CN104680583B - A kind of method that sea-floor relief automatically generates - Google Patents

A kind of method that sea-floor relief automatically generates Download PDF

Info

Publication number
CN104680583B
CN104680583B CN201310636913.8A CN201310636913A CN104680583B CN 104680583 B CN104680583 B CN 104680583B CN 201310636913 A CN201310636913 A CN 201310636913A CN 104680583 B CN104680583 B CN 104680583B
Authority
CN
China
Prior art keywords
mrow
msub
msup
mtr
mtd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310636913.8A
Other languages
Chinese (zh)
Other versions
CN104680583A (en
Inventor
刘健
王轶群
刘铁军
赵宏宇
贾松力
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenyang Institute of Automation of CAS
Original Assignee
Shenyang Institute of Automation of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenyang Institute of Automation of CAS filed Critical Shenyang Institute of Automation of CAS
Priority to CN201310636913.8A priority Critical patent/CN104680583B/en
Publication of CN104680583A publication Critical patent/CN104680583A/en
Application granted granted Critical
Publication of CN104680583B publication Critical patent/CN104680583B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/05Geographic models

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Software Systems (AREA)
  • Remote Sensing (AREA)
  • Computer Graphics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

The present invention discloses a kind of method that submarine topography data automatically generates, which dives unmanned untethered device(AUV)The bathymetric data of acquisition automatically generates sea-floor relief.The invention is divided into 2 stages, and the 1st stage was to obtain bathymetric data using AUV, and the 2nd stage was to automatically generate sea-floor relief according to the AUV bathymetric datas obtained.The present invention is easy to operate, can effectively realize and automatically generate sea-floor relief according to the AUV bathymetric datas obtained, the terrain result of generation more truly reacts sea-floor relief feature.

Description

A kind of method that sea-floor relief automatically generates
Technical field
The present invention relates to underwater robot technical field, more particularly to one kind to be given birth to automatically using underwater robot aeronautical data Into the method for sea-floor relief.
Background technology
Underwater robot keel depth is up to thousands of rice, and navigation area sea-floor relief is complicated, seabed submerged reef and seamount range Presence very big threat is brought to the navigation safety of underwater robot.And traditional electronic chart is for the terrain information in seabed Compare shortage, so according to the aeronautical data of underwater robot, by data mining and fusion, automatic drawing robot cruising ground The work of seabed map, which seems, in domain is even more important.It is when underwater robot maiden voyage is in the sea area, aeronautical data is offline Processing, can automatically generate the bottom relief map in the navigation area;When underwater robot is navigated by water in the region again, The aeronautical data of the flight number can correct the bottom relief map of last generation automatically.As underwater robot is in the navigation area The increase of number of trips, the bottom relief map automatically generated can be more perfect.The bottom relief map emulation sea of generation can be utilized Base ring border, nevigation safety of the verification underwater robot under complicated marine environment, and can be that underwater robot uses sea Bottom topographical navigation provides reference.
Traditional sea-floor relief generation method is to pay close attention to the bathymetric data processing of unordered discrete point, does not account for continuous water The processing of deep data, does not utilize the association process submarine topography data of continuous data, particularly when ocean floor topographic survey number well During according to having overlapping, data fusion can not be carried out well, cause generation sea-floor relief can not actual response seabed landform Feature.
The content of the invention
In order to overcome the shortcomings of existing method, the technical problem to be solved in the present invention is the navigation number according to underwater robot According to by data processing, generation submarine topography data, more truly reacts sea-floor relief feature.
The used to achieve the above object technical solution of the present invention is:A kind of method that sea-floor relief automatically generates, bag Include following steps:
Sound the depth of the water data;
Bathymetric data is converted into the data under sea chart coordinate system;
By bathymetric data gridding;
Respectively the interpolating function on bathymetric data is established in X, Y direction grid;
The grid data of Y direction and X-direction is subjected to data fusion, the depth Z after being merged;
Submarine topography data is constructed using the depth Z after fusion.
The aeronautical data for obtaining bathymetric data and deriving from AUV, is sounded the depth of the water by depth gauge and the high sonar equipment of survey Data.
It is described that bathymetric data is converted into sea chart coordinate system, comprise the following steps:
Using the southwestern endpoint of bathymetric data as coordinate origin (X0,Y0,Z0), latitude, longitude and the depth number of coordinate origin According to for
Latitude, longitude and the depth data of other measurement points beBe converted into the data of sea chart coordinate system for (X, Y,Z):
Wherein, X represents the north orientation distance apart from origin, and Y represents the east orientation distance apart from origin, and Z represents water depth value.
It is described by bathymetric data gridding, be specially:
The resolution ratio for defining sea chart region is m*n, i.e., divides m grid in the X-axis direction, divides n in the Y-axis direction Grid, mesh width width_x in X-direction, mesh width is width_y in Y direction;
(X is expressed as after coordinate origin gridding0,Y0,Z0);
(X is expressed as after coordinate northeast corner endpoint griddingmax,Ymax,Z);
The coordinate of the sea chart coordinate system of other measurement points is (X, Y, Z), and (X is expressed as after griddingp,Yq,Z):
In formula,
Wherein, XpRepresent p-th of grid of north orientation apart from origin grid regions, YqRepresent q-th of net of east orientation apart from origin Lattice, Z represent water depth value.
The interpolating function established in X-direction grid on bathymetric data, is specially:
When east orientation distance is Yq, the depth of water is on the interpolating function Zq (X) of X:
Zq(X)=(Xj-X)3/6hj*Z″j-1
+(X-Xj-1)3/6hj*Z″j(3)
+(Zj-1-Z″j-1*hj 2/6)*(Xj-X)/hj
In formula, hj=Xj-Xj-1, 1≤j≤n-1;Z″j, 1≤j≤n-1, is undetermined coefficient, represents the second dervative of the point. In order to calculate Z "j, 1≤j≤n-1, establishes equation group(4), Z in equation groupj(1≤j≤n-1) is known quantity, Z "j(1≤j≤n- 1) it is unknown quantity, equation number unknown quantity number, can solve Z "j, 1≤j≤n-1;
The interpolating function established in Y direction grid on bathymetric data, is specially:
When east orientation distance is XpWhen, the depth of water is on the interpolating function Zp (Y) of Y:
Zp(Y)=(Yj-Y)3/6hj*Z″j-1
+(Y-Yj-1)3/6hj*Z″j(5)
+(Zj-1-Z″j-1*hj 2/6)*(Yj-Y)/hj
In formula, h is definedj=Yj-Yj-1, 1≤j≤n-1;Z″j, 1≤j≤n-1, is undetermined coefficient, represents that the second order of the point is led Number;
In order to calculate Z "j, 1≤j≤n-1, establishes equation group(6), Z in equation groupj, 1≤j≤n-1 is known quantity, Z "j, 1 ≤ j≤n-1 is unknown quantity, and equation number unknown quantity number, can solve Z "j, 1≤j≤n-1;
Described that the grid data of Y direction and X-direction is carried out data fusion, the depth Z after being merged is:
Z=PY*Zp(Y)+PX*Zq(X) (7)
Wherein, PYRepresent measurement point (Xp,Yq, Z) and in the factor of influence of Y-axis interpolation curve, PXRepresent measurement point (Xp,Yq,Z) In X-axis interpolation curve factor of influence, Zq (X) is interpolating function of the depth of water on X, and Zp (Y) is interpolating function of the depth of water on Y.
The radius of neighbourhood is set as R, is counted in range points (Xp,Yq, Z) less than radius R X-direction coordinate points be NX, Y side It is N to coordinate pointsY, then definition
The depth Z using after fusion constructs submarine topography data, is specially:Data after fusion are used Delaunay algorithms are handled, and utilize the Creator Software Create submarine topography datas of Vega.
The present invention has the following advantages and beneficial effect:
1. method is simple and is widely used.The device that the present invention needs only needs AUV, graphics workstation computer, is not required to Other auxiliary devices, program can utilize the bathymetric data of underwater robot, automatically generate sea-floor relief.
2. economical and efficient.The present invention automatically generates sea-floor relief, improves navigation of the underwater robot under complex environment Security, and reference can be provided using sea-floor relief navigation for underwater robot, improve the navigation peace of underwater robot Full property and operating efficiency.
Brief description of the drawings
Fig. 1 is the composition schematic diagram of the present invention;
Fig. 2 is the flow chart of the sea-floor relief generation method of the present invention.
Embodiment
The present invention is described in further detail with reference to the accompanying drawings and embodiments.
The present invention by AUV(Autonomous underwater vechle, underwater untethered submersible)And graphical Work Computer of standing forms, and wherein AUV needs to carry depth gauge and surveys high sonar to measure the depth value of seawater, as shown in Figure 1.
Sea-floor relief generation method as shown in Fig. 2, AUV according to survey line track obtain data after, upload the data to figure Shape workstation computer, is handled with submarine topography data generation method, is called Vega to carry out sea-floor relief after processing and is built Mould, generates sea-floor relief, as shown in Figure 2.
The method according to the invention handles bathymetric data on graphics workstation computer, finally utilizes graphics workstation meter Vega softwares on calculation machine are modeled sea-floor relief.
1st step:Obtain bathymetric data.
The sum of height value of depth value of the bathymetric data of the navigation area of underwater robot equal to AUV and AUV.
2nd step:Bathymetric data is converted into sea chart coordinate system.
Using the southwestern endpoint of bathymetric data as coordinate origin (X0,Y0,Z0), latitude, longitude and the depth coordinate of origin areFor other measurement points, when its latitude, longitude and depth coordinate areIt is converted into sea chart coordinate system Coordinate be (X, Y, Z), wherein X represents the north orientation distance apart from coordinate origin, and Y represents the east orientation distance apart from origin, and Z is represented Water depth value.The computational methods of X, Y and Z such as formula(1)It is shown.
3rd step:By bathymetric data gridding.
The resolution ratio for defining sea chart region is m*n, i.e., divides m grid in the X-axis direction, divides n in the Y-axis direction Grid, mesh width width_x in X-direction, mesh width is width_y in Y direction.After defining coordinate origin gridding Represent (X0,Y0,Z0).(X is expressed as after defining the gridding of northeast corner endpointmax,Ymax,Z).For other measurement points, when it The coordinate of sea chart coordinate system is (X, Y, Z), and (X is represented after griddingp,Yq, Z), wherein XpRepresent the north orientation apart from origin grid regions P-th of grid, YqRepresent q-th of grid of east orientation apart from origin, Z represents water depth value, computational methods such as formula(2)It is shown.
In formula,
width_x=(Xmax-X0)/n
width_y=(Ymax-Y0)/m
4th step:The interpolating function on bathymetric data is established in X-direction grid.
Define Zq (X) to represent when east orientation distance is Yq, interpolating function of the depth of water on X.The computational methods of Zq (X) such as public affairs Formula(3)It is shown.
In formula, h is definedj=Xj-Xj-1(1≤j≤n-1);
Wherein, Z "j(1≤j≤n-1) is undetermined coefficient, represents the second dervative of the point.
In order to calculate Z "j(1≤j≤n-1), establishes equation group(4), Z in equation groupj(1≤j≤n-1) is known quantity, Z "j (1≤j≤n-1) is unknown quantity, and equation number unknown quantity number, can solve Z "j(1≤j≤n-1)
5th step:The interpolating function on bathymetric data is established in Y direction grid.
Define Zp (Y) to represent when east orientation distance is Xp, interpolating function of the depth of water on Y.The computational methods of Zp (Y) such as public affairs Formula(5)It is shown.
In formula, h is definedj=Yj-Yj-1(1≤j≤n-1);;
Wherein, Z "j(1≤j≤n-1) is undetermined coefficient, represents the second dervative of the point.
In order to calculate Z "j(1≤j≤n-1), establishes equation group(6), Z in equation groupj(1≤j≤n-1) is known quantity, Z "j (1≤j≤n-1) is unknown quantity, and equation number unknown quantity number, can solve Z "j(1≤j≤n-1)
6th step:The grid data of Y direction and X-direction is subjected to data fusion.
For measurement point (Xp,Yq, Z), define its PYRepresent the factor of influence of Y-axis interpolation curve, PXRepresent X-axis interpolation Curve factor of influence, the calculation formula such as formula of depth Z(7)It is shown.
Z=PY*Zp(Y)+PX*Zq(X)(7)
The radius of neighbourhood is set as R(R values are set according to actual conditions), count in range points (Xp,Yq, Z) and it is less than radius The X-direction coordinate points of R are NX, Y-direction coordinate points are NY, then definition
7th step:The data of fusion are reused Delaunay algorithms to be handled, are utilized on graphics workstation computer The Creator Software Create submarine topography datas of Vega.

Claims (7)

1. a kind of method that sea-floor relief automatically generates, it is characterised in that comprise the following steps:
Sound the depth of the water data;
Bathymetric data is converted into the data under sea chart coordinate system;
By bathymetric data gridding;
Respectively the interpolating function on bathymetric data is established in X, Y direction grid;
The grid data of Y direction and X-direction is subjected to data fusion, the depth Z after being merged;
Submarine topography data is constructed using the depth Z after fusion;
Data bathymetric data being converted under sea chart coordinate system, comprise the following steps:
Using the southwestern endpoint of bathymetric data as coordinate origin (X0,Y0,Z0), latitude, longitude and the depth data of coordinate origin are
Latitude, longitude and the depth data of other measurement points beThe data for being converted into sea chart coordinate system are (X, Y, Z):
Wherein, X represents the north orientation distance apart from origin, and Y represents the east orientation distance apart from origin, and Z represents water depth value.
2. the method that a kind of sea-floor relief according to claim 1 automatically generates, it is characterised in that the bathymetric data comes The aeronautical data of AUV is come from, by depth gauge and high sonar equipment is surveyed and sounds the depth of the water data.
3. the method that a kind of sea-floor relief according to claim 1 automatically generates, it is characterised in that described by bathymetric data Gridding, is specially:
The resolution ratio for defining sea chart region is m*n, i.e., divides m grid in the X-axis direction, divides n net in the Y-axis direction Lattice, mesh width width_x in X-direction, mesh width is width_y in Y direction;
(X is expressed as after coordinate origin gridding0,Y0,Z0);
(X is expressed as after coordinate northeast corner endpoint griddingmax,Ymax,Z);
The coordinate of the sea chart coordinate system of other measurement points is (X, Y, Z), and (X is expressed as after griddingp,Yq,Z):
<mrow> <mtable> <mtr> <mtd> <mrow> <mi>p</mi> <mo>=</mo> <mrow> <mo>(</mo> <mi>X</mi> <mo>-</mo> <msub> <mi>X</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>/</mo> <mi>w</mi> <mi>i</mi> <mi>d</mi> <mi>t</mi> <mi>h</mi> <mo>_</mo> <mi>x</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>q</mi> <mo>=</mo> <mrow> <mo>(</mo> <mi>Y</mi> <mo>-</mo> <msub> <mi>Y</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>/</mo> <mi>w</mi> <mi>i</mi> <mi>d</mi> <mi>t</mi> <mi>h</mi> <mo>_</mo> <mi>y</mi> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow>
In formula,
Wherein, XpRepresent p-th of grid of north orientation apart from origin grid regions, YqRepresent q-th of grid of east orientation apart from origin, Z tables Show water depth value.
4. the method that a kind of sea-floor relief according to claim 1 automatically generates, it is characterised in that in X-direction grid The interpolating function on bathymetric data is established, is specially:
When east orientation distance is Yq, the depth of water is on the interpolating function Zq (X) of X:
<mrow> <mtable> <mtr> <mtd> <mrow> <mi>Z</mi> <mi>q</mi> <mrow> <mo>(</mo> <mi>X</mi> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>X</mi> <mi>j</mi> </msub> <mo>-</mo> <mi>X</mi> <mo>)</mo> </mrow> <mn>3</mn> </msup> <mo>/</mo> <mn>6</mn> <msub> <mi>h</mi> <mi>j</mi> </msub> <mo>*</mo> <msub> <msup> <mi>Z</mi> <mrow> <mo>&amp;prime;</mo> <mo>&amp;prime;</mo> </mrow> </msup> <mrow> <mi>j</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mi>X</mi> <mo>-</mo> <msub> <mi>X</mi> <mrow> <mi>j</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mn>3</mn> </msup> <mo>/</mo> <mn>6</mn> <msub> <mi>h</mi> <mi>j</mi> </msub> <mo>*</mo> <msub> <msup> <mi>Z</mi> <mrow> <mo>&amp;prime;</mo> <mo>&amp;prime;</mo> </mrow> </msup> <mi>j</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <mrow> <mo>(</mo> <msub> <mi>Z</mi> <mrow> <mi>j</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <msub> <msup> <mi>Z</mi> <mrow> <mo>&amp;prime;</mo> <mo>&amp;prime;</mo> </mrow> </msup> <mrow> <mi>j</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>*</mo> <msup> <msub> <mi>h</mi> <mi>j</mi> </msub> <mn>2</mn> </msup> <mo>/</mo> <mn>6</mn> <mo>)</mo> </mrow> <mo>*</mo> <mrow> <mo>(</mo> <msub> <mi>X</mi> <mi>j</mi> </msub> <mo>-</mo> <mi>X</mi> <mo>)</mo> </mrow> <mo>/</mo> <msub> <mi>h</mi> <mi>j</mi> </msub> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow>
In formula, hj=Xj-Xj-1, 1≤j≤n-1;Z”jFor undetermined coefficient, the second dervative of the point is represented;
In order to calculate Z "j, establish equation group (4), Z in equation groupjFor known quantity, Z "jFor unknown quantity, equation number is equal to unknown Number is measured, Z " can be solvedj
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>h</mi> <mi>j</mi> </msub> <mo>/</mo> <mrow> <mo>(</mo> <msub> <mi>h</mi> <mi>j</mi> </msub> <mo>+</mo> <msub> <mi>h</mi> <mrow> <mi>j</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>*</mo> <msub> <msup> <mi>Z</mi> <mrow> <mo>&amp;prime;</mo> <mo>&amp;prime;</mo> </mrow> </msup> <mrow> <mi>j</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mn>2</mn> <mo>*</mo> <msub> <msup> <mi>Z</mi> <mrow> <mo>&amp;prime;</mo> <mo>&amp;prime;</mo> </mrow> </msup> <mi>j</mi> </msub> <mo>+</mo> <msub> <mi>h</mi> <mrow> <mi>j</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>/</mo> <mrow> <mo>(</mo> <msub> <mi>h</mi> <mi>j</mi> </msub> <mo>+</mo> <msub> <mi>h</mi> <mrow> <mi>j</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>*</mo> <msub> <msup> <mi>Z</mi> <mrow> <mo>&amp;prime;</mo> <mo>&amp;prime;</mo> </mrow> </msup> <mrow> <mi>j</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <mfrac> <mn>6</mn> <mrow> <msub> <mi>h</mi> <mi>j</mi> </msub> <mo>+</mo> <msub> <mi>h</mi> <mrow> <mi>j</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </mrow> </mfrac> <mo>*</mo> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>Z</mi> <mrow> <mi>j</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <msub> <msup> <mi>Z</mi> <mrow> <mo>&amp;prime;</mo> <mo>&amp;prime;</mo> </mrow> </msup> <mrow> <mi>j</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mrow> <msub> <mi>h</mi> <mrow> <mi>j</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </mfrac> <mo>-</mo> <mfrac> <mrow> <msub> <mi>Z</mi> <mi>j</mi> </msub> <mo>-</mo> <msub> <mi>Z</mi> <mrow> <mi>j</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mrow> <msub> <mi>h</mi> <mi>j</mi> </msub> </mfrac> <mo>)</mo> </mrow> <mo>,</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>&amp;le;</mo> <mi>j</mi> <mo>&amp;le;</mo> <mi>n</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <msup> <mi>Z</mi> <mrow> <mo>&amp;prime;</mo> <mo>&amp;prime;</mo> </mrow> </msup> <mn>0</mn> </msub> <mo>=</mo> <mn>0</mn> <mo>,</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mi>Z</mi> <mi>n</mi> <mrow> <mo>&amp;prime;</mo> <mo>&amp;prime;</mo> </mrow> </msubsup> <mo>=</mo> <mn>0</mn> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> <mo>.</mo> </mrow>
5. the method that a kind of sea-floor relief according to claim 1 automatically generates, it is characterised in that in Y direction grid The interpolating function on bathymetric data is established, is specially:
When east orientation distance is XpWhen, the depth of water is on the interpolating function Zp (Y) of Y:
<mrow> <mtable> <mtr> <mtd> <mrow> <mi>Z</mi> <mi>p</mi> <mrow> <mo>(</mo> <mi>Y</mi> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>Y</mi> <mi>j</mi> </msub> <mo>-</mo> <mi>Y</mi> <mo>)</mo> </mrow> <mn>3</mn> </msup> <mo>/</mo> <mn>6</mn> <msub> <mi>h</mi> <mi>j</mi> </msub> <mo>*</mo> <msub> <msup> <mi>Z</mi> <mrow> <mo>&amp;prime;</mo> <mo>&amp;prime;</mo> </mrow> </msup> <mrow> <mi>j</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mi>Y</mi> <mo>-</mo> <msub> <mi>Y</mi> <mrow> <mi>j</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mn>3</mn> </msup> <mo>/</mo> <mn>6</mn> <msub> <mi>h</mi> <mi>j</mi> </msub> <mo>*</mo> <msub> <msup> <mi>Z</mi> <mrow> <mo>&amp;prime;</mo> <mo>&amp;prime;</mo> </mrow> </msup> <mi>j</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <mrow> <mo>(</mo> <msub> <mi>Z</mi> <mrow> <mi>j</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <msub> <msup> <mi>Z</mi> <mrow> <mo>&amp;prime;</mo> <mo>&amp;prime;</mo> </mrow> </msup> <mrow> <mi>j</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>*</mo> <msup> <msub> <mi>h</mi> <mi>j</mi> </msub> <mn>2</mn> </msup> <mo>/</mo> <mn>6</mn> <mo>)</mo> </mrow> <mo>*</mo> <mrow> <mo>(</mo> <msub> <mi>Y</mi> <mi>j</mi> </msub> <mo>-</mo> <mi>Y</mi> <mo>)</mo> </mrow> <mo>/</mo> <msub> <mi>h</mi> <mi>j</mi> </msub> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow>
In formula, h is definedj=Yj-Yj-1, 1≤j≤n-1;Z”jFor undetermined coefficient, the second dervative of the point is represented;
In order to calculate Z "j, establish equation group (6), Z in equation groupjFor known quantity, Z "jFor unknown quantity, equation number is equal to unknown Number is measured, Z " can be solvedj
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>h</mi> <mi>j</mi> </msub> <mo>/</mo> <mrow> <mo>(</mo> <msub> <mi>h</mi> <mi>j</mi> </msub> <mo>+</mo> <msub> <mi>h</mi> <mrow> <mi>j</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>*</mo> <msub> <msup> <mi>Z</mi> <mrow> <mo>&amp;prime;</mo> <mo>&amp;prime;</mo> </mrow> </msup> <mrow> <mi>j</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mn>2</mn> <mo>*</mo> <msub> <msup> <mi>Z</mi> <mrow> <mo>&amp;prime;</mo> <mo>&amp;prime;</mo> </mrow> </msup> <mi>j</mi> </msub> <mo>+</mo> <msub> <mi>h</mi> <mrow> <mi>j</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>/</mo> <mrow> <mo>(</mo> <msub> <mi>h</mi> <mi>j</mi> </msub> <mo>+</mo> <msub> <mi>h</mi> <mrow> <mi>j</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>*</mo> <msub> <msup> <mi>Z</mi> <mrow> <mo>&amp;prime;</mo> <mo>&amp;prime;</mo> </mrow> </msup> <mrow> <mi>j</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <mfrac> <mn>6</mn> <mrow> <msub> <mi>h</mi> <mi>j</mi> </msub> <mo>+</mo> <msub> <mi>h</mi> <mrow> <mi>j</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </mrow> </mfrac> <mo>*</mo> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>Z</mi> <mrow> <mi>j</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <msub> <msup> <mi>Z</mi> <mrow> <mo>&amp;prime;</mo> <mo>&amp;prime;</mo> </mrow> </msup> <mrow> <mi>j</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mrow> <msub> <mi>h</mi> <mrow> <mi>j</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </mfrac> <mo>-</mo> <mfrac> <mrow> <msub> <mi>Z</mi> <mi>j</mi> </msub> <mo>-</mo> <msub> <mi>Z</mi> <mrow> <mi>j</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mrow> <msub> <mi>h</mi> <mi>j</mi> </msub> </mfrac> <mo>)</mo> </mrow> <mo>,</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>&amp;le;</mo> <mi>j</mi> <mo>&amp;le;</mo> <mi>n</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <msup> <mi>Z</mi> <mrow> <mo>&amp;prime;</mo> <mo>&amp;prime;</mo> </mrow> </msup> <mn>0</mn> </msub> <mo>=</mo> <mn>0</mn> <mo>,</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mi>Z</mi> <mi>n</mi> <mrow> <mo>&amp;prime;</mo> <mo>&amp;prime;</mo> </mrow> </msubsup> <mo>=</mo> <mn>0</mn> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> <mo>.</mo> </mrow>
6. the method that a kind of sea-floor relief according to claim 1 automatically generates, it is characterised in that described by Y direction Data fusion is carried out with the grid data of X-direction, the depth Z after being merged is:
Z=PY*Zp(Y)+PX*Zq(X) (7)
Wherein, PYRepresent measurement point (Xp,Yq, Z) and in the factor of influence of Y-axis interpolation curve, PXRepresent measurement point (Xp,Yq, Z) and in X Axis interpolation curve factor of influence, Zq (X) are interpolating function of the depth of water on X, and Zp (Y) is interpolating function of the depth of water on Y;
The radius of neighbourhood is set as R, is counted in range points (Xp,Yq, Z) less than radius R X-direction coordinate points be NX, Y-direction seat Punctuate number is NY, then definition
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>P</mi> <mi>X</mi> </msub> <mo>=</mo> <mfrac> <msub> <mi>N</mi> <mi>x</mi> </msub> <mrow> <msub> <mi>N</mi> <mi>x</mi> </msub> <mo>+</mo> <msub> <mi>N</mi> <mi>Y</mi> </msub> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>P</mi> <mi>Y</mi> </msub> <mo>=</mo> <mfrac> <msub> <mi>N</mi> <mi>Y</mi> </msub> <mrow> <msub> <mi>N</mi> <mi>x</mi> </msub> <mo>+</mo> <msub> <mi>N</mi> <mi>Y</mi> </msub> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>.</mo> </mrow>
7. the method that a kind of sea-floor relief according to claim 1 automatically generates, it is characterised in that after the utilization fusion Depth Z construct submarine topography data, be specially:Data after fusion are handled using Delaunay algorithms, are utilized The Creator Software Create submarine topography datas of Vega.
CN201310636913.8A 2013-11-27 2013-11-27 A kind of method that sea-floor relief automatically generates Active CN104680583B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310636913.8A CN104680583B (en) 2013-11-27 2013-11-27 A kind of method that sea-floor relief automatically generates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310636913.8A CN104680583B (en) 2013-11-27 2013-11-27 A kind of method that sea-floor relief automatically generates

Publications (2)

Publication Number Publication Date
CN104680583A CN104680583A (en) 2015-06-03
CN104680583B true CN104680583B (en) 2018-04-27

Family

ID=53315574

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310636913.8A Active CN104680583B (en) 2013-11-27 2013-11-27 A kind of method that sea-floor relief automatically generates

Country Status (1)

Country Link
CN (1) CN104680583B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109387181A (en) * 2017-08-07 2019-02-26 广州极飞科技有限公司 Terrain rendering method and device
CN108413926B (en) * 2018-01-31 2020-12-04 上海荟蔚信息科技有限公司 High-precision measurement method for underwater topography elevation of pile foundation of offshore wind farm
CN108665549A (en) * 2018-05-09 2018-10-16 辽宁省海洋水产科学研究院 The three-dimensional seafloor model method for building up in project sea and the computational methods of marine organisms loss amount
CN110765686B (en) * 2019-10-22 2020-09-11 中国人民解放军战略支援部队信息工程大学 Method for designing shipborne sonar sounding line by using limited wave band submarine topography

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102446367A (en) * 2011-09-19 2012-05-09 哈尔滨工程大学 Method for constructing three-dimensional terrain vector model based on multi-beam sonar submarine measurement data
CN102819568A (en) * 2012-07-18 2012-12-12 哈尔滨工程大学 Submarine topography data establishment method based on topographical sampling point positions
CN103344954A (en) * 2013-07-08 2013-10-09 国家海洋局第二海洋研究所 Submarine topography construction method based on multi-source water depth data fusion

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102446367A (en) * 2011-09-19 2012-05-09 哈尔滨工程大学 Method for constructing three-dimensional terrain vector model based on multi-beam sonar submarine measurement data
CN102819568A (en) * 2012-07-18 2012-12-12 哈尔滨工程大学 Submarine topography data establishment method based on topographical sampling point positions
CN103344954A (en) * 2013-07-08 2013-10-09 国家海洋局第二海洋研究所 Submarine topography construction method based on multi-source water depth data fusion

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
一种海底地形和海流虚拟生成方法;刘开周 等;《系统仿真学报》;20050531;第17卷(第5期);第1268-1271页 *
三维海底地形仿真技术的研究与实现;邱秋香;《中国优秀硕士学位论文全文数据库》;20120515;正文第4-5,21-26页 *

Also Published As

Publication number Publication date
CN104680583A (en) 2015-06-03

Similar Documents

Publication Publication Date Title
CN103344954B (en) Submarine topography construction method based on multi-source water depth data fusion
US9651698B2 (en) Multi-beam bathymetric chart construction method based on submarine digital depth model feature extraction
CN102446367B (en) Method for constructing three-dimensional terrain vector model based on multi-beam sonar submarine measurement data
CN103345759B (en) Accurate detection method for submarine large complex sandwave landforms
CN103292792B (en) Actual measurement SVP reconstruction method suitable for submarine detection and pseudo-landform processing
CN104680583B (en) A kind of method that sea-floor relief automatically generates
CN112949140A (en) Large ship safe embarkation and embarkation method based on dynamic conditions
RU2519269C1 (en) Method of surveying bottom topography of water area and apparatus therefor
CN110796741B (en) Airborne laser sounding point cloud filtering method based on bidirectional cloth simulation
CN102419436A (en) Multibeam data processing method based on total propagation error filter
CN113341476A (en) Method for improving ocean gravity spatial resolution based on submarine topography-gravity combination
CN109472065A (en) Forecast the three-dimensional numerical method of Low Speed Full Ships Added Resistance under severe sea condition
CN111412918B (en) Unmanned ship global safety path planning method
CN114325851A (en) Method and system for detecting underwater ferromagnetic target based on multi-frequency radiation source
CN103854302B (en) A kind of AUV navigation environment space construction process under multi-constraint condition
CN106908036B (en) A kind of AUV multi-beam Bathymetric Data patterning process based on local offset
CN106441244B (en) A kind of tide prediction device based on global position system
Jakobsson et al. Arctic Ocean bathymetry: A necessary geospatial framework
CN104239635B (en) Seaway domain center line automatic drafting method on a kind of inland river electronic chart
CN109490894A (en) A kind of multi-beam fining post-processing approach
Hayashi et al. Source Data and Bathymetry Editor in Tsunami Modeling Environment
de Araújo et al. Low-cost Bathymetric Survey for Marine Protected Areas: coral reefs and coastal islands
Kang et al. Assessment of ENC sounding by Delaunay Triangulation method in aspect of fine compilation for safe navigation
Li et al. Sensor simulation of underwater terrain matching based on sea chart
Prasad et al. Modelling and Analysis of Underwater Surface using ENC Chart Visualization

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant