid, mesh width width_x in X-direction, mesh width is width_y in Y direction;
(X is expressed as after coordinate origin gridding0,Y0,Z0);
(X is expressed as after coordinate northeast corner endpoint griddingmax,Ymax,Z);
The coordinate of the sea chart coordinate system of other measurement points is (X, Y, Z), and (X is expressed as after griddingp,Yq,Z):
In formula,
Wherein, XpRepresent p-th of grid of north orientation apart from origin grid regions, YqRepresent q-th of net of east orientation apart from origin
Lattice, Z represent water depth value.
The interpolating function established in X-direction grid on bathymetric data, is specially:
When east orientation distance is Yq, the depth of water is on the interpolating function Zq (X) of X:
Zq(X)=(Xj-X)3/6hj*Z″j-1
+(X-Xj-1)3/6hj*Z″j(3)
+(Zj-1-Z″j-1*hj 2/6)*(Xj-X)/hj
In formula, hj=Xj-Xj-1, 1≤j≤n-1;Z″j, 1≤j≤n-1, is undetermined coefficient, represents the second dervative of the point.
In order to calculate Z "j, 1≤j≤n-1, establishes equation group(4), Z in equation groupj(1≤j≤n-1) is known quantity, Z "j(1≤j≤n-
1) it is unknown quantity, equation number unknown quantity number, can solve Z "j, 1≤j≤n-1;
The interpolating function established in Y direction grid on bathymetric data, is specially:
When east orientation distance is XpWhen, the depth of water is on the interpolating function Zp (Y) of Y:
Zp(Y)=(Yj-Y)3/6hj*Z″j-1
+(Y-Yj-1)3/6hj*Z″j(5)
+(Zj-1-Z″j-1*hj 2/6)*(Yj-Y)/hj
In formula, h is definedj=Yj-Yj-1, 1≤j≤n-1;Z″j, 1≤j≤n-1, is undetermined coefficient, represents that the second order of the point is led
Number;
In order to calculate Z "j, 1≤j≤n-1, establishes equation group(6), Z in equation groupj, 1≤j≤n-1 is known quantity, Z "j, 1
≤ j≤n-1 is unknown quantity, and equation number unknown quantity number, can solve Z "j, 1≤j≤n-1;
Described that the grid data of Y direction and X-direction is carried out data fusion, the depth Z after being merged is:
Z=PY*Zp(Y)+PX*Zq(X) (7)
Wherein, PYRepresent measurement point (Xp,Yq, Z) and in the factor of influence of Y-axis interpolation curve, PXRepresent measurement point (Xp,Yq,Z)
In X-axis interpolation curve factor of influence, Zq (X) is interpolating function of the depth of water on X, and Zp (Y) is interpolating function of the depth of water on Y.
The radius of neighbourhood is set as R, is counted in range points (Xp,Yq, Z) less than radius R X-direction coordinate points be NX, Y side
It is N to coordinate pointsY, then definition
The depth Z using after fusion constructs submarine topography data, is specially:Data after fusion are used
Delaunay algorithms are handled, and utilize the Creator Software Create submarine topography datas of Vega.
The present invention has the following advantages and beneficial effect:
1. method is simple and is widely used.The device that the present invention needs only needs AUV, graphics workstation computer, is not required to
Other auxiliary devices, program can utilize the bathymetric data of underwater robot, automatically generate sea-floor relief.
2. economical and efficient.The present invention automatically generates sea-floor relief, improves navigation of the underwater robot under complex environment
Security, and reference can be provided using sea-floor relief navigation for underwater robot, improve the navigation peace of underwater robot
Full property and operating efficiency.
Brief description of the drawings
Fig. 1 is the composition schematic diagram of the present invention;
Fig. 2 is the flow chart of the sea-floor relief generation method of the present invention.
Embodiment
The present invention is described in further detail with reference to the accompanying drawings and embodiments.
The present invention by AUV(Autonomous underwater vechle, underwater untethered submersible)And graphical Work
Computer of standing forms, and wherein AUV needs to carry depth gauge and surveys high sonar to measure the depth value of seawater, as shown in Figure 1.
Sea-floor relief generation method as shown in Fig. 2, AUV according to survey line track obtain data after, upload the data to figure
Shape workstation computer, is handled with submarine topography data generation method, is called Vega to carry out sea-floor relief after processing and is built
Mould, generates sea-floor relief, as shown in Figure 2.
The method according to the invention handles bathymetric data on graphics workstation computer, finally utilizes graphics workstation meter
Vega softwares on calculation machine are modeled sea-floor relief.
1st step:Obtain bathymetric data.
The sum of height value of depth value of the bathymetric data of the navigation area of underwater robot equal to AUV and AUV.
2nd step:Bathymetric data is converted into sea chart coordinate system.
Using the southwestern endpoint of bathymetric data as coordinate origin (X0,Y0,Z0), latitude, longitude and the depth coordinate of origin areFor other measurement points, when its latitude, longitude and depth coordinate areIt is converted into sea chart coordinate system
Coordinate be (X, Y, Z), wherein X represents the north orientation distance apart from coordinate origin, and Y represents the east orientation distance apart from origin, and Z is represented
Water depth value.The computational methods of X, Y and Z such as formula(1)It is shown.
3rd step:By bathymetric data gridding.
The resolution ratio for defining sea chart region is m*n, i.e., divides m grid in the X-axis direction, divides n in the Y-axis direction
Grid, mesh width width_x in X-direction, mesh width is width_y in Y direction.After defining coordinate origin gridding
Represent (X0,Y0,Z0).(X is expressed as after defining the gridding of northeast corner endpointmax,Ymax,Z).For other measurement points, when it
The coordinate of sea chart coordinate system is (X, Y, Z), and (X is represented after griddingp,Yq, Z), wherein XpRepresent the north orientation apart from origin grid regions
P-th of grid, YqRepresent q-th of grid of east orientation apart from origin, Z represents water depth value, computational methods such as formula(2)It is shown.
In formula,
width_x=(Xmax-X0)/n
width_y=(Ymax-Y0)/m
4th step:The interpolating function on bathymetric data is established in X-direction grid.
Define Zq (X) to represent when east orientation distance is Yq, interpolating function of the depth of water on X.The computational methods of Zq (X) such as public affairs
Formula(3)It is shown.
In formula, h is definedj=Xj-Xj-1(1≤j≤n-1);
Wherein, Z "j(1≤j≤n-1) is undetermined coefficient, represents the second dervative of the point.
In order to calculate Z "j(1≤j≤n-1), establishes equation group(4), Z in equation groupj(1≤j≤n-1) is known quantity, Z "j
(1≤j≤n-1) is unknown quantity, and equation number unknown quantity number, can solve Z "j(1≤j≤n-1)
5th step:The interpolating function on bathymetric data is established in Y direction grid.
Define Zp (Y) to represent when east orientation distance is Xp, interpolating function of the depth of water on Y.The computational methods of Zp (Y) such as public affairs
Formula(5)It is shown.
In formula, h is definedj=Yj-Yj-1(1≤j≤n-1);;
Wherein, Z "j(1≤j≤n-1) is undetermined coefficient, represents the second dervative of the point.
In order to calculate Z "j(1≤j≤n-1), establishes equation group(6), Z in equation groupj(1≤j≤n-1) is known quantity, Z "j
(1≤j≤n-1) is unknown quantity, and equation number unknown quantity number, can solve Z "j(1≤j≤n-1)
6th step:The grid data of Y direction and X-direction is subjected to data fusion.
For measurement point (Xp,Yq, Z), define its PYRepresent the factor of influence of Y-axis interpolation curve, PXRepresent X-axis interpolation
Curve factor of influence, the calculation formula such as formula of depth Z(7)It is shown.
Z=PY*Zp(Y)+PX*Zq(X)(7)
The radius of neighbourhood is set as R(R values are set according to actual conditions), count in range points (Xp,Yq, Z) and it is less than radius
The X-direction coordinate points of R are NX, Y-direction coordinate points are NY, then definition
7th step:The data of fusion are reused Delaunay algorithms to be handled, are utilized on graphics workstation computer
The Creator Software Create submarine topography datas of Vega.
Claims (7)
1. a kind of method that sea-floor relief automatically generates, it is characterised in that comprise the following steps:
Sound the depth of the water data;
Bathymetric data is converted into the data under sea chart coordinate system;
By bathymetric data gridding;
Respectively the interpolating function on bathymetric data is established in X, Y direction grid;
The grid data of Y direction and X-direction is subjected to data fusion, the depth Z after being merged;
Submarine topography data is constructed using the depth Z after fusion;
Data bathymetric data being converted under sea chart coordinate system, comprise the following steps:
Using the southwestern endpoint of bathymetric data as coordinate origin (X0,Y0,Z0), latitude, longitude and the depth data of coordinate origin are
Latitude, longitude and the depth data of other measurement points beThe data for being converted into sea chart coordinate system are (X, Y, Z):
Wherein, X represents the north orientation distance apart from origin, and Y represents the east orientation distance apart from origin, and Z represents water depth value.
2. the method that a kind of sea-floor relief according to claim 1 automatically generates, it is characterised in that the bathymetric data comes
The aeronautical data of AUV is come from, by depth gauge and high sonar equipment is surveyed and sounds the depth of the water data.
3. the method that a kind of sea-floor relief according to claim 1 automatically generates, it is characterised in that described by bathymetric data
Gridding, is specially:
The resolution ratio for defining sea chart region is m*n, i.e., divides m grid in the X-axis direction, divides n net in the Y-axis direction
Lattice, mesh width width_x in X-direction, mesh width is width_y in Y direction;
(X is expressed as after coordinate origin gridding0,Y0,Z0);
(X is expressed as after coordinate northeast corner endpoint griddingmax,Ymax,Z);
The coordinate of the sea chart coordinate system of other measurement points is (X, Y, Z), and (X is expressed as after griddingp,Yq,Z):
<mrow>
<mtable>
<mtr>
<mtd>
<mrow>
<mi>p</mi>
<mo>=</mo>
<mrow>
<mo>(</mo>
<mi>X</mi>
<mo>-</mo>
<msub>
<mi>X</mi>
<mn>0</mn>
</msub>
<mo>)</mo>
</mrow>
<mo>/</mo>
<mi>w</mi>
<mi>i</mi>
<mi>d</mi>
<mi>t</mi>
<mi>h</mi>
<mo>_</mo>
<mi>x</mi>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mi>q</mi>
<mo>=</mo>
<mrow>
<mo>(</mo>
<mi>Y</mi>
<mo>-</mo>
<msub>
<mi>Y</mi>
<mn>0</mn>
</msub>
<mo>)</mo>
</mrow>
<mo>/</mo>
<mi>w</mi>
<mi>i</mi>
<mi>d</mi>
<mi>t</mi>
<mi>h</mi>
<mo>_</mo>
<mi>y</mi>
</mrow>
</mtd>
</mtr>
</mtable>
<mo>-</mo>
<mo>-</mo>
<mo>-</mo>
<mrow>
<mo>(</mo>
<mn>2</mn>
<mo>)</mo>
</mrow>
</mrow>
In formula,
Wherein, XpRepresent p-th of grid of north orientation apart from origin grid regions, YqRepresent q-th of grid of east orientation apart from origin, Z tables
Show water depth value.
4. the method that a kind of sea-floor relief according to claim 1 automatically generates, it is characterised in that in X-direction grid
The interpolating function on bathymetric data is established, is specially:
When east orientation distance is Yq, the depth of water is on the interpolating function Zq (X) of X:
<mrow>
<mtable>
<mtr>
<mtd>
<mrow>
<mi>Z</mi>
<mi>q</mi>
<mrow>
<mo>(</mo>
<mi>X</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<msup>
<mrow>
<mo>(</mo>
<msub>
<mi>X</mi>
<mi>j</mi>
</msub>
<mo>-</mo>
<mi>X</mi>
<mo>)</mo>
</mrow>
<mn>3</mn>
</msup>
<mo>/</mo>
<mn>6</mn>
<msub>
<mi>h</mi>
<mi>j</mi>
</msub>
<mo>*</mo>
<msub>
<msup>
<mi>Z</mi>
<mrow>
<mo>&prime;</mo>
<mo>&prime;</mo>
</mrow>
</msup>
<mrow>
<mi>j</mi>
<mo>-</mo>
<mn>1</mn>
</mrow>
</msub>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mo>+</mo>
<msup>
<mrow>
<mo>(</mo>
<mi>X</mi>
<mo>-</mo>
<msub>
<mi>X</mi>
<mrow>
<mi>j</mi>
<mo>-</mo>
<mn>1</mn>
</mrow>
</msub>
<mo>)</mo>
</mrow>
<mn>3</mn>
</msup>
<mo>/</mo>
<mn>6</mn>
<msub>
<mi>h</mi>
<mi>j</mi>
</msub>
<mo>*</mo>
<msub>
<msup>
<mi>Z</mi>
<mrow>
<mo>&prime;</mo>
<mo>&prime;</mo>
</mrow>
</msup>
<mi>j</mi>
</msub>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mo>+</mo>
<mrow>
<mo>(</mo>
<msub>
<mi>Z</mi>
<mrow>
<mi>j</mi>
<mo>-</mo>
<mn>1</mn>
</mrow>
</msub>
<mo>-</mo>
<msub>
<msup>
<mi>Z</mi>
<mrow>
<mo>&prime;</mo>
<mo>&prime;</mo>
</mrow>
</msup>
<mrow>
<mi>j</mi>
<mo>-</mo>
<mn>1</mn>
</mrow>
</msub>
<mo>*</mo>
<msup>
<msub>
<mi>h</mi>
<mi>j</mi>
</msub>
<mn>2</mn>
</msup>
<mo>/</mo>
<mn>6</mn>
<mo>)</mo>
</mrow>
<mo>*</mo>
<mrow>
<mo>(</mo>
<msub>
<mi>X</mi>
<mi>j</mi>
</msub>
<mo>-</mo>
<mi>X</mi>
<mo>)</mo>
</mrow>
<mo>/</mo>
<msub>
<mi>h</mi>
<mi>j</mi>
</msub>
</mrow>
</mtd>
</mtr>
</mtable>
<mo>-</mo>
<mo>-</mo>
<mo>-</mo>
<mrow>
<mo>(</mo>
<mn>3</mn>
<mo>)</mo>
</mrow>
</mrow>
In formula, hj=Xj-Xj-1, 1≤j≤n-1;Z”jFor undetermined coefficient, the second dervative of the point is represented;
In order to calculate Z "j, establish equation group (4), Z in equation groupjFor known quantity, Z "jFor unknown quantity, equation number is equal to unknown
Number is measured, Z " can be solvedj;
<mrow>
<mfenced open = "{" close = "">
<mtable>
<mtr>
<mtd>
<mrow>
<msub>
<mi>h</mi>
<mi>j</mi>
</msub>
<mo>/</mo>
<mrow>
<mo>(</mo>
<msub>
<mi>h</mi>
<mi>j</mi>
</msub>
<mo>+</mo>
<msub>
<mi>h</mi>
<mrow>
<mi>j</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
</msub>
<mo>)</mo>
</mrow>
<mo>*</mo>
<msub>
<msup>
<mi>Z</mi>
<mrow>
<mo>&prime;</mo>
<mo>&prime;</mo>
</mrow>
</msup>
<mrow>
<mi>j</mi>
<mo>-</mo>
<mn>1</mn>
</mrow>
</msub>
<mo>+</mo>
<mn>2</mn>
<mo>*</mo>
<msub>
<msup>
<mi>Z</mi>
<mrow>
<mo>&prime;</mo>
<mo>&prime;</mo>
</mrow>
</msup>
<mi>j</mi>
</msub>
<mo>+</mo>
<msub>
<mi>h</mi>
<mrow>
<mi>j</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
</msub>
<mo>/</mo>
<mrow>
<mo>(</mo>
<msub>
<mi>h</mi>
<mi>j</mi>
</msub>
<mo>+</mo>
<msub>
<mi>h</mi>
<mrow>
<mi>j</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
</msub>
<mo>)</mo>
</mrow>
<mo>*</mo>
<msub>
<msup>
<mi>Z</mi>
<mrow>
<mo>&prime;</mo>
<mo>&prime;</mo>
</mrow>
</msup>
<mrow>
<mi>j</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
</msub>
<mo>=</mo>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mo>+</mo>
<mfrac>
<mn>6</mn>
<mrow>
<msub>
<mi>h</mi>
<mi>j</mi>
</msub>
<mo>+</mo>
<msub>
<mi>h</mi>
<mrow>
<mi>j</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
</msub>
</mrow>
</mfrac>
<mo>*</mo>
<mrow>
<mo>(</mo>
<mfrac>
<mrow>
<msub>
<mi>Z</mi>
<mrow>
<mi>j</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
</msub>
<mo>-</mo>
<msub>
<msup>
<mi>Z</mi>
<mrow>
<mo>&prime;</mo>
<mo>&prime;</mo>
</mrow>
</msup>
<mrow>
<mi>j</mi>
<mo>-</mo>
<mn>1</mn>
</mrow>
</msub>
</mrow>
<msub>
<mi>h</mi>
<mrow>
<mi>j</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
</msub>
</mfrac>
<mo>-</mo>
<mfrac>
<mrow>
<msub>
<mi>Z</mi>
<mi>j</mi>
</msub>
<mo>-</mo>
<msub>
<mi>Z</mi>
<mrow>
<mi>j</mi>
<mo>-</mo>
<mn>1</mn>
</mrow>
</msub>
</mrow>
<msub>
<mi>h</mi>
<mi>j</mi>
</msub>
</mfrac>
<mo>)</mo>
</mrow>
<mo>,</mo>
<mrow>
<mo>(</mo>
<mn>1</mn>
<mo>&le;</mo>
<mi>j</mi>
<mo>&le;</mo>
<mi>n</mi>
<mo>-</mo>
<mn>1</mn>
<mo>)</mo>
</mrow>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<msub>
<msup>
<mi>Z</mi>
<mrow>
<mo>&prime;</mo>
<mo>&prime;</mo>
</mrow>
</msup>
<mn>0</mn>
</msub>
<mo>=</mo>
<mn>0</mn>
<mo>,</mo>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<msubsup>
<mi>Z</mi>
<mi>n</mi>
<mrow>
<mo>&prime;</mo>
<mo>&prime;</mo>
</mrow>
</msubsup>
<mo>=</mo>
<mn>0</mn>
</mrow>
</mtd>
</mtr>
</mtable>
</mfenced>
<mo>-</mo>
<mo>-</mo>
<mo>-</mo>
<mrow>
<mo>(</mo>
<mn>4</mn>
<mo>)</mo>
</mrow>
<mo>.</mo>
</mrow>
5. the method that a kind of sea-floor relief according to claim 1 automatically generates, it is characterised in that in Y direction grid
The interpolating function on bathymetric data is established, is specially:
When east orientation distance is XpWhen, the depth of water is on the interpolating function Zp (Y) of Y:
<mrow>
<mtable>
<mtr>
<mtd>
<mrow>
<mi>Z</mi>
<mi>p</mi>
<mrow>
<mo>(</mo>
<mi>Y</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<msup>
<mrow>
<mo>(</mo>
<msub>
<mi>Y</mi>
<mi>j</mi>
</msub>
<mo>-</mo>
<mi>Y</mi>
<mo>)</mo>
</mrow>
<mn>3</mn>
</msup>
<mo>/</mo>
<mn>6</mn>
<msub>
<mi>h</mi>
<mi>j</mi>
</msub>
<mo>*</mo>
<msub>
<msup>
<mi>Z</mi>
<mrow>
<mo>&prime;</mo>
<mo>&prime;</mo>
</mrow>
</msup>
<mrow>
<mi>j</mi>
<mo>-</mo>
<mn>1</mn>
</mrow>
</msub>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mo>+</mo>
<msup>
<mrow>
<mo>(</mo>
<mi>Y</mi>
<mo>-</mo>
<msub>
<mi>Y</mi>
<mrow>
<mi>j</mi>
<mo>-</mo>
<mn>1</mn>
</mrow>
</msub>
<mo>)</mo>
</mrow>
<mn>3</mn>
</msup>
<mo>/</mo>
<mn>6</mn>
<msub>
<mi>h</mi>
<mi>j</mi>
</msub>
<mo>*</mo>
<msub>
<msup>
<mi>Z</mi>
<mrow>
<mo>&prime;</mo>
<mo>&prime;</mo>
</mrow>
</msup>
<mi>j</mi>
</msub>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mo>+</mo>
<mrow>
<mo>(</mo>
<msub>
<mi>Z</mi>
<mrow>
<mi>j</mi>
<mo>-</mo>
<mn>1</mn>
</mrow>
</msub>
<mo>-</mo>
<msub>
<msup>
<mi>Z</mi>
<mrow>
<mo>&prime;</mo>
<mo>&prime;</mo>
</mrow>
</msup>
<mrow>
<mi>j</mi>
<mo>-</mo>
<mn>1</mn>
</mrow>
</msub>
<mo>*</mo>
<msup>
<msub>
<mi>h</mi>
<mi>j</mi>
</msub>
<mn>2</mn>
</msup>
<mo>/</mo>
<mn>6</mn>
<mo>)</mo>
</mrow>
<mo>*</mo>
<mrow>
<mo>(</mo>
<msub>
<mi>Y</mi>
<mi>j</mi>
</msub>
<mo>-</mo>
<mi>Y</mi>
<mo>)</mo>
</mrow>
<mo>/</mo>
<msub>
<mi>h</mi>
<mi>j</mi>
</msub>
</mrow>
</mtd>
</mtr>
</mtable>
<mo>-</mo>
<mo>-</mo>
<mo>-</mo>
<mrow>
<mo>(</mo>
<mn>5</mn>
<mo>)</mo>
</mrow>
</mrow>
In formula, h is definedj=Yj-Yj-1, 1≤j≤n-1;Z”jFor undetermined coefficient, the second dervative of the point is represented;
In order to calculate Z "j, establish equation group (6), Z in equation groupjFor known quantity, Z "jFor unknown quantity, equation number is equal to unknown
Number is measured, Z " can be solvedj;
<mrow>
<mfenced open = "{" close = "">
<mtable>
<mtr>
<mtd>
<mrow>
<msub>
<mi>h</mi>
<mi>j</mi>
</msub>
<mo>/</mo>
<mrow>
<mo>(</mo>
<msub>
<mi>h</mi>
<mi>j</mi>
</msub>
<mo>+</mo>
<msub>
<mi>h</mi>
<mrow>
<mi>j</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
</msub>
<mo>)</mo>
</mrow>
<mo>*</mo>
<msub>
<msup>
<mi>Z</mi>
<mrow>
<mo>&prime;</mo>
<mo>&prime;</mo>
</mrow>
</msup>
<mrow>
<mi>j</mi>
<mo>-</mo>
<mn>1</mn>
</mrow>
</msub>
<mo>+</mo>
<mn>2</mn>
<mo>*</mo>
<msub>
<msup>
<mi>Z</mi>
<mrow>
<mo>&prime;</mo>
<mo>&prime;</mo>
</mrow>
</msup>
<mi>j</mi>
</msub>
<mo>+</mo>
<msub>
<mi>h</mi>
<mrow>
<mi>j</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
</msub>
<mo>/</mo>
<mrow>
<mo>(</mo>
<msub>
<mi>h</mi>
<mi>j</mi>
</msub>
<mo>+</mo>
<msub>
<mi>h</mi>
<mrow>
<mi>j</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
</msub>
<mo>)</mo>
</mrow>
<mo>*</mo>
<msub>
<msup>
<mi>Z</mi>
<mrow>
<mo>&prime;</mo>
<mo>&prime;</mo>
</mrow>
</msup>
<mrow>
<mi>j</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
</msub>
<mo>=</mo>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mo>+</mo>
<mfrac>
<mn>6</mn>
<mrow>
<msub>
<mi>h</mi>
<mi>j</mi>
</msub>
<mo>+</mo>
<msub>
<mi>h</mi>
<mrow>
<mi>j</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
</msub>
</mrow>
</mfrac>
<mo>*</mo>
<mrow>
<mo>(</mo>
<mfrac>
<mrow>
<msub>
<mi>Z</mi>
<mrow>
<mi>j</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
</msub>
<mo>-</mo>
<msub>
<msup>
<mi>Z</mi>
<mrow>
<mo>&prime;</mo>
<mo>&prime;</mo>
</mrow>
</msup>
<mrow>
<mi>j</mi>
<mo>-</mo>
<mn>1</mn>
</mrow>
</msub>
</mrow>
<msub>
<mi>h</mi>
<mrow>
<mi>j</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
</msub>
</mfrac>
<mo>-</mo>
<mfrac>
<mrow>
<msub>
<mi>Z</mi>
<mi>j</mi>
</msub>
<mo>-</mo>
<msub>
<mi>Z</mi>
<mrow>
<mi>j</mi>
<mo>-</mo>
<mn>1</mn>
</mrow>
</msub>
</mrow>
<msub>
<mi>h</mi>
<mi>j</mi>
</msub>
</mfrac>
<mo>)</mo>
</mrow>
<mo>,</mo>
<mrow>
<mo>(</mo>
<mn>1</mn>
<mo>&le;</mo>
<mi>j</mi>
<mo>&le;</mo>
<mi>n</mi>
<mo>-</mo>
<mn>1</mn>
<mo>)</mo>
</mrow>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<msub>
<msup>
<mi>Z</mi>
<mrow>
<mo>&prime;</mo>
<mo>&prime;</mo>
</mrow>
</msup>
<mn>0</mn>
</msub>
<mo>=</mo>
<mn>0</mn>
<mo>,</mo>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<msubsup>
<mi>Z</mi>
<mi>n</mi>
<mrow>
<mo>&prime;</mo>
<mo>&prime;</mo>
</mrow>
</msubsup>
<mo>=</mo>
<mn>0</mn>
</mrow>
</mtd>
</mtr>
</mtable>
</mfenced>
<mo>-</mo>
<mo>-</mo>
<mo>-</mo>
<mrow>
<mo>(</mo>
<mn>6</mn>
<mo>)</mo>
</mrow>
<mo>.</mo>
</mrow>
6. the method that a kind of sea-floor relief according to claim 1 automatically generates, it is characterised in that described by Y direction
Data fusion is carried out with the grid data of X-direction, the depth Z after being merged is:
Z=PY*Zp(Y)+PX*Zq(X) (7)
Wherein, PYRepresent measurement point (Xp,Yq, Z) and in the factor of influence of Y-axis interpolation curve, PXRepresent measurement point (Xp,Yq, Z) and in X
Axis interpolation curve factor of influence, Zq (X) are interpolating function of the depth of water on X, and Zp (Y) is interpolating function of the depth of water on Y;
The radius of neighbourhood is set as R, is counted in range points (Xp,Yq, Z) less than radius R X-direction coordinate points be NX, Y-direction seat
Punctuate number is NY, then definition
<mrow>
<mfenced open = "{" close = "">
<mtable>
<mtr>
<mtd>
<mrow>
<msub>
<mi>P</mi>
<mi>X</mi>
</msub>
<mo>=</mo>
<mfrac>
<msub>
<mi>N</mi>
<mi>x</mi>
</msub>
<mrow>
<msub>
<mi>N</mi>
<mi>x</mi>
</msub>
<mo>+</mo>
<msub>
<mi>N</mi>
<mi>Y</mi>
</msub>
</mrow>
</mfrac>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<msub>
<mi>P</mi>
<mi>Y</mi>
</msub>
<mo>=</mo>
<mfrac>
<msub>
<mi>N</mi>
<mi>Y</mi>
</msub>
<mrow>
<msub>
<mi>N</mi>
<mi>x</mi>
</msub>
<mo>+</mo>
<msub>
<mi>N</mi>
<mi>Y</mi>
</msub>
</mrow>
</mfrac>
</mrow>
</mtd>
</mtr>
</mtable>
</mfenced>
<mo>.</mo>
</mrow>
7. the method that a kind of sea-floor relief according to claim 1 automatically generates, it is characterised in that after the utilization fusion
Depth Z construct submarine topography data, be specially:Data after fusion are handled using Delaunay algorithms, are utilized
The Creator Software Create submarine topography datas of Vega.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310636913.8A CN104680583B (en) | 2013-11-27 | 2013-11-27 | A kind of method that sea-floor relief automatically generates |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310636913.8A CN104680583B (en) | 2013-11-27 | 2013-11-27 | A kind of method that sea-floor relief automatically generates |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104680583A CN104680583A (en) | 2015-06-03 |
CN104680583B true CN104680583B (en) | 2018-04-27 |
Family
ID=53315574
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310636913.8A Active CN104680583B (en) | 2013-11-27 | 2013-11-27 | A kind of method that sea-floor relief automatically generates |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104680583B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109387181A (en) * | 2017-08-07 | 2019-02-26 | 广州极飞科技有限公司 | Terrain rendering method and device |
CN108413926B (en) * | 2018-01-31 | 2020-12-04 | 上海荟蔚信息科技有限公司 | High-precision measurement method for underwater topography elevation of pile foundation of offshore wind farm |
CN108665549A (en) * | 2018-05-09 | 2018-10-16 | 辽宁省海洋水产科学研究院 | The three-dimensional seafloor model method for building up in project sea and the computational methods of marine organisms loss amount |
CN110765686B (en) * | 2019-10-22 | 2020-09-11 | 中国人民解放军战略支援部队信息工程大学 | Method for designing shipborne sonar sounding line by using limited wave band submarine topography |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102446367A (en) * | 2011-09-19 | 2012-05-09 | 哈尔滨工程大学 | Method for constructing three-dimensional terrain vector model based on multi-beam sonar submarine measurement data |
CN102819568A (en) * | 2012-07-18 | 2012-12-12 | 哈尔滨工程大学 | Submarine topography data establishment method based on topographical sampling point positions |
CN103344954A (en) * | 2013-07-08 | 2013-10-09 | 国家海洋局第二海洋研究所 | Submarine topography construction method based on multi-source water depth data fusion |
-
2013
- 2013-11-27 CN CN201310636913.8A patent/CN104680583B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102446367A (en) * | 2011-09-19 | 2012-05-09 | 哈尔滨工程大学 | Method for constructing three-dimensional terrain vector model based on multi-beam sonar submarine measurement data |
CN102819568A (en) * | 2012-07-18 | 2012-12-12 | 哈尔滨工程大学 | Submarine topography data establishment method based on topographical sampling point positions |
CN103344954A (en) * | 2013-07-08 | 2013-10-09 | 国家海洋局第二海洋研究所 | Submarine topography construction method based on multi-source water depth data fusion |
Non-Patent Citations (2)
Title |
---|
一种海底地形和海流虚拟生成方法;刘开周 等;《系统仿真学报》;20050531;第17卷(第5期);第1268-1271页 * |
三维海底地形仿真技术的研究与实现;邱秋香;《中国优秀硕士学位论文全文数据库》;20120515;正文第4-5,21-26页 * |
Also Published As
Publication number | Publication date |
---|---|
CN104680583A (en) | 2015-06-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103344954B (en) | Submarine topography construction method based on multi-source water depth data fusion | |
US9651698B2 (en) | Multi-beam bathymetric chart construction method based on submarine digital depth model feature extraction | |
CN102446367B (en) | Method for constructing three-dimensional terrain vector model based on multi-beam sonar submarine measurement data | |
CN103345759B (en) | Accurate detection method for submarine large complex sandwave landforms | |
CN103292792B (en) | Actual measurement SVP reconstruction method suitable for submarine detection and pseudo-landform processing | |
CN104680583B (en) | A kind of method that sea-floor relief automatically generates | |
CN112949140A (en) | Large ship safe embarkation and embarkation method based on dynamic conditions | |
RU2519269C1 (en) | Method of surveying bottom topography of water area and apparatus therefor | |
CN110796741B (en) | Airborne laser sounding point cloud filtering method based on bidirectional cloth simulation | |
CN102419436A (en) | Multibeam data processing method based on total propagation error filter | |
CN113341476A (en) | Method for improving ocean gravity spatial resolution based on submarine topography-gravity combination | |
CN109472065A (en) | Forecast the three-dimensional numerical method of Low Speed Full Ships Added Resistance under severe sea condition | |
CN111412918B (en) | Unmanned ship global safety path planning method | |
CN114325851A (en) | Method and system for detecting underwater ferromagnetic target based on multi-frequency radiation source | |
CN103854302B (en) | A kind of AUV navigation environment space construction process under multi-constraint condition | |
CN106908036B (en) | A kind of AUV multi-beam Bathymetric Data patterning process based on local offset | |
CN106441244B (en) | A kind of tide prediction device based on global position system | |
Jakobsson et al. | Arctic Ocean bathymetry: A necessary geospatial framework | |
CN104239635B (en) | Seaway domain center line automatic drafting method on a kind of inland river electronic chart | |
CN109490894A (en) | A kind of multi-beam fining post-processing approach | |
Hayashi et al. | Source Data and Bathymetry Editor in Tsunami Modeling Environment | |
de Araújo et al. | Low-cost Bathymetric Survey for Marine Protected Areas: coral reefs and coastal islands | |
Kang et al. | Assessment of ENC sounding by Delaunay Triangulation method in aspect of fine compilation for safe navigation | |
Li et al. | Sensor simulation of underwater terrain matching based on sea chart | |
Prasad et al. | Modelling and Analysis of Underwater Surface using ENC Chart Visualization |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |