CN104657988A - Image segmentation method for micro-fine cohesive core particles based on angular point and curvature detection - Google Patents
Image segmentation method for micro-fine cohesive core particles based on angular point and curvature detection Download PDFInfo
- Publication number
- CN104657988A CN104657988A CN201510060055.6A CN201510060055A CN104657988A CN 104657988 A CN104657988 A CN 104657988A CN 201510060055 A CN201510060055 A CN 201510060055A CN 104657988 A CN104657988 A CN 104657988A
- Authority
- CN
- China
- Prior art keywords
- point
- image
- concave
- ore particles
- pixel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 27
- 238000001514 detection method Methods 0.000 title claims abstract description 13
- 238000003709 image segmentation Methods 0.000 title abstract description 6
- 239000007771 core particle Substances 0.000 title 1
- 239000002245 particle Substances 0.000 claims abstract description 75
- 230000011218 segmentation Effects 0.000 claims abstract description 9
- 239000011159 matrix material Substances 0.000 claims description 36
- 238000001914 filtration Methods 0.000 claims description 6
- 238000009499 grossing Methods 0.000 claims description 4
- 238000005316 response function Methods 0.000 claims description 3
- 238000005192 partition Methods 0.000 claims 6
- 230000008878 coupling Effects 0.000 claims 1
- 238000010168 coupling process Methods 0.000 claims 1
- 238000005859 coupling reaction Methods 0.000 claims 1
- 229910052500 inorganic mineral Inorganic materials 0.000 abstract description 9
- 239000011707 mineral Substances 0.000 abstract description 9
- 238000005516 engineering process Methods 0.000 description 3
- 238000010494 dissociation reaction Methods 0.000 description 2
- 230000005593 dissociations Effects 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 238000003711 image thresholding Methods 0.000 description 2
- 230000000877 morphologic effect Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10056—Microscopic image
- G06T2207/10061—Microscopic image from scanning electron microscope
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20112—Image segmentation details
- G06T2207/20164—Salient point detection; Corner detection
Landscapes
- Image Analysis (AREA)
Abstract
一种基于角点检测与曲率的粘连矿石颗粒的图像分割方法,适用于一种针对破碎矿物颗粒图像研究时使用。其步骤为:首先对矿物图像进行预处理,其次将得到的二值图像进行Harris角点检测,第三,利用各角点的曲率信息识别出其中的凹点,即粘连颗粒连接点,根据凹点的特性采用一定的准则,确定最佳分割路径,完成粘连矿石颗粒的分割。本方法通过寻找目标区域里存在的角点,结合角点与曲率信息,从而识别出其中的凹点,通过凹点的方向性特点及最近邻准则,从而将图像目标区域进行分割,最终完成整个矿石颗粒图像中粘连颗粒的分割,其方法简单,能够有效分割图像中大量粘连颗粒的区域,最大程度还原图像中微细粒矿石颗粒的分布情况。
An image segmentation method of cohesive ore particles based on corner detection and curvature, which is suitable for a research on images of broken mineral particles. The steps are as follows: firstly, the mineral image is preprocessed; secondly, the obtained binary image is subjected to Harris corner detection; thirdly, the concave point is identified by using the curvature information of each corner point, that is, the connection point of the cohesive particles. The characteristics of the points adopt certain criteria to determine the best segmentation path and complete the segmentation of cohesive ore particles. This method finds the corner points in the target area and combines the corner points and curvature information to identify the concave points in it. Through the directional characteristics of the concave points and the nearest neighbor criterion, the image target area is segmented, and finally the entire image is completed. The segmentation of cohesive particles in the ore particle image is simple, and can effectively segment the area of a large number of cohesive particles in the image, and restore the distribution of fine ore particles in the image to the greatest extent.
Description
技术领域technical field
本发明涉及一种矿石颗粒图像分割方法,尤其适用于一种针对破碎矿物颗粒图像研究时使用的基于角点与曲率检测的微细粒粘连矿石颗粒图像分割方法。The invention relates to an ore particle image segmentation method, and is especially suitable for a fine-grained ore particle image segmentation method based on corner point and curvature detection used in research on broken mineral particle images.
背景技术Background technique
矿物加工的主要目的是将原矿中的有用矿物分离,其中一个关键步骤是将原矿石进行研磨,已达到有用矿物解离的目的,有文献证明磨矿的颗粒粒度与解离度存在一定的关系,故对矿石颗粒粒度的精确检测是一个重要技术。一般矿物工艺学采用筛分法检测颗粒粒度,该方法通过采用有限数量的筛子来测量矿石颗粒尺寸,误差较大。目前利用图像处理对矿石颗粒图像进行分割、识别是一种精确的方法。对于毫米级的矿石颗粒可采用数码相机进行取图,但对于微米级颗粒必须采用放大倍率更高的扫描电子显微镜,同样由于矿石的粒度更小,颗粒间的粘附力更强,使得颗粒之间粘连现象很严重,而颗粒粒度作为矿物颗粒物料的重要特征指标,其准确测量对颗粒后续加工的各个工艺具有重要的指导意义。为了准确分析矿物颗粒粒度表征,必须在分析之前,对颗粒图像进行分割和分离。The main purpose of mineral processing is to separate the useful minerals in the raw ore. One of the key steps is to grind the raw ore to achieve the purpose of dissociation of useful minerals. There is a certain relationship between the particle size of the grinding and the degree of dissociation. , so the accurate detection of ore particle size is an important technology. Generally, mineral technology uses the sieving method to detect the particle size. This method uses a limited number of sieves to measure the ore particle size, and the error is relatively large. At present, it is an accurate method to use image processing to segment and identify ore particle images. For millimeter-sized ore particles, a digital camera can be used to take pictures, but for micron-sized particles, a scanning electron microscope with higher magnification must be used. Also, due to the smaller particle size of the ore, the adhesion between particles is stronger, making the particle size The inter-adhesion phenomenon is very serious, and the particle size is an important characteristic index of mineral particle materials, and its accurate measurement has important guiding significance for the subsequent processing of particles. In order to accurately analyze the particle size characterization of mineral particles, the particle images must be segmented and separated before analysis.
发明内容Contents of the invention
针对上述技术的不足之处,提供一种步骤简单,简单快捷的的基于角点与曲率检测的微细粒粘连矿石颗粒图像分割方法。Aiming at the deficiencies of the above-mentioned technologies, a method for image segmentation of fine-grained cohesive ore particles based on corner point and curvature detection with simple steps is provided.
为实现上述目的,本发明采取以下技术方案:基于角点与曲率检测的微细粒粘连矿石颗粒图像分割方法,其步骤如下:In order to achieve the above object, the present invention adopts the following technical solutions: a method for segmenting images of fine-grained cohesive ore particles based on corner point and curvature detection, the steps of which are as follows:
a.使用扫描电子显微镜对研磨过的矿石颗粒进行取图,利用smooth函数对矿石颗粒图像顺序进行平滑处理、图像阈值化、形态滤波、去除边缘颗粒的步骤,从而完成对矿石颗粒图像的二值化;a. Use a scanning electron microscope to take pictures of the ground ore particles, and use the smooth function to sequentially smooth the ore particle images, image thresholding, morphological filtering, and remove edge particles, so as to complete the binary image of the ore particles change;
b.将二值化后的矿石颗粒图像中存在微细粒粘连情况的图像选取出来作为目标区域,对目标区域的矿石颗粒图像进行Harris角点检测:b. Select the image with fine particle adhesion in the binarized ore particle image as the target area, and perform Harris corner detection on the ore particle image in the target area:
1)利用水平、竖直差分算子对目标区域的矿石颗粒图像中每个像素点进行滤波,得到得像素点在水平和垂直方向的一阶导数Ix、Iy,利用公式:
2)利用离散二维零均值高斯函数公式:对黑塞矩阵
3)利用公式:将滤波后的黑塞矩阵m'值代入目标区域的矿石颗粒图像像素点,计算每个像素点的角点量cim;3) Use the formula: Substitute the filtered Hessian matrix m' value into the ore particle image pixel in the target area, and calculate the corner point cim of each pixel;
4)将每个像素点的角点量cim与预设阀值thresh进行比较,标记每一个大于预设阀值thresh的像素点,当角点量cim值大于预设阀值,则判断此像素点为Harris角点;4) Compare the corner point amount cim of each pixel with the preset threshold value thresh, and mark each pixel point greater than the preset threshold value thresh. When the corner point amount cim value is greater than the preset threshold value, then judge this pixel The point is Harris corner point;
c.以每个Harris角点作为圆心curvature,半径为5个像素,通过公式:计算得到每个Harris角点相对应的圆形掩膜,式中:j表示第j个角点,|L|为圆形掩膜的周长,|Aj|为第j个角点为圆心的圆形掩膜与目标区域的矿石颗粒图像相重合部分的掩膜弧线;c. Take each Harris corner as the center curvature, with a radius of 5 pixels, through the formula: Calculate the circular mask corresponding to each Harris corner point, where: j represents the jth corner point, |L| is the circumference of the circular mask, |A j | is the jth corner point as the center of the circle The mask arc of the overlapping part of the circular mask and the ore particle image of the target area;
d.利用公式:curvature(j)>0.5,对每个角点进行比较判断,符合公式的角点即为凹点Pj,并排除非凹点;d. Using the formula: curvature(j) > 0.5, compare and judge each corner point, the corner point conforming to the formula is the concave point P j , and exclude the non-concave points;
e.定义每个凹点Pj的圆形掩膜与目标区域的矿石颗粒图像不重合部分的掩膜弧线Bj,根据掩膜弧线Bj的长度定义掩膜弧线Bj的中点Cj,以凹点Pj为发射点向连接中点Cj形成的射线PjCj即为该凹点Pj的方向;e. Define the mask arc B j of the part where the circular mask of each concave point P j does not overlap with the ore particle image of the target area, and define the center of the mask arc B j according to the length of the mask arc B j Point C j , the ray P j C j formed from the concave point P j as the emission point to the connecting midpoint C j is the direction of the concave point P j ;
f.建立凹点坐标列表,将待匹配凹点坐标作为线性分割的始端像素点,搜索列表中的其他凹点与其进行匹配,找到满足与待匹配凹点距离最近且方向相反的凹点作为终端像素点,采用Bresenham算法画分离线,完成目标区域的矿石颗粒图像的分割,循环匹配凹点的过程,直至该连通域内所有的凹点都被匹配。f. Establish a list of concave point coordinates, use the coordinates of the concave point to be matched as the starting pixel point of linear segmentation, search for other concave points in the list to match, and find the concave point that satisfies the closest distance and opposite direction to the concave point to be matched as the terminal For pixel points, use the Bresenham algorithm to draw separation lines, complete the segmentation of the ore particle image in the target area, and cycle through the process of matching concave points until all the concave points in the connected domain are matched.
步骤b中利用黑塞矩阵m判断每个像素点是否为极值点的方法为,若m为正定矩阵,则该点为极小值,若m为负定矩阵,则该点为极大值,若m为不定矩阵,则该点不是极值;角点量cim的角点响应函数R为R=λ1λ2-k*(λ1+λ2)2,式中:λ1、λ2为黑塞矩阵m'经实对称矩阵对角化处理后得到的两个正交分量,k为系数,取值范围为[0.04,0.06];预设阀值thresh由高斯函数滤波后的黑塞矩阵m中的四个元素值产生的平滑轮廓曲线、高斯函数的方差尺度参数和支撑域的半径决定,这里高斯函数尺度参数σ=2.5,轮廓支撑域的半径为1,则阈值的取值区间为[0.004,0.008];若凹点坐标列表中凹点的数量为奇数,则经过匹配之后,忽略剩余的一个凹点。In step b, the method of using the Hessian matrix m to judge whether each pixel point is an extreme point is as follows: if m is a positive definite matrix, then the point is a minimum value; if m is a negative definite matrix, then this point is a maximum value , if m is an indeterminate matrix, the point is not an extremum; the corner response function R of the corner quantity cim is R=λ 1 λ 2 -k*(λ 1 +λ 2 ) 2 , where: λ 1 , λ 2 is the two orthogonal components of the Hessian matrix m' processed by the diagonalization of the real symmetric matrix, k is the coefficient, and the value range is [0.04, 0.06]; the preset threshold thresh is filtered by the Gaussian function. The smooth contour curve generated by the four element values in the plug matrix m, the variance scale parameter of the Gaussian function, and the radius of the support domain are determined. Here, the Gaussian function scale parameter σ=2.5, the radius of the contour support domain is 1, and the value of the threshold is The interval is [0.004, 0.008]; if the number of pit points in the pit coordinate list is an odd number, the remaining pit point will be ignored after matching.
有益效果:由于大部分矿石颗粒呈现棱角分明的状态,因此本方法通过寻找目标区域里存在的角点,结合角点与曲率信息,从而识别出其中的凹点,通过凹点的方向性特点及最近邻准则,从而将图像目标区域进行分割,最终完成整个矿石颗粒图像中粘连颗粒的分割,其方法简单,能够有效分割图像中大量粘连颗粒的区域,最大程度还原图像中微细粒矿石颗粒的分布情况。Beneficial effects: Since most of the ore particles are in a state of sharp edges and corners, the method finds the corner points existing in the target area and combines the corner points and curvature information to identify the concave points in it, and through the directional characteristics of the concave points and the The nearest neighbor criterion, so as to segment the image target area, and finally complete the segmentation of cohesive particles in the entire ore particle image. The method is simple and can effectively segment the area of a large number of cohesive particles in the image, and restore the distribution of fine ore particles in the image to the greatest extent. Condition.
附图说明Description of drawings
图1是本发明的流程示意图;Fig. 1 is a schematic flow sheet of the present invention;
图2是本发明的一个目标区域中圆形掩膜的凹点检测及凹点方向表示图。FIG. 2 is a diagram showing pit detection and pit directions of a circular mask in a target area of the present invention.
具体实施方式Detailed ways
下面结合附图对本发明的实施方式作进一步的说明:Embodiments of the present invention will be further described below in conjunction with the accompanying drawings:
如图1所示,本发明的基于角点与曲率检测的微细粒粘连矿石颗粒图像分割方法,其步骤如下:As shown in Figure 1, the method for image segmentation of fine grained ore particles based on corner point and curvature detection of the present invention, its steps are as follows:
a.使用扫描电子显微镜对研磨过的矿石颗粒进行取图,利用smooth函数对矿石颗粒图像顺序进行平滑处理、图像阈值化、形态滤波、去除边缘颗粒的步骤,从而完成对矿石颗粒图像的二值化;a. Use a scanning electron microscope to take pictures of the ground ore particles, and use the smooth function to sequentially smooth the ore particle images, image thresholding, morphological filtering, and remove edge particles, so as to complete the binary image of the ore particles change;
b.将二值化后的矿石颗粒图像中存在微细粒粘连情况的图像选取出来作为目标区域,对目标区域的矿石颗粒图像进行Harris角点检测:b. Select the image with fine particle adhesion in the binarized ore particle image as the target area, and perform Harris corner detection on the ore particle image in the target area:
1)利用水平、竖直差分算子对目标区域的矿石颗粒图像中每个像素点进行滤波,得到得像素点在水平和垂直方向的一阶导数Ix、Iy,利用公式:
2)利用离散二维零均值高斯函数公式:对黑塞矩阵
3)利用公式:将滤波后的黑塞矩阵m'值代入目标区域的矿石颗粒图像像素点,计算每个像素点的角点量cim;其中角点量cim的角点响应函数R为R=λ1λ2-k*(λ1+λ2)2,式中:λ1、λ2为黑塞矩阵m'经实对称矩阵对角化处理后得到的两个正交分量,k为系数,取值范围为[0.04,0.06];3) Use the formula: Substituting the filtered Hessian matrix m' value into the ore particle image pixel points in the target area, and calculating the corner point quantity cim of each pixel point; the corner point response function R of the corner point quantity cim is R=λ 1 λ 2 - k*(λ 1 +λ 2 ) 2 , where: λ 1 and λ 2 are the two orthogonal components of the Hessian matrix m' after diagonalization of the real symmetric matrix, k is the coefficient, and the value range is [0.04, 0.06];
4)将每个像素点的角点量cim与预设阀值thresh进行比较,标记每一个大于预设阀值thresh的像素点,当角点量cim值大于预设阀值,则判断此像素点为Harris角点;预设阀值thresh由高斯函数滤波后的黑塞矩阵m中的四个元素值产生的平滑轮廓曲线、高斯函数的方差尺度参数和支撑域的半径决定,这里高斯函数尺度参数σ=2.5,轮廓支撑域的半径为1,则阈值的取值区间为[0.004,0.008];4) Compare the corner point amount cim of each pixel with the preset threshold value thresh, and mark each pixel point greater than the preset threshold value thresh. When the corner point amount cim value is greater than the preset threshold value, then judge this pixel The point is the Harris corner point; the preset threshold thresh is determined by the smooth contour curve generated by the four element values in the Hessian matrix m filtered by the Gaussian function, the variance scale parameter of the Gaussian function and the radius of the support domain, where the Gaussian function scale The parameter σ=2.5, the radius of the contour support domain is 1, and the value range of the threshold is [0.004, 0.008];
c.以每个Harris角点作为圆心curvature,半径为5个像素,通过公式:计算得到每个Harris角点相对应的圆形掩膜,式中:j表示第j个角点,|L|为圆形掩膜的周长,|Aj|为第j个角点为圆心的圆形掩膜与目标区域的矿石颗粒图像相重合部分的掩膜弧线;c. Take each Harris corner as the center curvature, with a radius of 5 pixels, through the formula: Calculate the circular mask corresponding to each Harris corner point, where: j represents the jth corner point, |L| is the circumference of the circular mask, |A j | is the jth corner point as the center of the circle The mask arc of the overlapping part of the circular mask and the ore particle image of the target area;
d.利用公式:curvature(j)>0.5,对每个角点进行比较判断,符合公式的角点即为凹点Pj,并排除非凹点;d. Using the formula: curvature(j) > 0.5, compare and judge each corner point, the corner point conforming to the formula is the concave point P j , and exclude the non-concave points;
e.定义每个凹点Pj的圆形掩膜与目标区域的矿石颗粒图像不重合部分的掩膜弧线Bj,根据掩膜弧线Bj的长度定义掩膜弧线Bj的中点Cj,以凹点Pj为发射点向连接中点Cj形成的射线PjCj即为该凹点Pj的方向;如图2为目标区域中圆形掩膜的凹点检测及凹点方向表示图,图中P1、P2、P3为角点,图中A1、A2、A3分别为角点P1、P2、P3为圆心的三个圆形掩膜与目标区域的矿石颗粒图像相重合部分的掩膜弧线,B1、B2、B3分别为角点P1、P2、P3为圆心的三个圆形掩膜与目标区域的矿石颗粒图像不重合部分的掩膜弧线,C1、C2、C3分别为掩膜弧线B1、B2、B3的中点;e. Define the mask arc B j of the part where the circular mask of each concave point P j does not overlap with the ore particle image of the target area, and define the center of the mask arc B j according to the length of the mask arc B j Point C j , the ray P j C j formed from the concave point P j as the emission point to the midpoint C j is the direction of the concave point P j ; as shown in Figure 2, the concave point detection of the circular mask in the target area and the direction of concave points, in which P 1 , P 2 , and P 3 are corner points, and A 1 , A 2 , and A 3 in the figure are three circles with corner points P 1 , P 2 , and P 3 as centers. The mask arc of the overlapping portion of the mask and the ore particle image of the target area, B 1 , B 2 , and B 3 are the three circular masks with the corner points P 1 , P 2 , and P 3 as the center of the circle and the target area. The mask arcs of the non-overlapping parts of the ore particle images, C 1 , C 2 , and C 3 are the midpoints of the mask arcs B 1 , B 2 , and B 3 respectively;
f.建立凹点坐标列表,将待匹配凹点坐标作为线性分割的始端像素点,搜索列表中的其他凹点与其进行匹配,找到满足与待匹配凹点距离最近且方向相反的凹点作为终端像素点,采用Bresenham算法画分离线,完成目标区域的矿石颗粒图像的分割,循环匹配凹点的过程,直至该连通域内所有的凹点都被匹配,若凹点坐标列表中凹点的数量为奇数,则经过匹配之后,忽略剩余的一个凹点。f. Establish a list of concave point coordinates, use the coordinates of the concave point to be matched as the starting pixel point of linear segmentation, search for other concave points in the list to match, and find the concave point that satisfies the closest distance and opposite direction to the concave point to be matched as the terminal Pixels, use the Bresenham algorithm to draw the separation line, complete the segmentation of the ore particle image in the target area, and cycle the process of matching concave points until all the concave points in the connected domain are matched. If the number of concave points in the concave point coordinate list is Odd number, after matching, ignore the remaining concave point.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510060055.6A CN104657988A (en) | 2015-02-04 | 2015-02-04 | Image segmentation method for micro-fine cohesive core particles based on angular point and curvature detection |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510060055.6A CN104657988A (en) | 2015-02-04 | 2015-02-04 | Image segmentation method for micro-fine cohesive core particles based on angular point and curvature detection |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104657988A true CN104657988A (en) | 2015-05-27 |
Family
ID=53249064
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510060055.6A Pending CN104657988A (en) | 2015-02-04 | 2015-02-04 | Image segmentation method for micro-fine cohesive core particles based on angular point and curvature detection |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104657988A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106447669A (en) * | 2016-04-08 | 2017-02-22 | 潍坊学院 | Circular masking-out area rate determination-based adhesive particle image concave point segmentation method |
CN106530272A (en) * | 2016-10-09 | 2017-03-22 | 山东师范大学 | Overlapped protein point separation method and device based on concave point matching |
CN108090434A (en) * | 2017-12-13 | 2018-05-29 | 赣州好朋友科技有限公司 | A kind of ore method for quickly identifying |
CN108108700A (en) * | 2017-12-27 | 2018-06-01 | 江苏大学 | A kind of characteristic area recognition methods of the pig based on peg conversion |
CN109047026A (en) * | 2018-08-02 | 2018-12-21 | 重庆科技学院 | A kind of ore screening system and method |
CN110160528A (en) * | 2019-05-30 | 2019-08-23 | 华中科技大学 | A kind of mobile device pose localization method based on angle character identification |
CN112598680A (en) * | 2020-12-16 | 2021-04-02 | 北京理工大学 | Image segmentation method and system for cohesive ore based on artificial intelligence network |
CN113345015A (en) * | 2021-08-05 | 2021-09-03 | 浙江华睿科技股份有限公司 | Package position detection method, device and equipment and readable storage medium |
CN114152211A (en) * | 2021-01-12 | 2022-03-08 | 中国石油天然气股份有限公司 | Fracturing propping agent roundness measuring method based on microscopic image processing |
CN116823827A (en) * | 2023-08-29 | 2023-09-29 | 山东德信微粉有限公司 | Ore crushing effect evaluation method based on image processing |
CN117576135A (en) * | 2023-11-27 | 2024-02-20 | 北京霍里思特科技有限公司 | Method, equipment and storage medium for segmenting ore based on ore image |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20090091578A (en) * | 2008-02-25 | 2009-08-28 | 한세대학교 산학협력단 | Method and apparatus for detecting position of laser beam with minimum error using one camera |
CN103996292A (en) * | 2014-05-29 | 2014-08-20 | 南京新奕天科技有限公司 | Moving vehicle tracking method based on corner matching |
-
2015
- 2015-02-04 CN CN201510060055.6A patent/CN104657988A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20090091578A (en) * | 2008-02-25 | 2009-08-28 | 한세대학교 산학협력단 | Method and apparatus for detecting position of laser beam with minimum error using one camera |
CN103996292A (en) * | 2014-05-29 | 2014-08-20 | 南京新奕天科技有限公司 | Moving vehicle tracking method based on corner matching |
Non-Patent Citations (5)
Title |
---|
CRZY_SPARROW: "Opencv学习笔记(五)Harris角点检测", 《HTTP://BLOG.CSDN.NET/CRZY_SPARROW/ARTICLE/DETAILS/7391511》 * |
张梅荣: "基于Hessian 矩阵的多元函数极值问题", 《北京印刷学院学报》 * |
杨桂华 等: "一种基于曲率尺度空间的局部阈值角点检测方法", 《第十届沈阳科学学术年会论文集(信息科学与工程技术分册)》 * |
王德超 等: "一种多尺度Harris角点检测方法", 《计算机应用与软件》 * |
董珂: "基于机器视觉的矿石粒度检测技术研究", 《中国优秀硕士学位论文全文数据库 信息科技辑》 * |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106447669A (en) * | 2016-04-08 | 2017-02-22 | 潍坊学院 | Circular masking-out area rate determination-based adhesive particle image concave point segmentation method |
CN106447669B (en) * | 2016-04-08 | 2019-01-25 | 潍坊学院 | Segmentation method of concave points of adhering particle image based on discriminative area ratio of circular mask |
CN106530272A (en) * | 2016-10-09 | 2017-03-22 | 山东师范大学 | Overlapped protein point separation method and device based on concave point matching |
CN106530272B (en) * | 2016-10-09 | 2019-06-28 | 山东师范大学 | Based on the matched overlapping protein spots separation method of concave point and device |
CN108090434A (en) * | 2017-12-13 | 2018-05-29 | 赣州好朋友科技有限公司 | A kind of ore method for quickly identifying |
CN108090434B (en) * | 2017-12-13 | 2020-06-23 | 赣州好朋友科技有限公司 | Rapid ore identification method |
CN108108700B (en) * | 2017-12-27 | 2020-02-21 | 江苏大学 | A method for identifying characteristic regions of pigs based on peg transformation |
CN108108700A (en) * | 2017-12-27 | 2018-06-01 | 江苏大学 | A kind of characteristic area recognition methods of the pig based on peg conversion |
CN109047026A (en) * | 2018-08-02 | 2018-12-21 | 重庆科技学院 | A kind of ore screening system and method |
CN109047026B (en) * | 2018-08-02 | 2021-08-27 | 重庆科技学院 | Ore screening system and method |
CN110160528A (en) * | 2019-05-30 | 2019-08-23 | 华中科技大学 | A kind of mobile device pose localization method based on angle character identification |
CN112598680A (en) * | 2020-12-16 | 2021-04-02 | 北京理工大学 | Image segmentation method and system for cohesive ore based on artificial intelligence network |
CN112598680B (en) * | 2020-12-16 | 2023-01-24 | 北京理工大学 | Method and system for image segmentation of sticky ore based on artificial intelligence network |
CN114152211A (en) * | 2021-01-12 | 2022-03-08 | 中国石油天然气股份有限公司 | Fracturing propping agent roundness measuring method based on microscopic image processing |
CN114152211B (en) * | 2021-01-12 | 2024-04-30 | 中国石油天然气股份有限公司 | Microscopic image processing-based roundness measurement method for fracturing propping agent |
CN113345015A (en) * | 2021-08-05 | 2021-09-03 | 浙江华睿科技股份有限公司 | Package position detection method, device and equipment and readable storage medium |
CN116823827A (en) * | 2023-08-29 | 2023-09-29 | 山东德信微粉有限公司 | Ore crushing effect evaluation method based on image processing |
CN116823827B (en) * | 2023-08-29 | 2023-11-10 | 山东德信微粉有限公司 | Ore crushing effect evaluation method based on image processing |
CN117576135A (en) * | 2023-11-27 | 2024-02-20 | 北京霍里思特科技有限公司 | Method, equipment and storage medium for segmenting ore based on ore image |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104657988A (en) | Image segmentation method for micro-fine cohesive core particles based on angular point and curvature detection | |
CN105067638B (en) | Tire fetal membrane face character defect inspection method based on machine vision | |
CN105760812B (en) | A kind of method for detecting lane lines based on Hough transform | |
CN105787486B (en) | A method for crack detection of steel beams based on image processing | |
CN109060836B (en) | Machine vision-based high-pressure oil pipe joint external thread detection method | |
CN109859226B (en) | Detection method of checkerboard corner sub-pixels for graph segmentation | |
CN104318548B (en) | Rapid image registration implementation method based on space sparsity and SIFT feature extraction | |
CN111062915A (en) | A real-time steel pipe defect detection method based on improved YOLOv3 model | |
CN110807355A (en) | Pointer instrument detection and reading identification method based on mobile robot | |
CN110189375B (en) | Image target identification method based on monocular vision measurement | |
CN109615654B (en) | Method for measuring corrosion depth and area of inner surface of drainage pipeline based on binocular vision | |
CN107798326A (en) | A kind of profile visual detection algorithm | |
CN103150730A (en) | Round small target accurate detection method based on image | |
CN107301636A (en) | A kind of high density circuit board circular hole sub-pixel detection method based on Gauss curve fitting | |
CN105548208A (en) | Method for detecting surface defects of ceramic valve cores based on machine vision | |
CN105675626A (en) | Character defect detecting method of tire mold | |
CN112017223B (en) | Heterologous image registration method based on improved SIFT-Delaunay | |
CN113538503A (en) | Solar panel defect detection method based on infrared image | |
CN104036480A (en) | Surf algorithm based quick mismatching point eliminating method | |
CN110345877B (en) | A method for measuring the diameter and pitch of a tube sheet | |
CN111861866A (en) | A panorama reconstruction method of substation equipment inspection image | |
CN114627080B (en) | Vehicle stamping accessory defect detection method based on computer vision | |
CN108537787A (en) | A kind of quality judging method of facial image | |
CN101488224A (en) | Characteristic point matching method based on relativity measurement | |
CN106022337B (en) | A Planar Object Detection Method Based on Continuous Edge Features |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20150527 |
|
RJ01 | Rejection of invention patent application after publication |