CN104660140A - Permanent magnet synchronous motor initial position detection method based on high-frequency current signal injection - Google Patents

Permanent magnet synchronous motor initial position detection method based on high-frequency current signal injection Download PDF

Info

Publication number
CN104660140A
CN104660140A CN201510024636.4A CN201510024636A CN104660140A CN 104660140 A CN104660140 A CN 104660140A CN 201510024636 A CN201510024636 A CN 201510024636A CN 104660140 A CN104660140 A CN 104660140A
Authority
CN
China
Prior art keywords
positive direction
estimated
rotor
current
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510024636.4A
Other languages
Chinese (zh)
Inventor
刘兵
周波
李洁
王龙
倪天恒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Aeronautics and Astronautics
Original Assignee
Nanjing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Aeronautics and Astronautics filed Critical Nanjing University of Aeronautics and Astronautics
Priority to CN201510024636.4A priority Critical patent/CN104660140A/en
Publication of CN104660140A publication Critical patent/CN104660140A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

本发明公开了一种基于高频电流信号注入的永磁同步电机初始位置检测方法。该方法在利用脉振高频电流注入法实现初次初始位置估计的基础上,再通过提取d轴电压响应中二倍注入信号频率次谐波中所包含的d轴正方向信息进行d轴正方向判断,该方法在整个初始位置估计过程只需注入高频电流信号,d轴正方向判断过程无需方波脉冲等其它形式的额外信号注入,缩短了估计时间,简化了估计过程。

The invention discloses a method for detecting the initial position of a permanent magnet synchronous motor based on high-frequency current signal injection. This method is based on the initial initial position estimation using the pulse vibration high-frequency current injection method, and then extracts the positive direction information of the d-axis contained in the sub-harmonic of the frequency of the double-injected signal in the d-axis voltage response to determine the positive direction of the d-axis. Judgment, this method only needs to inject high-frequency current signals in the entire initial position estimation process, and the d-axis positive direction judgment process does not need other forms of additional signal injection such as square wave pulses, which shortens the estimation time and simplifies the estimation process.

Description

基于高频电流信号注入的永磁同步电机初始位置检测方法Initial position detection method of permanent magnet synchronous motor based on high frequency current signal injection

技术领域technical field

本发明涉及电机控制领域,尤其涉及一种基于高频电流信号注入的永磁同步电机初始位置检测方法。The invention relates to the field of motor control, in particular to a method for detecting the initial position of a permanent magnet synchronous motor based on high-frequency current signal injection.

背景技术Background technique

对于表贴式永磁同步电机转子初始位置检测的方法,由于电机转子是静止的,无法通过检测电机反电势来估计转子初始位置,目前一般都是采用信号注入的方式,其中研究较多的是高频信号注入法。For the method of detecting the initial position of the surface-mounted permanent magnet synchronous motor rotor, since the motor rotor is stationary, the initial position of the rotor cannot be estimated by detecting the back EMF of the motor. High-frequency signal injection method.

刘颖,周波,李帅,等.转子磁钢表贴式永磁同步电机转子初始位置检测[J].中国电机工程学报,2011,31(18):48-54.在估计转子同步旋转坐标系的d轴注入高频正弦电压信号,检测q轴高频电流响应并建立位置估计闭环得到转子位置的初次估计值。再在估计的d轴方向注入正负电压脉冲,利用正负电流作用下直轴等效时间常数的不同判断d轴正方向,这类方法在初始位置估计全过程中需注入两种类型的信号,实现比较复杂。磁极正方向判断过程需要注入正负电压脉冲再比较电流响应衰减到0所用的时间,这也需要花费一定的时间。刘颖,周波,赵承亮,等.基于脉振高频电流注入SPMSM低速无位置传感器控制[J].中国电工技术学报,2012,7(27):139-145.首次采用脉振高频电流注入法实现SPMSM转子位置估计,但是没有提及如何对d轴正方向进行判断。Wang Jianmin,Zhao Xiaomin,Guo Zhen.Analysis andImprovement of Pulsating Current Injection Based Sensorless Control of Permanent MagnetSynchronous Motor[C].17th International Conference on Electrical Machines and Systems(ICEMS),2014.也采用脉振高频电流注入法实现转子初始位置的检测,并且给出了一些减小估计误差的方案,但也未提到如何判断d轴正方向。Liu Ying, Zhou Bo, Li Shuai, et al. Rotor initial position detection of surface-mounted permanent magnet synchronous motor[J]. Proceedings of the Chinese Society for Electrical Engineering, 2011, 31(18): 48-54. Estimation of rotor synchronous rotation coordinates The d-axis of the system injects a high-frequency sinusoidal voltage signal, detects the q-axis high-frequency current response and establishes a position estimation closed loop to obtain the initial estimated value of the rotor position. Then inject positive and negative voltage pulses in the direction of the estimated d-axis, and use the difference in the equivalent time constant of the direct axis under the action of positive and negative currents to judge the positive direction of the d-axis. This method needs to inject two types of signals during the entire process of initial position estimation. , the implementation is more complicated. The process of judging the positive direction of the magnetic pole needs to inject positive and negative voltage pulses and then compare the time it takes for the current response to decay to 0, which also takes a certain amount of time. Liu Ying, Zhou Bo, Zhao Chengliang, et al. Low-speed position sensorless control of SPMSM based on pulse-vibration high-frequency current injection[J]. Chinese Journal of Electrotechnical Society, 2012, 7(27):139-145. The first use of pulse-vibration high-frequency current injection The SPMSM rotor position estimation method is realized, but there is no mention of how to judge the positive direction of the d-axis. Wang Jianmin, Zhao Xiaomin, Guo Zhen. Analysis and Improvement of Pulsating Current Injection Based Sensorless Control of Permanent Magnet Synchronous Motor[C]. 17th International Conference on Electrical Machines and Systems (ICEMS), 2014. Also implemented by pulse vibration high frequency current injection method The detection of the initial position of the rotor, and some solutions to reduce the estimation error are given, but it does not mention how to judge the positive direction of the d-axis.

根据现有文献查阅的情况,目前还没有文章专门针对脉振高频电流注入法中的d轴正方向判断展开研究。According to the existing literature review, there is no article dedicated to the judgment of the positive direction of the d-axis in the pulse vibration high-frequency current injection method.

发明内容Contents of the invention

本发明所要解决的技术问题是针对背景技术的缺陷,在现有初始位置检测方法的基础上,提出一种全过程只需注入高频电流信号,不需要方波等其它形式的信号注入的d轴正方向判断方法,该方法使初始位置检测过程得到明显简化。The technical problem to be solved by the present invention is aimed at the defects of the background technology. On the basis of the existing initial position detection method, a d A method for judging the positive direction of the axis, which significantly simplifies the initial position detection process.

本发明为解决上述技术问题采用以下技术方案:The present invention adopts the following technical solutions for solving the problems of the technologies described above:

一种基于高频电流信号注入的永磁同步电机初始位置检测方法,包含以下步骤:A method for detecting the initial position of a permanent magnet synchronous motor based on high-frequency current signal injection, comprising the following steps:

步骤1),基于脉振高频电流注入法构建转子位置闭环调节系统,获取转子位置初次估计值;Step 1), constructing a rotor position closed-loop adjustment system based on the pulse vibration high-frequency current injection method, and obtaining the initial estimated value of the rotor position;

步骤2),提取d轴电压响应的二次谐波分量,对其进行相应的信号调制,判断d轴正方向,得到d轴正方向判断后的补偿值;Step 2), extracting the second harmonic component of the d-axis voltage response, performing corresponding signal modulation on it, judging the positive direction of the d-axis, and obtaining the compensation value after judging the positive direction of the d-axis;

步骤3),将转子位置初次估计值加上d轴正方向判断后的补偿值,得到最终初始位置估计值。In step 3), the initial estimated value of the rotor position is added to the compensation value after judging the positive direction of the d-axis to obtain the final estimated value of the initial position.

作为本发明一种基于高频电流信号注入的永磁同步电机初始位置检测方法的第一个过程,获取转子位置初次估计值的步骤如下:As the first process of the method for detecting the initial position of a permanent magnet synchronous motor based on high-frequency current signal injection in the present invention, the steps for obtaining the initial estimated value of the rotor position are as follows:

步骤11),将估计转子同步旋转坐标系的q轴电流给定为0,d轴电流给定为一个脉振高频正弦信号Imhsin(ωht),其中,Imh为在d轴注入高频电流的幅值,ωh为在d轴注入高频电流的角频率,t表示当前时刻;Step 11), the q-axis current of the estimated rotor synchronous rotation coordinate system is given as 0, and the d-axis current is given as a pulse vibration high-frequency sinusoidal signal I mh sin(ω h t), wherein, I mh is on the d-axis The amplitude of the injected high-frequency current, ω h is the angular frequency of the injected high-frequency current on the d-axis, and t represents the current moment;

步骤12),采用比例谐振控制器PR对估计的d轴电流和q轴电流进行控制,使其与给定一致;Step 12), using the proportional resonant controller PR to control the estimated d-axis current and q-axis current to make it consistent with the given;

步骤13),对比例谐振控制器输出的电压进行Park逆变换,得到两相静止α-β坐标系下的电压uα和uβ,再采用空间矢量脉宽调制策略得到三相逆变器的六路开关信号,驱动表贴式永磁同步电机;Step 13), compare the output voltage of the proportional resonance controller and Perform Park inverse transformation to obtain the voltages u α and u β in the two-phase static α-β coordinate system, and then use the space vector pulse width modulation strategy to obtain the six-way switching signals of the three-phase inverter to drive the surface-mounted permanent magnet synchronous motor ;

步骤14),检测电机三相绕组A/B/C中的任意两相电流,先进行Clarke变换得到两相静止α-β坐标系下的电流iα和iβ,再经过Park变换得到估计转子同步旋转坐标系下的d轴电流和q轴电流将其反馈到比例谐振控制器的输入端;Step 14), detect any two-phase current in the three-phase winding A/B/C of the motor, first perform Clarke transformation to obtain the currents i α and i β in the two-phase static α-β coordinate system, and then obtain the estimated rotor through Park transformation d-axis current in synchronous rotating coordinate system and q-axis current Feed it back to the input of the proportional resonant controller;

步骤15),将估计转子同步旋转坐标系的q轴电压响应经过带通滤波器选出频率为ωh的交流分量,即为q轴电压响应的一次谐波分量再与余弦信号cos(ωht)相乘进行调制,得到直流分量和频率为2ωh的交流分量,最后经过低通滤波器滤除交流分量,提取直流分量,得到估计位置偏差信号fc(Δθ);Step 15), the q-axis voltage response of the rotor synchronous rotating coordinate system will be estimated The AC component with a frequency of ω h is selected through a band-pass filter, which is the first harmonic component of the q-axis voltage response Then multiplied with the cosine signal cos(ω h t) for modulation to obtain a DC component and an AC component with a frequency of 2ω h. Finally, the AC component is filtered out by a low-pass filter, and the DC component is extracted to obtain an estimated position deviation signal f c ( Δθ);

步骤16),构建位置偏差闭环,将估计位置偏差信号fc(Δθ)作为比例积分调节器的输入,估计转子角速度为比例积分调节器的输出,对估计转子角速度积分得到估计的转子位置;Step 16), build a position deviation closed loop, use the estimated position deviation signal f c (Δθ) as the input of the proportional-integral regulator, and estimate the rotor angular velocity is the output of the proportional-integral regulator, for the estimated rotor angular velocity Integrate to get the estimated rotor position;

步骤17),重复步骤A.1)至步骤A.6),直到估计的转子位置收敛为一恒定值,即为转子初始位置的初次估计值 Step 17), repeat steps A.1) to A.6), until the estimated rotor position converges to a constant value, which is the initial estimated value of the initial rotor position

作为本发明一种基于高频电流信号注入的永磁同步电机初始位置检测方法的第二个过程,所述判断d轴正方向并得到d轴正方向判断后的补偿值的详细步骤如下:As the second process of the method for detecting the initial position of a permanent magnet synchronous motor based on high-frequency current signal injection in the present invention, the detailed steps of judging the positive direction of the d-axis and obtaining the compensation value after judging the positive direction of the d-axis are as follows:

步骤21),检测估计转子同步旋转坐标系的d轴电压响应将其先经过带通滤波器选出d轴电压响应的二次谐波分量 Step 21), detecting and estimating the d-axis voltage response of the rotor synchronously rotating coordinate system Pass it through a band-pass filter to select the second harmonic component of the d-axis voltage response

步骤22),将二次谐波分量与正弦信号sin(2ωht)相乘进行调制,得到直流分量和频率为4ωh的交流分量,其中ωh为在d轴注入高频电流信号的角频率,t表示当前时刻;Step 22), the second harmonic component Multiply with the sinusoidal signal sin(2ω h t) for modulation to obtain a DC component and an AC component with a frequency of 4ω h , where ω h is the angular frequency of the high-frequency current signal injected on the d-axis, and t represents the current moment;

步骤23),将调制后的信号经过低通滤波器滤除交流分量,提取直流分量,该直流分量即为d轴正方向判断信息gNSStep 23), filter the modulated signal through a low-pass filter to remove the AC component, and extract the DC component, which is the d-axis positive direction judgment information g NS .

更进一步的,根据gNS的符号判断d轴正方向,若gNS小于0,则d轴正方向与磁极的N极同向,d轴正方向判断后的补偿值为0;若gNS大于0,则d轴正方向与磁极的N极反向,d轴正方向判断后的补偿值为π。Furthermore, the positive direction of the d-axis is judged according to the sign of g NS . If g NS is less than 0, the positive direction of the d-axis is in the same direction as the N pole of the magnetic pole, and the compensation value after the judgment of the positive direction of the d-axis is 0; if g NS is greater than 0, the positive direction of the d-axis is opposite to the N pole of the magnetic pole, and the compensation value after the positive direction of the d-axis is judged is π.

本发明在采用传统的脉振高频电流注入法实现初次初始位置估计的基础上,提取估计d轴高频电压响应中二倍注入信号频率次谐波中的信息判断d轴正方向,该方法在初始位置估计全过程只需注入高频电流信号,在d轴正方向判断过程无需方波等其它形式的信号注入,降低了操作的复杂性,缩短了估计时间,简化了初始位置估计过程。The present invention uses the traditional pulse-vibration high-frequency current injection method to realize the initial initial position estimation, extracts and estimates the information in the subharmonic of the frequency of the injected signal twice in the estimated d-axis high-frequency voltage response, and judges the positive direction of the d-axis. In the whole process of initial position estimation, only high-frequency current signals need to be injected, and in the process of judging the positive direction of the d-axis, there is no need for other forms of signal injection such as square waves, which reduces the complexity of the operation, shortens the estimation time, and simplifies the initial position estimation process.

本发明采用以上技术方案与现有技术相比,具有以下技术效果:Compared with the prior art, the present invention adopts the above technical scheme and has the following technical effects:

(1)本发明在判断d轴正方向过程中,注入的电流始终为正弦高频信号,无需注入正负脉冲等其它形式的信号,简化了估计过程;(1) In the process of judging the positive direction of the d-axis, the injected current is always a sinusoidal high-frequency signal, and there is no need to inject other forms of signals such as positive and negative pulses, which simplifies the estimation process;

(2)采用带通滤波器得到估计d轴高频电压响应的二次谐波分量,再通过一定的调制从二次谐波中提取包含d轴正方向信息的分量,根据这个分量的符号判断d轴正方向,该过程在一个注入电流信号的周期内即可完成,缩短了d轴正方向判断过程所需时间。(2) Use a band-pass filter to obtain the second harmonic component of the estimated d-axis high-frequency voltage response, and then extract the component containing the positive direction information of the d-axis from the second harmonic through a certain modulation, and judge according to the sign of this component In the positive direction of the d-axis, this process can be completed within one cycle of injecting the current signal, which shortens the time required for the process of judging the positive direction of the d-axis.

附图说明Description of drawings

图1为表贴式永磁同步电机转子初始位置估计过程的原理框图;Figure 1 is a schematic block diagram of the initial position estimation process of the surface-mounted permanent magnet synchronous motor rotor;

图2为两相静止坐标系、实际两相同步旋转坐标系与估计两相同步旋转坐标系的相对关系示意图;Fig. 2 is a schematic diagram of the relative relationship between the two-phase stationary coordinate system, the actual two-phase synchronous rotating coordinate system and the estimated two-phase synchronous rotating coordinate system;

图3为初次初始位置估计的信号提取与调制过程的原理框图;Fig. 3 is the functional block diagram of the signal extraction and modulation process of initial initial position estimation;

图4为d轴正方向判断的信号提取与调制过程的原理框图;Fig. 4 is the functional block diagram of the signal extraction and modulation process of d-axis positive direction judgment;

图5(a)对应实际转子位置为1rad时,转子初始位置估计过程的仿真波形;Figure 5(a) corresponds to the simulation waveform of the initial rotor position estimation process when the actual rotor position is 1 rad;

图5(b)对应实际转子位置为1rad时,d轴正方向判断信息gNS的仿真波形;Figure 5(b) corresponds to the simulation waveform of the positive direction judgment information g NS of the d-axis when the actual rotor position is 1rad;

图5(c)对应实际转子位置为3rad时,转子初始位置估计过程的仿真波形;Figure 5(c) corresponds to the simulation waveform of the initial rotor position estimation process when the actual rotor position is 3rad;

图5(d)对应实际转子位置为3rad时,d轴正方向判断信息gNS的仿真波形。Figure 5(d) corresponds to the simulation waveform of the judgment information g NS in the positive direction of the d-axis when the actual rotor position is 3rad.

图6(a)对应实际转子位置为0.5rad时,转子初始位置估计过程与d轴正方向判断信息gNS的实验波形;Figure 6(a) corresponds to the actual rotor position of 0.5 rad, the initial rotor position estimation process and the experimental waveform of the d-axis positive direction judgment information g NS ;

图6(b)对应实际转子位置为4rad时,转子初始位置估计过程与d轴正方向判断信息gNS的实验波形。Figure 6(b) corresponds to the experimental waveform of the initial rotor position estimation process and the d-axis positive direction judgment information g NS when the actual rotor position is 4rad.

具体实施方式Detailed ways

下面结合附图对本发明的技术方案做进一步的详细说明:Below in conjunction with accompanying drawing, technical scheme of the present invention is described in further detail:

如图1所示,本发明提供一种表贴式永磁同步电机初始位置检测方法,具体包括以下步骤:As shown in Figure 1, the present invention provides a method for detecting the initial position of a surface-mounted permanent magnet synchronous motor, which specifically includes the following steps:

步骤1),建立坐标系关系图,如图2所示,d-q为实际同步旋转坐标系,为估计转子同步旋转坐标系,α-β为实际两相静止坐标系,并且定义估计位置误差其中,θ为实际转子初始位置,为最终初始位置估计值,的初始值为0。Step 1), establish the coordinate system relationship diagram, as shown in Figure 2, dq is the actual synchronous rotating coordinate system, In order to estimate the rotor synchronous rotating coordinate system, α-β is the actual two-phase stationary coordinate system, and define the estimated position error Among them, θ is the actual rotor initial position, is the final initial position estimate, The initial value of is 0.

步骤2),如图3所示,将估计转子同步旋转坐标系的q轴电流给定为0,d轴电流给定为一个脉振高频正弦信号Imhsin(ωht),其中,Imh为在d轴注入高频电流的幅值,ωh为在d轴注入高频电流的角频率,t表示当前时刻。Step 2), as shown in Figure 3, the q-axis current of the estimated rotor synchronous rotation coordinate system is given as 0, and the d-axis current is given as a pulse vibration high-frequency sinusoidal signal I mh sin(ω h t), where, I mh is the amplitude of the high-frequency current injected on the d-axis, ω h is the angular frequency of the high-frequency current injected on the d-axis, and t represents the current moment.

步骤3),采用比例谐振控制器(PR)对估计的d轴电流和q轴电流进行控制,使其与给定一致。Step 3), using a proportional resonant controller (PR) to control the estimated d-axis current and q-axis current to make it consistent with the given.

步骤4),对PR调节器输出的电压进行Park逆变换,得到两相静止α-β坐标系下的电压uα和uβ,再采用空间矢量脉宽调制策略得到三相逆变器的六路开关信号,驱动表贴式永磁同步电机SPMSM。Step 4), the output voltage of the PR regulator and Perform Park inverse transformation to obtain the voltages u α and u β in the two-phase static α-β coordinate system, and then use the space vector pulse width modulation strategy to obtain the six-way switching signals of the three-phase inverter to drive the surface-mounted permanent magnet synchronous motor SPMSM.

步骤5),检测电机三相绕组A/B/C中的任意两相电流,如图1所示,本实施例选取对A相和B相电流进行检测,先进行Clarke变换得到两相静止α-β坐标系下的电流iα和iβ,再经过Park变换得到估计转子同步旋转坐标系下的d轴电流和q轴电流将其反馈给PR调节器;同理,对B相和C相、A相和C相电流进行检测也能实现该初始位置检测方法的相同效果,这里就不赘述了。Step 5), detect any two-phase current in the three-phase winding A/B/C of the motor, as shown in Figure 1, this embodiment chooses to detect the A-phase and B-phase current, and first performs Clarke transformation to obtain the two-phase static α The current i α and i β in the -β coordinate system, and then through the Park transformation to obtain the estimated d-axis current in the rotor synchronous rotation coordinate system and q-axis current Feed it back to the PR regulator; similarly, detecting currents of phase B and phase C, and phase A and phase C can also achieve the same effect of the initial position detection method, which will not be described here.

步骤6),将估计转子同步旋转坐标系的q轴电压响应经过带通滤波器选出频率为ωh的交流分量即为q轴电压响应的一次谐波分量再与余弦信号cos(ωht)相乘进行调制,得到直流分量和频率为2ωh的交流分量,最后经过低通滤波器滤除交流分量,提取直流分量,得到估计位置偏差信号fc(Δθ)。Step 6), the q-axis voltage response of the rotor synchronously rotating coordinate system will be estimated The AC component with the frequency ω h selected by the band-pass filter is the first harmonic component of the q-axis voltage response Then multiplied with the cosine signal cos(ω h t) for modulation to obtain a DC component and an AC component with a frequency of 2ω h. Finally, the AC component is filtered out by a low-pass filter, and the DC component is extracted to obtain an estimated position deviation signal f c ( Δθ).

步骤7),构建位置偏差闭环,将估计位置偏差信号fc(Δθ)作为PI调节器的输入,估计转子角速度为PI调节器的输出,对估计转子角速度积分得到估计的转子位置,重复步骤2-7,直到估计的转子位置收敛为一恒定值,即为转子初始位置的初次估计值 Step 7), build a position deviation closed loop, use the estimated position deviation signal f c (Δθ) as the input of the PI regulator, and estimate the rotor angular velocity is the output of the PI regulator, the estimated rotor angular velocity Integrate to obtain the estimated rotor position, repeat steps 2-7 until the estimated rotor position converges to a constant value, which is the initial estimated value of the initial rotor position

步骤8),如图4所示,首先采用带通滤波器从估计d轴高频电压响应中选出二倍注入信号频率次的谐波分量将其与一个正弦信号sin(2ωht)相乘进行调制,再采用低通滤波器滤除高频分量,提取直流分量,得到d轴正方形判断信息gNS。根据gNS的符号判断d轴正方向,若gNS小于0,则d轴正方向与磁极的N极同向,d轴正方向判断后的补偿值为0,即若gNS大于0,则d轴正方向与磁极的N极反向,d轴正方向判断后的补偿值为π,即 Step 8), as shown in Figure 4, first adopts the band-pass filter to estimate the d-axis high-frequency voltage response from Select the harmonic component of twice the frequency of the injected signal from Multiply it with a sinusoidal signal sin(2ω h t) for modulation, and then use a low-pass filter to filter out high-frequency components and extract DC components to obtain the d-axis square judgment information g NS . Judge the positive direction of the d-axis according to the sign of g NS . If g NS is less than 0, the positive direction of the d-axis is in the same direction as the N pole of the magnetic pole, and the compensation value after judging the positive direction of the d-axis is 0, that is If g NS is greater than 0, the positive direction of the d-axis is opposite to the N pole of the magnetic pole, and the compensation value after judging the positive direction of the d-axis is π, that is

对d轴正方向判断方法的理论分析如下:The theoretical analysis of the method for judging the positive direction of the d-axis is as follows:

对于表贴式永磁同步电机,d轴电流起增磁作用时磁场饱和,电感减小;d轴电流起去磁作用时磁场退饱和,电感增大。为了简化分析,假设d轴电流为正时,电感平均值为且维持不变;d轴电流为负时,电感平均值为根据d轴电感的饱和特性,显然刘颖,周波,赵承亮,等.基于脉振高频电流注入SPMSM低速无位置传感器控制[J].中国电工技术学报,2012,7(27):139-145.给出了注入脉振高频电流后,永磁同步电机在估计的同步旋转坐标系中d轴电压响应为:For surface-mounted permanent magnet synchronous motors, when the d-axis current acts as a magnetizer, the magnetic field is saturated and the inductance decreases; when the d-axis current acts as a demagnetization, the magnetic field desaturates and the inductance increases. In order to simplify the analysis, assuming that the d-axis current is positive, the average value of the inductance is and remain unchanged; when the d-axis current is negative, the average value of the inductance is According to the saturation characteristics of the d-axis inductance, it is obvious that Right now Liu Ying, Zhou Bo, Zhao Chengliang, et al. Low-speed position sensorless control of SPMSM based on pulse vibration high-frequency current injection[J]. After the current, the d-axis voltage response of the permanent magnet synchronous motor in the estimated synchronous rotating coordinate system is:

uu ^^ dhd h == [[ ZZ ++ ΔΔ ZZ coscos (( 22 ΔθΔθ )) ]] II mhm h sinsin (( ωω hh tt )) -- -- -- (( 11 ))

式中,为平均阻抗,为半差阻抗,Zd=rs+jωhLd为d轴高频阻抗,Zq=rs+jωhLq为q轴高频阻抗,rs为定子电阻,Ld为d轴电感,Lq为q轴电感。In the formula, is the average impedance, is the semi-difference impedance, Z drs + jω h L d is the d-axis high-frequency impedance, Z qrs + jω h L q is the q-axis high-frequency impedance, rs is the stator resistance, L d is the d-axis Inductance, L q is the q-axis inductance.

完成初次初始位置估计后,位置估计误差Δθ为0或π,代入式(1)得到:After the initial initial position estimation is completed, the position estimation error Δθ is 0 or π, which can be substituted into formula (1) to get:

uu ^^ dhd h == ZZ dd II mhm h sinsin (( ωω hh tt )) == (( rr sthe s ++ jj ωω hh LL dd )) II mhm h sinsin (( ωω hh tt )) == rr sthe s 22 ++ (( ωω hh LL dd )) 22 II mhm h sinsin (( ωω hh tt ++ arctanarctan ωω hh LL dd rr sthe s )) -- -- -- (( 22 ))

先假设Δθ为0,考虑d轴电感的变化,式(2)可作进一步整理:Assuming that Δθ is 0, considering the change of d-axis inductance, formula (2) can be further sorted out:

uu ^^ dhd h == rr sthe s 22 ++ (( ωω hh LL dd ++ )) 22 II mhm h sinsin (( ωω hh t+arctant+arctan ωω hh LL dd ++ rr sthe s )) ,, tt ∈∈ (( 00 ++ 22 kπkπ ωω hh ,, ππ ++ 22 kπkπ ωω hh )) rr sthe s 22 ++ (( ωω hh LL dd -- )) 22 II mhm h sinsin (( ωω hh tt ++ arctanarctan ωω hh LL dd -- rr sthe s )) ,, tt ∈∈ (( ππ ++ 22 kπkπ ωω hh ,, 22 ππ ++ 22 kπkπ ωω hh )) -- -- -- (( 33 ))

对式(3)进行傅里叶级数展开,并忽略三次及三次以上的谐波得到:Carry out Fourier series expansion on formula (3), and ignore the third and above harmonics to get:

uu ^^ dhd h (( tt )) == aa 00 22 ++ aa 11 coscos (( ωω hh tt )) ++ bb 11 sinsin (( ωω hh tt )) ++ aa 22 coscos (( 22 ωω hh tt )) ++ bb 22 sinsin (( 22 ωω hh tt )) -- -- -- (( 44 ))

根据傅里叶级数相关理论,计算得到式(4)中的相关系数:a0=0,b1=rsImh,a2=0,将这些系数代入式(4)得到:According to the Fourier series correlation theory, the correlation coefficient in formula (4) is calculated: a 0 =0, b 1 = rs I mh , a 2 =0, Substituting these coefficients into equation (4) gives:

uu ^^ dhd h (( tt )) == ωω hh (( LL dd ++ ++ LL dd -- )) II mhm h 22 coscos (( ωω hh tt )) ++ rr sthe s II mhm h sinsin (( ωω hh tt )) -- 44 33 ππ (( LL dd -- -- LL dd ++ )) II mhm h sinsin (( 22 ωω hh tt )) -- -- -- (( 55 ))

由式(5)可知,由于d轴电感随电流变化,估计d轴电压存在二次谐波分量,并且式(5)对应的Δθ为0。若Δθ为π,同理,式(3)应更改为:It can be seen from formula (5) that since the d-axis inductance changes with the current, it is estimated that there is a second harmonic component in the d-axis voltage, and Δθ corresponding to formula (5) is 0. If Δθ is π, similarly, formula (3) should be changed to:

uu ^^ dhd h ** == rr sthe s 22 ++ (( ωω hh LL dd -- )) 22 II mhm h sinsin (( ωω hh t+arctant+arctan ωω hh LL dd -- rr sthe s )) ,, tt ∈∈ (( 00 ++ 22 kπkπ ωω hh ,, ππ ++ 22 kπkπ ωω hh )) rr sthe s 22 ++ (( ωω hh LL dd ++ )) 22 II mhm h sinsin (( ωω hh tt ++ arctanarctan ωω hh LL dd ++ rr sthe s )) ,, tt ∈∈ (( ππ ++ 22 kπkπ ωω hh ,, 22 ππ ++ 22 kπkπ ωω hh )) -- -- -- (( 66 ))

显然,式(3)与式(6)之间满足:Obviously, formula (3) and formula (6) satisfy:

uu ^^ dhd h ** (( tt )) == -- uu ^^ dhd h (( tt ++ ππ // ωω hh )) -- -- -- (( 77 ))

根据式(5)和式(7),当Δθ为π时,式(5)应改写为:According to formula (5) and formula (7), when Δθ is π, formula (5) should be rewritten as:

uu ^^ dhd h ** (( tt )) == ωω hh (( LL dd ++ ++ LL dd -- )) II mhm h 22 coscos (( ωω hh tt )) ++ rr sthe s II mhm h sinsin (( ωω hh tt )) -- 44 33 ππ (( LL dd -- -- LL dd ++ )) II mhm h sinsin (( 22 ωω hh tt )) -- -- -- (( 88 ))

对比式(5)和式(8),当位置估计误差Δθ为0时,式(5)中的二次谐波项前面的系数为负,当位置估计误差Δθ为π时,式(8)中的二次谐波项前面的系数为正,定义函数s(Δθ):Comparing formula (5) and formula (8), when the position estimation error Δθ is 0, the coefficient in front of the second harmonic term in formula (5) is negative, when the position estimation error Δθ is π, formula (8) The coefficient in front of the second harmonic term in is positive, defining the function s(Δθ):

sthe s (( ΔθΔθ )) == 11 ,, ΔθΔθ == 00 -- 11 ,, ΔθΔθ == ππ -- -- -- (( 99 ))

则式(5)和式(8)可统一表示为:Then formula (5) and formula (8) can be uniformly expressed as:

uu ^^ dhd h (( tt )) == ωω hh (( LL dd ++ ++ LL dd -- )) II mhm h 22 coscos (( ωω hh tt )) ++ rr sthe s II mhm h sinsin (( ωω hh tt )) -- 44 33 ππ (( LL dd -- -- LL dd ++ )) II mhm h sinsin (( 22 ωω hh tt )) -- -- -- (( 1010 ))

由式(10)可知,估计d轴高频电压响应的二次谐波分量的幅值符号与d轴正方向的判断结果相关。若d轴正方向与磁极N极同向,即Δθ=0,则幅值符号小于0;若d轴正方向与磁极N极反向,即Δθ=π,则幅值符号大于0。It can be known from formula (10) that the magnitude sign of the second harmonic component of the estimated d-axis high-frequency voltage response is related to the judgment result of the positive direction of the d-axis. If the positive direction of the d-axis is in the same direction as the magnetic pole N, that is, Δθ=0, the sign of the amplitude is less than 0; if the positive direction of the d-axis is opposite to the magnetic pole N, that is, Δθ=π, the sign of the amplitude is greater than 0.

为验证所提方法的正确性,采用matlab软件进行了仿真并基于硬件平台进行了实验,具体如下。In order to verify the correctness of the proposed method, the simulation is carried out using matlab software and the experiment is carried out based on the hardware platform, as follows.

如图5(a)和图5(b)所示,对应实际转子初始位置为1rad时初始位置估计过程和d轴正方向判断信息gNS的仿真波形。gNS小于0,表示d轴正方向与磁极N极同向,无需对初次估计位置进行角度补偿,θc=0;如图5(c)和图5(d)所示,对应实际转子初始位置为3rad时初始位置估计过程和d轴正方向判断信息gNS的仿真波形。gNS大于0,表示d轴正方向与磁极N极反向,需对初次估计位置补偿π弧度,θc=π,最终初始位置估计值为 As shown in Fig. 5(a) and Fig. 5(b), the simulation waveform corresponding to the initial position estimation process and the d-axis positive direction judgment information g NS when the actual rotor initial position is 1 rad. g NS is less than 0, indicating that the positive direction of the d-axis is in the same direction as the magnetic pole N, and there is no need to estimate the position for the first time Perform angle compensation, θ c = 0; as shown in Figure 5(c) and Figure 5(d), corresponding to the simulation waveform of the initial position estimation process and d-axis positive direction judgment information g NS when the actual rotor initial position is 3rad. g NS is greater than 0, indicating that the positive direction of the d-axis is opposite to the N pole of the magnetic pole, and it is necessary to estimate the position for the first time Compensate for π radians, θ c = π, and the final initial position estimate is

如图6(a)所示,对应实际转子初始位置为0.5rad时初始位置估计过程和d轴正方向判断信息gNS的实验波形。gNS小于0,表示d轴正方向与磁极N极同向,无需对初次估计位置进行角度补偿,θc=0;如图6(b)所示,对应实际转子初始位置为4rad时初始位置估计过程和d轴正方向判断信息gNS的仿真波形。gNS大于0,表示d轴正方向与磁极N极反向,需对初次估计位置补偿π弧度,θc=π,最终初始位置估计值为 As shown in Fig. 6(a), it corresponds to the experimental waveform of the initial position estimation process and the positive direction judgment information g NS of the d-axis when the actual rotor initial position is 0.5 rad. g NS is less than 0, indicating that the positive direction of the d-axis is in the same direction as the magnetic pole N, and there is no need to estimate the position for the first time Perform angle compensation, θ c =0; as shown in Figure 6(b), it corresponds to the simulation waveform of the initial position estimation process and the d-axis positive direction judgment information g NS when the actual rotor initial position is 4rad. g NS is greater than 0, indicating that the positive direction of the d-axis is opposite to the N pole of the magnetic pole, and it is necessary to estimate the position for the first time Compensate for π radians, θ c = π, and the final initial position estimate is

Claims (4)

1., based on the permagnetic synchronous motor initial position detection method that high-frequency current signal injects, it is characterized in that, comprise following steps:
Step 1), build rotor-position closed-loop regulating system based on pulsating high frequency current injection, obtain the first estimated value of rotor-position;
Step 2), extract the second harmonic component of d shaft voltage response, corresponding signal madulation is carried out to it, judges d axle positive direction, obtain the offset after the judgement of d axle positive direction;
Step 3), first for rotor-position estimated value is added the offset after the judgement of d axle positive direction, obtain final initial position estimation value.
2. the permagnetic synchronous motor initial position detection method injected based on high-frequency current signal according to claim 1, is characterized in that, the step obtaining the first estimated value of rotor-position is as follows:
Step 11), the q shaft current of estimated rotor synchronous rotating frame is given as 0, d shaft current and is given as a pulsating high frequency sinusoidal signal I mhsin (ω ht), wherein, I mhfor injecting the amplitude of high-frequency current at d axle, ω hfor injecting the angular frequency of high-frequency current at d axle, t represents current time;
Step 12), adoption rate resonant controller PR controls the d shaft current estimated and q shaft current, makes it consistent with given;
Step 13), the voltage that comparative example resonant controller PR exports with carry out Park inverse transformation, obtain the voltage u under the static alpha-beta coordinate system of two-phase αand u β, then adopt space vector pulse width modulation strategy to obtain six path switching signals of three-phase inverter, the mounted permagnetic synchronous motor of table-drive;
Step 14), detect any biphase current in motor three-phase windings A/B/C, first carry out Clarke conversion obtain the static alpha-beta coordinate system of two-phase under current i αand i β, then the d shaft current under Park conversion obtains estimated rotor synchronous rotating frame with q shaft current fed back to the input of ratio resonant controller;
Step 15), the q shaft voltage of estimated rotor synchronous rotating frame is responded selecting frequency through band pass filter is ω halternating current component, be q shaft voltage response first harmonic component again with cosine signal cos (ω ht) be multiplied and modulate, obtain DC component and frequency is 2 ω halternating current component, eventually pass low pass filter filtering alternating current component, extract DC component, obtain estimated position deviation signal f c(Δ θ);
Step 16), build position deviation closed loop, by estimated position deviation signal f c(Δ θ) as the input of proportional and integral controller, estimated rotor angular speed for the output of proportional and integral controller, to estimated rotor angular speed integration obtains the rotor-position estimated;
Step 17), repeat step 11) to step 16), until the rotor-position estimated converges to a steady state value, be the first estimated value of initial position of rotor
3. the permagnetic synchronous motor initial position detection method injected based on high-frequency current signal according to claim 1, is characterized in that, described judgement d axle positive direction and obtain d axle positive direction judge after the detailed step of offset as follows:
Step 21), detect the d shaft voltage response of estimated rotor synchronous rotating frame it is first selected the second harmonic component of d shaft voltage response through band pass filter
Step 22), by second harmonic component with sinusoidal signal sin (2 ω ht) be multiplied and modulate, obtain DC component and frequency is 4 ω halternating current component, wherein ω hfor injecting the angular frequency of high-frequency current signal at d axle, t represents current time;
Step 23), by the signal after modulation through low pass filter filtering alternating current component, extract DC component, this DC component is d axle positive direction and judges information g nS.
4. the permagnetic synchronous motor initial position detection method injected based on high-frequency current signal according to claim 3, is characterized in that, according to g nSsymbol decision d axle positive direction, if g nSbe less than 0, then the N pole of d axle positive direction and magnetic pole in the same way, and the offset after d axle positive direction judges is 0; If g nSbe greater than 0, then the N of d axle positive direction and magnetic pole is extremely reverse, and the offset after d axle positive direction judges is π.
CN201510024636.4A 2015-01-16 2015-01-16 Permanent magnet synchronous motor initial position detection method based on high-frequency current signal injection Pending CN104660140A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510024636.4A CN104660140A (en) 2015-01-16 2015-01-16 Permanent magnet synchronous motor initial position detection method based on high-frequency current signal injection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510024636.4A CN104660140A (en) 2015-01-16 2015-01-16 Permanent magnet synchronous motor initial position detection method based on high-frequency current signal injection

Publications (1)

Publication Number Publication Date
CN104660140A true CN104660140A (en) 2015-05-27

Family

ID=53250921

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510024636.4A Pending CN104660140A (en) 2015-01-16 2015-01-16 Permanent magnet synchronous motor initial position detection method based on high-frequency current signal injection

Country Status (1)

Country Link
CN (1) CN104660140A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104967388A (en) * 2015-06-29 2015-10-07 南京航空航天大学 A Rotor Position Estimation Method in Low Speed Region of Permanent Magnet Synchronous Motor
CN105245151A (en) * 2015-11-04 2016-01-13 南京航空航天大学 Detection method of rotor position of surface-mounted permanent magnet synchronous motor
CN105356806A (en) * 2015-10-30 2016-02-24 哈尔滨工业大学 A Position Sensorless Control Method of Permanent Magnet Synchronous Motor Using Square Wave Injection
TWI549417B (en) * 2015-12-23 2016-09-11 國立臺北科技大學 Method of initial rotor position estimation for permanent magnet ac motors, permanent magnet ac motor system, and computer program product
CN106655942A (en) * 2017-03-01 2017-05-10 合肥工业大学 Sensorless control method of permanent magnet synchronous motor
WO2017107105A1 (en) * 2015-12-23 2017-06-29 罗伯特·博世有限公司 Method and apparatus for online estimation of initial position of surface permanent magnet motor
CN106911283A (en) * 2015-12-23 2017-06-30 罗伯特·博世有限公司 For the method and apparatus of the initial position of On-line Estimation surface permanent magnetic motor
CN107046384A (en) * 2017-06-10 2017-08-15 北京航空航天大学 A method for detecting the rotor position of a surface-mounted permanent magnet synchronous motor
CN107508522A (en) * 2017-08-29 2017-12-22 合肥巨动力系统有限公司 A kind of permanent-magnetic synchronous motor rotor initial position measuring method
CN107911050A (en) * 2017-11-24 2018-04-13 苏州半唐电子有限公司 A kind of compensation method of high-frequency signal injection detection permanent-magnet synchronous motor rotor position
CN107979318A (en) * 2016-10-21 2018-05-01 南京理工大学 A kind of d axis positive direction determination methods of permanent magnet synchronous motor
CN108290504A (en) * 2015-11-30 2018-07-17 法拉第未来公司 Detect the errors in position measurement in electric motor system
CN109428530A (en) * 2017-09-05 2019-03-05 上海大郡动力控制技术有限公司 The method for diagnosing permanent-magnetic synchronous motor rotor initial position detection result
CN111146995A (en) * 2018-11-02 2020-05-12 中车株洲电力机车研究所有限公司 Control method and system for position-sensorless AC motor
CN112398356A (en) * 2020-10-30 2021-02-23 深圳市科华恒盛科技有限公司 LCL resonance control method and device for switching power supply
CN116683813A (en) * 2023-05-29 2023-09-01 南京航空航天大学 Initial position detection method for sine-type electro-magnetic doubly-salient motor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101369796A (en) * 2007-08-17 2009-02-18 深圳市汇川技术股份有限公司 Method and system for detecting rotor magnetic pole initial position of permanent magnet synchronous machine
CN103414426A (en) * 2013-07-25 2013-11-27 西安交通大学 Surface-mounted type permanent magnet synchronous motor rotor initial position estimation method
CN103986395A (en) * 2014-05-07 2014-08-13 南京航空航天大学 A method for detecting the initial position of the rotor of a surface-mounted permanent magnet synchronous motor
CN104022711A (en) * 2014-06-06 2014-09-03 南京航空航天大学 Method for detecting initial position of surface PM synchronous motor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101369796A (en) * 2007-08-17 2009-02-18 深圳市汇川技术股份有限公司 Method and system for detecting rotor magnetic pole initial position of permanent magnet synchronous machine
CN103414426A (en) * 2013-07-25 2013-11-27 西安交通大学 Surface-mounted type permanent magnet synchronous motor rotor initial position estimation method
CN103986395A (en) * 2014-05-07 2014-08-13 南京航空航天大学 A method for detecting the initial position of the rotor of a surface-mounted permanent magnet synchronous motor
CN104022711A (en) * 2014-06-06 2014-09-03 南京航空航天大学 Method for detecting initial position of surface PM synchronous motor

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
TAKAHIRO YUZAWA ET AL.: "An Efficient Estimation Method of Sensorless Initial Rotor Position for Surface PM Synchronous Motor", 《ELECTRIC MACHINES AND DRIVES CONFERENCE,2001.IEMDC 2001.IEEE INTERNATIONAL》 *
黄招彬等: "永磁同步电机转子初始位置的静止型估计", 《电机与控制学报》 *

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104967388B (en) * 2015-06-29 2017-12-22 南京航空航天大学 A kind of permagnetic synchronous motor low-speed region rotor position estimate method
CN104967388A (en) * 2015-06-29 2015-10-07 南京航空航天大学 A Rotor Position Estimation Method in Low Speed Region of Permanent Magnet Synchronous Motor
CN105356806A (en) * 2015-10-30 2016-02-24 哈尔滨工业大学 A Position Sensorless Control Method of Permanent Magnet Synchronous Motor Using Square Wave Injection
CN105245151A (en) * 2015-11-04 2016-01-13 南京航空航天大学 Detection method of rotor position of surface-mounted permanent magnet synchronous motor
CN105245151B (en) * 2015-11-04 2018-02-16 南京航空航天大学 The detection method of durface mounted permanent magnet synchronous motor rotor position
CN108290504A (en) * 2015-11-30 2018-07-17 法拉第未来公司 Detect the errors in position measurement in electric motor system
US10601354B2 (en) 2015-12-23 2020-03-24 Robert Bosch Gmbh Method and apparatus for on-line estimation of initial position of surface permanent magnet electric machine
EP3396851A4 (en) * 2015-12-23 2018-12-19 Robert Bosch GmbH Method and apparatus for online estimation of initial position of surface permanent magnet motor
CN106911283A (en) * 2015-12-23 2017-06-30 罗伯特·博世有限公司 For the method and apparatus of the initial position of On-line Estimation surface permanent magnetic motor
CN106911283B (en) * 2015-12-23 2023-08-04 罗伯特·博世有限公司 Method and apparatus for online estimation of initial position of surface permanent magnet motor
WO2017107105A1 (en) * 2015-12-23 2017-06-29 罗伯特·博世有限公司 Method and apparatus for online estimation of initial position of surface permanent magnet motor
TWI549417B (en) * 2015-12-23 2016-09-11 國立臺北科技大學 Method of initial rotor position estimation for permanent magnet ac motors, permanent magnet ac motor system, and computer program product
CN107979318A (en) * 2016-10-21 2018-05-01 南京理工大学 A kind of d axis positive direction determination methods of permanent magnet synchronous motor
CN106655942B (en) * 2017-03-01 2019-08-02 合肥工业大学 Permanent magnet synchronous motor method for controlling position-less sensor
CN106655942A (en) * 2017-03-01 2017-05-10 合肥工业大学 Sensorless control method of permanent magnet synchronous motor
CN107046384B (en) * 2017-06-10 2018-06-29 北京航空航天大学 A kind of durface mounted permanent magnet synchronous motor rotor position detection method
CN107046384A (en) * 2017-06-10 2017-08-15 北京航空航天大学 A method for detecting the rotor position of a surface-mounted permanent magnet synchronous motor
CN107508522B (en) * 2017-08-29 2020-05-22 合肥巨一动力系统有限公司 Method for measuring initial position of rotor of permanent magnet synchronous motor
CN107508522A (en) * 2017-08-29 2017-12-22 合肥巨动力系统有限公司 A kind of permanent-magnetic synchronous motor rotor initial position measuring method
CN109428530A (en) * 2017-09-05 2019-03-05 上海大郡动力控制技术有限公司 The method for diagnosing permanent-magnetic synchronous motor rotor initial position detection result
CN107911050A (en) * 2017-11-24 2018-04-13 苏州半唐电子有限公司 A kind of compensation method of high-frequency signal injection detection permanent-magnet synchronous motor rotor position
CN111146995A (en) * 2018-11-02 2020-05-12 中车株洲电力机车研究所有限公司 Control method and system for position-sensorless AC motor
CN112398356A (en) * 2020-10-30 2021-02-23 深圳市科华恒盛科技有限公司 LCL resonance control method and device for switching power supply
CN116683813A (en) * 2023-05-29 2023-09-01 南京航空航天大学 Initial position detection method for sine-type electro-magnetic doubly-salient motor
CN116683813B (en) * 2023-05-29 2024-06-11 南京航空航天大学 A method for detecting the initial position of a sinusoidal electrically excited double-pole motor

Similar Documents

Publication Publication Date Title
CN104660140A (en) Permanent magnet synchronous motor initial position detection method based on high-frequency current signal injection
CN103986395B (en) A method for detecting the initial position of the rotor of a surface-mounted permanent magnet synchronous motor
CN104022711B (en) A kind of surface-mount type permagnetic synchronous motor initial position detection method
CN106788071B (en) A method of improving permanent-magnet synchronous motor rotor position estimated accuracy
CN105450127B (en) Permanent magnet synchronous motor rotor position detection method based on high frequency electrocardiography
Bolognani et al. Sensorless control of IPM motors in the low-speed range and at standstill by HF injection and DFT processing
CN108111065A (en) A kind of six phase permanent-magnet synchronous motor sensorless control system and method based on pulsating high frequency signal injection
CN104022710A (en) Method of detecting initial position of surface-mounted permanent magnet synchronous motor rotor
CN103986393B (en) Method for detecting initial position of rotor of permanent magnet synchronous motor
CN107171608A (en) A kind of permagnetic synchronous motor without sensor initial position detection method
CN103986394A (en) A method for detecting the initial position of the surface-mounted permanent magnet synchronous motor rotor
Zhao et al. A high frequency injection technique with modified current reconstruction for low-speed sensorless control of IPMSMs with a single DC-link current sensor
CN104967388B (en) A kind of permagnetic synchronous motor low-speed region rotor position estimate method
CN103560736A (en) Static off-line parameter identification method of permanent magnet synchronous motor
CN109802618A (en) Permanent-magnetic synchronous motor rotor initial position discrimination method based on reactive filter
Liu et al. Sensorless control for five-phase IPMSM drives by injecting HF square-wave voltage signal into third harmonic space
CN104901600A (en) Sensorless control method of permanent magnet synchronous motor in wide rotating speed scope
CN102843091A (en) Judgment method for initial position of permanent magnet synchronous motor rotor
CN103326658A (en) Built-in permanent magnet synchronous motor sensor-less control method
Kim et al. Position sensorless operation of IPMSM with near PWM switching frequency signal injection
CN106059435B (en) A method of improving permanent-magnet synchronous motor rotor position estimated accuracy
CN106374805B (en) Permanent-magnetic synchronous motor rotor stationary state initial position discrimination method and device
CN102427322A (en) Method for detecting initial position of rotor of gearless tractor for elevator
CN108258963A (en) Permanent-magnet synchronous motor rotor position discrimination method
CN106026831B (en) A kind of Current Decoupling method under position Sensorless Control

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20150527