CN104660153B - 一种风光互补的太阳能发电系统 - Google Patents

一种风光互补的太阳能发电系统 Download PDF

Info

Publication number
CN104660153B
CN104660153B CN201310589693.8A CN201310589693A CN104660153B CN 104660153 B CN104660153 B CN 104660153B CN 201310589693 A CN201310589693 A CN 201310589693A CN 104660153 B CN104660153 B CN 104660153B
Authority
CN
China
Prior art keywords
wind
solar power
power system
mutual complementing
light mutual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310589693.8A
Other languages
English (en)
Other versions
CN104660153A (zh
Inventor
刘辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201310589693.8A priority Critical patent/CN104660153B/zh
Priority to PCT/CN2014/091030 priority patent/WO2015074510A1/zh
Publication of CN104660153A publication Critical patent/CN104660153A/zh
Application granted granted Critical
Publication of CN104660153B publication Critical patent/CN104660153B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S10/00PV power plants; Combinations of PV energy systems with other systems for the generation of electric power
    • H02S10/10PV power plants; Combinations of PV energy systems with other systems for the generation of electric power including a supplementary source of electric power, e.g. hybrid diesel-PV energy systems
    • H02S10/12Hybrid wind-PV energy systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/002Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  the axis being horizontal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S25/10Arrangement of stationary mountings or supports for solar heat collector modules extending in directions away from a supporting surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S40/00Safety or protection arrangements of solar heat collectors; Preventing malfunction of solar heat collectors
    • F24S40/80Accommodating differential expansion of solar collector elements
    • F24S40/85Arrangements for protecting solar collectors against adverse weather conditions
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/30Supporting structures being movable or adjustable, e.g. for angle adjustment
    • H02S20/32Supporting structures being movable or adjustable, e.g. for angle adjustment specially adapted for solar tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Photovoltaic Devices (AREA)
  • Wind Motors (AREA)
  • Power Engineering (AREA)

Abstract

本发明提供了一种风光互补的太阳能发电系统,包括布置于基础面上的光伏发电系统和/或光热发电系统,其中,风光互补的太阳能发电系统还包括倾斜集风面和风力发电装置,所述风力发电装置布置在倾斜集风面与基础面之间的通风间隙形成的集风口处,和/或布置在相邻倾斜集风面之间的通风间隙形成的集风口处。通过本发明在减小强大风力对太阳能发电系统的损坏、降低太阳能发电系统成本的同时,实现风光互补稳定发电。

Description

一种风光互补的太阳能发电系统
技术领域
本发明涉及一种应用于风光互补的太阳能发电系统,具体地涉及到充分利用太阳能发电系统的装置结构特点,安装风力发电装置,实现风光互补的发电系统。
背景技术
太阳能是一种取之不竭、清洁的可再生能源。开发利用太阳能资源是开拓新能源、保护环境和节能减排的有效途径。随着太阳能等可再生能源利用在全世界蓬勃发展,太阳能发电(光伏发电和聚光光热发电)逐步为人们所认识并成为新能源研发应用的方向,追求在降低成本、提高可靠性的前提下开展规模应用。
全球大部分太阳能资源丰富地区、太阳能直辐射(direct normal irradiance,DNI)高的地区都集中在中、高纬度35-40度附近,为更加有效的利用太阳光资源,一般太阳能利用装置都会将受光面面向赤道方向抬起倾斜,以便增大受光面的全年受光量。例如,在中国西部地区的太阳能光伏电站,通常将光伏板向南斜立布置,光伏板与水平地面夹角一般在20-40度之间;又或者将反射镜条阵列的布置平面设计为面向赤道方向倾斜。这些倾斜式的布置方式虽然提高了光伏板或反射镜单位面积的受光量,但与水平布置相比,易受到风力的影响,需要增加抗风装置减弱风力对太阳能利用装置的影响,增加了太阳能利用装置的材料成本和设计难度。
在大部分太阳能资源丰富的地区,其风能资源也较为丰富,采取风光互补的方式进行能源的综合开发和利用,可降低发电系统单位功率的投资成本,使之接近甚至低于传统发电系统的单位功率投资比,促进太阳能短时间内的大规模应用。
发明内容
本发明目的为进一步降低太阳能发电成本,利用太阳能发电系统架构开发风能资源,欲提供一种风光互补的太阳能发电系统,包括布置于基础面上的光伏发电系统和/或光热发电系统,其特征在于,所述风光互补的太阳能发电系统还包括倾斜集风面和风力发电装置,所述风力发电装置布置在倾斜集风面与基础面之间的通风间隙形成的集风口处,和/或布置在相邻倾斜集风面之间的通风间隙形成的集风口处。
进一步地,所述光伏发电系统包括东西轴线平行,南北方向向阳倾斜的光伏电池模组阵列结构。
进一步地,所述光伏发电系统包括东西轴线平行、南北方向向阳倾斜布置的管状光伏结构阵列;将光伏电池模组封装在玻璃管内形成管状光伏结构,多个管状光伏结构相互紧密排列固定形成所述管状光伏结构阵列。
进一步地,所述光伏发电系统包括南北轴线平行、实施东西方向太阳光线跟踪的管状光伏阵列;将光伏电池模组封装在玻璃管内形成管状光伏,多个管状光伏间隔布置形成所述管状光伏阵列。
优选地,在玻璃管内的光伏电池模组两侧布置聚光系统,增加光伏电池模组接收的太阳光线,提高发电效率。
进一步地,所述光热发电系统包括东西轴线平行,南北方向向阳倾斜的菲涅尔反射镜阵列结构。
进一步地,所述光热发电系统包括南北轴线平行,东西方向整体成“V”字型的菲涅尔反射镜阵列结构。
优选地,所述菲涅尔反射镜阵列结构,针对不同的南北方向的间距,在倾斜集风面特定位置布置不同密度的集风口,使风力集中吹向集风口,增加局部风力。
进一步地,在所述光伏电池模组阵列背部布置倾斜集风面。
进一步地,在所述管状光伏背部布置倾斜集风面。
进一步地,在所述倾斜布置的菲涅尔反射镜阵列背部布置倾斜集风面。
进一步地,在所述“V”字型的菲涅尔反射镜阵列两面背部分别布置倾斜集风面。
进一步地,所述倾斜集风面为混凝土板、混凝土波形瓦、石棉瓦或玻璃管。
进一步地,所述风力发电装置为水平轴风力发电装置或垂直轴风力发电装置。水平轴风力发电装置的风轮的旋转轴与风向平行;垂直轴风力发电装置的风轮的旋转轴垂直于气流方向,其风轮可接受来自任何方向的风,结构设计较为简单,垂直轴风力发电装置的旋转轴一般垂直于地面,也可以与地面平行布置,本发明中优选旋转轴与地面平行布置。
进一步地,在倾斜集风面与基础面间隙形成的集风口处同轴布置垂直轴风力发电装置。多个垂直轴风力发电装置的转动轴机械转动连接,整体输出转矩,形成更大的轴功率输出。
进一步地,所述多个垂直轴风力发电装置的转动轴与倾斜集风面的下边缘平行布置。
优选地,根据菲涅尔反射镜阵列的高度、多个菲涅尔反射镜阵列之间的间距设计倾斜集风面的位置或者根据光伏电池模组阵列的高度、多个光伏电池模组阵列之间的间距设计倾斜集风面的位置,使集风口对准风力发电装置的部分扫风面积,使风力作用于垂直轴风力发电装置的风轮的叶片内弧侧部分,获得最大的风力发电效率。
优选地,在相邻倾斜集风面之间的通风间隙形成的集风口处沿倾斜集风面延伸的方向依次由低到高布置多个水平轴风力发电装置或多个垂直轴风力发电装置,避免风力发电装置对菲涅尔反射镜阵列或光伏电池模组阵列的阳光遮挡,以便接收更大的风力,提高风力发电效率。
进一步地,所述的风力发电装置提供太阳能发电系统泵体、除氧、电加热管道伴热、供暖、厂用电。
进一步地,所述风力发电装置与太阳能发电系统共用电能输出设备。
优选地,在风能电力输出的同时,使用太阳能光热发电输出对风能电力输出功率和太阳能电力输出功率的总功率进行调节,稳定太阳能发电系统的整场输出功率,实现风光互补稳定发电,提高对电网调度的适应性。
进一步地,所述基础面可以为地面、水面、屋顶面或楼顶面等。
本发明提供的一种太阳能发电系统的风光互补结构具有以下特点及优点:1、利用现有的太阳能发电系统的场地、架构,补充风能发电,共用能量输出系统,降低太阳能发电系统的单位功率造价,使之接近或低于传统化石能源发电造价;2、提高光热发电厂的输出功率的稳定平衡能力,补充夜间及光照不足时的输出电力,提高电能质量,便于接入系统及调度;3、加装的倾斜集风面,通过合理设计,降低光场架构强度要求,提高抗风水平。
附图说明
图1是本发明的风光互补的太阳能发电系统结构的第一个实施例的结构示意图。
图2是本发明的风光互补的太阳能发电系统结构的第二个实施例的结构示意图。
图3-1、图3-2、图3-3是本发明的风光互补的太阳能发电系统结构的第三个实施例的结构示意图。
图4是本发明的风光互补的太阳能发电系统结构的第四个实施例的结构示意图。
图5是本发明的风光互补的太阳能发电系统结构的第五个实施例的结构示意图。
图6是本发明的风光互补太阳能发电系统结构阵列的结构示意图。
具体实施方式
下面结合实施例对本发明进行进一步的详细说明。
实施例1
图1是本发明的风光互补的太阳能发电系统结构的第一个实施例。如图1所示,风光互补的太阳能发电系统置于基础面105上,包括由多片反射镜例如反射镜101和反射镜102,形成的菲涅尔反射镜阵列;在菲涅尔反射镜阵列的背部布置倾斜集风面103,其与基础面105之间保持一定距离的通风间隙,形成集风口,多个风力发电装置,如垂直轴风力发电装置104同轴布置在该集风口处,多个风力发电装置的转动轴机械转动连接且该转动轴与倾斜集风面103的下边缘平行,降低了单个风力发电装置的机械损耗,提高了多个风力发电装置的整体输出转矩,形成更大的轴功率输出。
所述菲涅尔反射镜阵列东西轴线平行,南北方向向阳倾斜布置,倾斜角度为15°~50°,倾斜角度一般大于20°,便于菲涅尔反射镜阵列的安装且同时具有较好的截光能力。菲涅尔反射镜阵列背部的倾斜集风面103,其可以为混凝土板、混凝土波形瓦、石棉瓦或玻璃管,在降低菲涅尔反射镜阵列自身的受风强度,降低太阳能系统的基础支撑结构成本的同时,产生集风效果。倾斜集风面103与基础面105之间的间隙形成集风口,风力发电装置处于该集风口位置,可充分利用集风口处高密度风资源,进行风力发电。
实施例2
图2是本发明的风光互补的太阳能发电系统结构的第二个实施例。如图2所示,风光互补的太阳能发电系统置于基础面207上,包括“V”字型的菲涅尔反射镜阵列,其中,由多片反射镜例如反射镜201和反射镜202,形成“V”字型菲涅尔反射镜阵列;倾斜集风面203布置在“V”字型菲涅尔反射镜阵列其中一面的背部,其与基础面207之间间隙处形成集风口,风力发电装置206布置在该集风口处。倾斜集风面204布置在“V”字型菲涅尔反射镜阵列另一面的背部,并在该处布置第二倾斜集风面205,倾斜集风面204与第二倾斜集风面205之间形成集风口,风力发电装置206布置在该集风口处。
所述“V”字型的菲涅尔反射镜阵列南北轴线平行,东西方向布置,倾斜角度为15°~50°,倾斜角度一般大于20°,便于“V”字型菲涅尔反射镜阵列的安装且同时具有较好的截光能力。“V”字型菲涅尔反射镜阵列的两面背部的倾斜集风面203、204,在降低“V”字型菲涅尔反射镜阵列自身的受风强度,降低太阳能系统的基础支撑结构成本的同时,产生集风效果;“V”字型菲涅尔反射镜阵列的其中一面背部布置的倾斜集风面203与基础面207的间隙形成集风口,风力发电装置206处于该集风口位置,可接收来自西南或西北方向的风资源;另外,第二倾斜集风面205与基础面呈角度布置,在“V”字型菲涅尔反射镜阵列的另一面的背部布置的倾斜集风面204与第二倾斜集风面205形成集风口,风力发电装置206可接收来自东南或东北方向的风资源;因此,风力发电装置206可充分利用该两处集风口处的高密度风资源,提高风力发电效率。
实施例3
本发明的风光互补的太阳能发电系统结构的第三个实施例包括如图3-1、图3-2和图3-3所示的三种布置方式。
如图3-1所示,风光互补的太阳能发电系统置于基础面304上,包括光伏电池模组阵列301;光伏电池模组阵列301背部布置倾斜集风面302,其与基础面304之间留有间隙,形成集风口,风力发电装置303安装在此集风口位置,多个风力发电装置同轴布置,多个风力发电装置的转动轴机械转动连接且该转动轴与倾斜集风面302的下边缘平行。
此外,本发明的风光互补的太阳能发电系统结构还可采用如图3-2所示的布置方式,如图3-2所示,多个光伏电池模组阵列,例如光伏电池模组阵列301、光伏电池模组阵列305,相互间隔布置于基础面304上,在多个光伏电池模组阵列背部分别布置倾斜集风面,例如在光伏电池模组阵列301的背部布置倾斜集风面302,在光伏电池模组阵列305的背部布置倾斜集风面306,在相邻倾斜集风面,例如倾斜集风面302和倾斜集风面306之间的间隙处形成集风口,产生集风效果,在此间隙处布置的多个风力发电装置,例如垂直轴风力发电装置303,多个垂直轴风力发电装置沿倾斜集风面延伸的方向依次由低到高布置,利用该集风口处的高密度风资源,进行风力发电。还可在相邻倾斜集风面的间隙处布置水平轴风力发电装置,如图3-3所示的水平轴风力发电装置303和水平轴风力发电装置307,多个水平轴风力发电装置沿倾斜集风面延伸的方向依次由低到高布置,如水平轴风力发电装置307高于水平轴风力发电装置303布置,避免水平轴风力发电装置对菲涅尔反射镜阵列或光伏电池模组阵列的阳光遮挡,以便接收更大的风力,提高风力发电效率。
再者,本发明的风光互补的太阳能发电系统结构还可以结合图3-1、图3-2、图3-3的布置方式,在倾斜集风面与基础面之间的间隙处形成的集风口处布置多个风力发电装置,并同时在相邻倾斜集风面之间间隙处形成的集风口处布置风力发电装置,充分利用各集风口处的高密度风资源,提高风力发电效率。
所述光伏电池模组阵列东西轴线平行,南北方向向阳倾斜布置,倾斜角度为当地维度角度。以北纬40°附近的内蒙古巴拉贡地区为例:光伏电池模组阵列与基础面夹角接近当地纬度角度40°布置,或者所述夹角范围为当地纬度角度值加5°和当地维度角度减10°之间,即光伏电池模组阵列与基础面成30°~45°布置,可使光伏电池模组阵列接收较多的太阳光,提高光伏发电系统的发电效率。光伏电池模组阵列背部布置的倾斜集风面可以为混凝土板、混凝土波形瓦、石棉瓦或玻璃管等,在降低光伏电池模组自身的受风强度,降低太阳能发电系统的基础支撑结构成本的同时,与基础面之间的间隙处形成集风口,产生集风效果,风力发电装置可充分利用该集风口处高密度风资源,进行风力发电,与光伏发电系统形成一体化的风光互补的太阳能发电系统。
实施例4
图4是本发明的风光互补的太阳能发电系统结构的第四个实施例。如图4所示,风光互补的太阳能发电系统置于基础面407上,包括由在玻璃管402内封装光伏电池模组401形成的管状光伏结构,多个管状光伏结构,如管状光伏结构403、管状光伏结构404,相互紧密排列并由固定架404相互固定,形成管状光伏结构阵列;管状光伏结构阵列与基础面407之间留有间隙,形成集风口,风力发电装置406安装在此集风口位置。优选地,可在玻璃管402内部的光伏电池模组401的两侧布置聚光系统,增加光伏电池模组401接收的太阳光线,提高发电效率。
所述管状光伏结构阵列东西轴线平行,南北方向向阳倾斜布置,倾斜角度为当地维度角度。可使玻璃管内的光伏电池模组接收较多的太阳光,提高光伏发电系统的发电效率。此外,所述管状光伏结构阵列,即可降低自然环境对光伏电池模组的破坏,又可作为倾斜集风面,并与基础面407之间保持一定距离的通风间隙形成集风口,风力发电装置406可充分利用集风口处的高密度风资源,进行风力发电,与光伏发电系统形成一体化的风光互补的太阳能发电系统。
实施例5
图5是本发明的风光互补的太阳能发电系统结构的第五个实施例。如图5所示,风光互补的太阳能发电系统置于基础面508上,包括由在玻璃管内封装光伏电池模组501形成的管状光伏502;多个管状光伏,如管状光伏503、管状光伏504、管状光伏505相互间隔布置,形成管状光伏阵列;优选地,还可在玻璃管内的光伏电池模组的两侧布置聚光系统,增加光伏电池模组接收的太阳光线,提高发电效率;在管状光伏阵列背部布置倾斜集风面506;倾斜集风面506与基础面508之间的间隙处形成集风口,产生集风效果,在此间隙处布置的多个风力发电装置,例如垂直轴风力发电装置507,多个垂直轴风力发电装置同轴布置,转动轴与倾斜集风面的下边缘平行布置,可利用该集风口处的高密度风资源,进行风力发电。
所述管状光伏阵列的受光面向阳布置,且整体南北轴方向布置,实施东西方向太阳光线跟踪,且玻璃管的旋转轴线与水平面成角度布置,例如北半球高纬度区域,成南北轴方向固定,且南低北高布置。优选地,管状光伏阵列的玻璃管的旋转轴线与水平面成当地纬度角度布置。管状光伏阵列背部布置的倾斜集风面为混凝土板、混凝土波形瓦、石棉瓦或玻璃管等,在降低管状光伏阵列自身的受风强度,降低太阳能发电系统的基础支撑结构成本的同时,并与基础面之间的间隙处形成集风口,产生集风效果,风力发电装置可充分利用该集风口处高密度风资源,进行风力发电,与光伏发电系统形成一体化的风光互补的太阳能发电系统。
图6是本发明的风光互补太阳能发电系统结构阵列。如图6所示,将多个如图1所示的风光互补的太阳能发电系统结构相互间隔布置,形成风光互补的太阳能发电系统结构阵列。例如,包括置于基础面606上的多组风光互补的太阳能发电系统;所述其中一组风光互补的太阳能发电系统包括由多个反射镜,例如反射镜601、反射镜602形成的菲涅尔反射镜阵列;布置于菲涅尔反射镜背部的倾斜集风面603。每一组风光互补的太阳能发电系统的菲涅尔反射镜阵列背部布置的倾斜集风面,与基础面之间间隙形成集风口,可降低菲涅尔反射镜阵列自身的受风强度,减少太阳能发电系统的基础支撑结构成本;在该集风口处布置的水平轴风力发电装置或垂直轴风力发电装置,可充分利用此集风口处高密度风力资源,进行风力发电。另外,根据菲涅尔反射镜阵列的高度、多个菲涅尔反射镜阵列之间的间距设计倾斜集风面的位置,使集风口对准风力发电装置的全部扫风面积中的一部分,具体说就是使风力主要集中作用于垂直轴风力发电装置的全部扫风面积中风轮的叶片内弧侧受力为主的这一半面积,从而获得最大的风力发电效率。
再者,所述风光互补太阳能发电系统结构阵列还可以包括由如图2、图3-1、图3-2、图4或图5所示的风光互补太阳能发电系统形成的结构阵列。我国大部分光能利用较高的地区,其风力资源也相对比较丰富,以中国西部地区为例,以倾斜反射镜阵列光热为例:常规设计,50MW光热电站,实现年发电2亿度时,一般占地2.5万平方公里,每年可利用的风能平均能达到8万兆瓦。如采用本发明所述的光热发电系统的风光互补结构,合理设计倾斜集风面,强化架构强度的同时,应用集风效应,采用水平轴或者垂直轴风力发电装置,以常规扫风直径1.6米,额定功率500瓦,正常风场使用折算成全年满发利用小时2200小时为例,估计装在集风口时,即使连续多排镜场相互遮挡,利用小时数也能超过3500小时。该光场安装的互补发电风机可实现年发电5000万度以上。
上述关于附图的描述内容都是以处于北半球情况为例,所述风光互补的太阳能发电系统都向阳布置,即向南倾斜布置;当处于南半球情况时,太阳能发电系统倾斜向阳布置,即向北倾斜布置。
显而易见,在不偏离本发明的真实精神和范围的前提下,在此描述的本发明可以有许多变化。因此,所有对于本领域技术人员来说显而易见的改变,都应包括在本权利要求书所涵盖的范围之内。本发明所要求保护的范围仅由所述的权利要求书进行限定。

Claims (19)

1.一种风光互补的太阳能发电系统,包括布置于基础面上的光伏发电系统和/或光热发电系统,其特征在于,所述风光互补的太阳能发电系统还包括构成V字型的两个倾斜集风面、第二倾斜集风面和风力发电装置;所述风力发电装置布置在构成V字型的其中一个倾斜集风面与基础面之间间隙形成集风口和构成V字型的另一个倾斜集风面与第二倾斜集风面形成的集风口处;
第二倾斜集风面与所述基础面呈角度布置。
2.根据权利要求1所述的一种风光互补的太阳能发电系统,其特征在于,所述光伏发电系统包括东西轴线平行、南北方向向阳倾斜布置的光伏电池模组阵列结构。
3.根据权利要求1所述的一种风光互补的太阳能发电系统,其特征在于,所述光伏发电系统包括东西轴线平行、南北方向向阳倾斜布置的管状光伏结构阵列。
4.根据权利要求3所述的一种风光互补的太阳能发电系统,其特征在于,将光伏电池模组封装在玻璃管内形成管状光伏结构,多个管状光伏结构相互紧密排列固定形成所述管状光伏结构阵列。
5.根据权利要求1所述的一种风光互补的太阳能发电系统,其特征在于,所述光伏发电系统包括南北轴线平行、实施东西方向太阳光线跟踪的管状光伏阵列。
6.根据权利要求5所述的一种风光互补的太阳能发电系统,其特征在于,将光伏电池模组封装在玻璃管内形成管状光伏,多个管状光伏间隔布置形成所述管状光伏阵列。
7.根据权利要求1所述的一种风光互补的太阳能发电系统,其特征在于,所述光热发电系统包括东西轴线平行、南北方向向阳倾斜布置的菲涅尔反射镜阵列结构。
8.根据权利要求1所述的一种风光互补的太阳能发电系统,其特征在于,所述光热发电系统包括南北轴线平行,东西方向整体成“V”字型的菲涅尔反射镜阵列结构。
9.根据权利要求2所述的一种风光互补的太阳能发电系统,其特征在于,在所述光伏电池模组阵列背部布置倾斜集风面。
10.根据权利要求5或6所述的一种风光互补的太阳能发电系统,其特征在于,在所述管状光伏阵列背部布置倾斜集风面。
11.根据权利要求1所述的一种风光互补的太阳能发电系统,其特征在于,所述倾斜集风面为混凝土板、混凝土波形瓦、石棉瓦或玻璃管。
12.根据权利要求1所述的一种风光互补的太阳能发电系统,其特征在于,所述基础面为地面、水面、屋顶面或楼顶面。
13.根据权利要求1所述的一种风光互补的太阳能发电系统,其特征在于,所述风力发电装置为水平轴风力发电装置或垂直轴风力发电装置。
14.根据权利要求13所述的一种风光互补的太阳能发电系统,其特征在于,多个垂直轴风力发电装置同轴布置在倾斜集风面与基础面间隙形成的集风口处。
15.根据权利要求14所述的一种风光互补的太阳能发电系统,其特征在于,所述多个垂直轴风力发电装置平行于倾斜集风面的下边缘布置。
16.根据权利要求1所述的一种风光互补的太阳能发电系统,其特征在于,在相邻倾斜集风面间隙处沿倾斜集风面延伸的方向依次由低到高布置多个风力发电装置。
17.根据权利要求1所述的一种风光互补的太阳能发电系统,其特征在于,所述集风口对准风力发电装置的部分扫风面积,风力作用于垂直轴风力发电装置的风轮的叶片内弧侧部分。
18.根据权利要求13所述的一种风光互补的太阳能发电系统,其特征在于,所述风力发电装置提供太阳能发电系统泵体、除氧、电加热管道伴热、供暖、厂用电。
19.根据权利要求18所述的一种风光互补的太阳能发电系统,其特征在于,所述风力发电装置与所述太阳能发电系统共用电能输出设备。
CN201310589693.8A 2013-11-20 2013-11-20 一种风光互补的太阳能发电系统 Expired - Fee Related CN104660153B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201310589693.8A CN104660153B (zh) 2013-11-20 2013-11-20 一种风光互补的太阳能发电系统
PCT/CN2014/091030 WO2015074510A1 (zh) 2013-11-20 2014-11-13 一种风光互补的太阳能发电系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310589693.8A CN104660153B (zh) 2013-11-20 2013-11-20 一种风光互补的太阳能发电系统

Publications (2)

Publication Number Publication Date
CN104660153A CN104660153A (zh) 2015-05-27
CN104660153B true CN104660153B (zh) 2018-04-03

Family

ID=53178923

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310589693.8A Expired - Fee Related CN104660153B (zh) 2013-11-20 2013-11-20 一种风光互补的太阳能发电系统

Country Status (2)

Country Link
CN (1) CN104660153B (zh)
WO (1) WO2015074510A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105221349A (zh) * 2014-06-23 2016-01-06 刘映华 一种光热电站风力辅助发电系统
CN105447325B (zh) * 2015-12-14 2018-01-05 西安交通大学 一种太阳能聚光光伏光热联产系统成本以及回收期的计算方法
CN106452304B (zh) * 2016-10-26 2018-07-10 徐州嘉寓光能科技有限公司 一种应用于建筑屋顶的光伏板
RS62293B1 (sr) * 2016-11-11 2021-09-30 Logic Swiss AG Modularna ploča
CN106602989B (zh) * 2017-02-24 2018-04-06 江苏中信博新能源科技股份有限公司 一种聚光光热发电系统及发电方法
CN108167113B (zh) * 2018-03-07 2023-11-17 安徽天康(集团)股份有限公司 一种组合式单元化集风式风力发电设备
NL2021417B1 (en) * 2018-08-01 2020-02-12 Ibis Power Holding B V Solar panel system
CN109577265A (zh) * 2019-01-17 2019-04-05 南通理工学院 一种分布式风光互补高速道路除雪系统
GB202108920D0 (en) * 2021-06-22 2021-08-04 Doe William Robert Wind-powered electricity generator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102146712A (zh) * 2010-02-10 2011-08-10 西安孔明电子科技有限公司 一种风光互补发电建筑墙板模块及施工方法
CN102568845A (zh) * 2010-12-21 2012-07-11 北京大学 一种太阳能电池模块
US8324496B1 (en) * 2007-12-07 2012-12-04 First Solar, Inc. Low-profile single-axis tracker with wind mitigation
CN203590122U (zh) * 2013-11-20 2014-05-07 刘辉 一种风光互补的太阳能发电系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6912816B2 (en) * 2001-10-01 2005-07-05 Futura Solar, Llc Structurally integrated solar collector
CN201106526Y (zh) * 2007-10-19 2008-08-27 杨东杰 太阳能风能综合发电装置
CN201521399U (zh) * 2009-07-03 2010-07-07 林荣敬 用于风力发电机的集风板
KR20110037514A (ko) * 2009-10-07 2011-04-13 최성준 태양광과 풍력을 이용한 복합발전장치
CN101749191A (zh) * 2010-01-25 2010-06-23 郭飞扬 一种高效筒式风力发电装置
KR20120109889A (ko) * 2011-03-28 2012-10-09 임경수 건물형 태양광 및 풍력에너지 발전장치
KR20120080155A (ko) * 2012-06-06 2012-07-16 김영찬 태양광발전과 풍력발전이 결합된 발전기

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8324496B1 (en) * 2007-12-07 2012-12-04 First Solar, Inc. Low-profile single-axis tracker with wind mitigation
CN102146712A (zh) * 2010-02-10 2011-08-10 西安孔明电子科技有限公司 一种风光互补发电建筑墙板模块及施工方法
CN102568845A (zh) * 2010-12-21 2012-07-11 北京大学 一种太阳能电池模块
CN203590122U (zh) * 2013-11-20 2014-05-07 刘辉 一种风光互补的太阳能发电系统

Also Published As

Publication number Publication date
CN104660153A (zh) 2015-05-27
WO2015074510A1 (zh) 2015-05-28

Similar Documents

Publication Publication Date Title
CN104660153B (zh) 一种风光互补的太阳能发电系统
Ghosh Potential of building integrated and attached/applied photovoltaic (BIPV/BAPV) for adaptive less energy-hungry building’s skin: A comprehensive review
US20190190443A1 (en) Arrangements of a plurality of photovoltaic modules
CN203590122U (zh) 一种风光互补的太阳能发电系统
CN103595296A (zh) 一种太阳能光热光电综合发电装置
CN204559463U (zh) 一种光伏光热热电联供系统
KR101309542B1 (ko) 신재생에너지 공급의무화 제도 시행에 따른 발전부지가 필요없는 한국전력공사 네트워크 전력망 전주 주상공간을 활용한 차세대 분산형 스마트에너지 발전 공급 대량 시스템용 태양광 풍력 다방면 추적 융합발전시스템 및 그 제조방법
KR20120109889A (ko) 건물형 태양광 및 풍력에너지 발전장치
CN205051623U (zh) 光伏光热一体化发电系统
CN103590546A (zh) 一种太阳能建筑一体化装置
CN201174676Y (zh) 具有向日跟踪的太阳能发电装置
CN110107033A (zh) 冬暖夏凉屋顶节能装置
Yoshioka et al. Preparation and properties of an experimental static concentrator with a new three‐dimensional lens
KR101192070B1 (ko) 하이브리드형 발전장치
CN201655814U (zh) 一种双斜面反射聚光太阳能光伏电池组件
Lin et al. Study of Constructions for the Photovoltaic System to Increase the Economic Efficiency of Energy Generation
CN205566162U (zh) 光反射和光热风联用的光伏发电增效系统
CN206329440U (zh) 浮力发电机的太阳能装置和系统
CN203475730U (zh) 一种太阳能建筑一体化装置
CN204024913U (zh) 一种光热电站风力辅助发电系统
CN202721635U (zh) 一种太阳能光热光电综合发电装置
CN201362919Y (zh) 太阳能综合利用和建筑一体化的新秦砖
CN101662236A (zh) 太极八卦形的多阳机及其对日跟踪器
CN206563439U (zh) 一种利用反射叠加原理的住宅组团太阳能利用装置
CN209330052U (zh) 一种太阳能高倍聚光光伏装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180403

Termination date: 20201120

CF01 Termination of patent right due to non-payment of annual fee