CN104657527B - The Analysis of Electromagnetic Scattering method of stealthy airbound target is applied in ultrahigh speed scumbling - Google Patents

The Analysis of Electromagnetic Scattering method of stealthy airbound target is applied in ultrahigh speed scumbling Download PDF

Info

Publication number
CN104657527B
CN104657527B CN201310593931.2A CN201310593931A CN104657527B CN 104657527 B CN104657527 B CN 104657527B CN 201310593931 A CN201310593931 A CN 201310593931A CN 104657527 B CN104657527 B CN 104657527B
Authority
CN
China
Prior art keywords
msub
mrow
msubsup
msup
munder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310593931.2A
Other languages
Chinese (zh)
Other versions
CN104657527A (en
Inventor
陈如山
丁大志
樊振宏
陶诗飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN201310593931.2A priority Critical patent/CN104657527B/en
Publication of CN104657527A publication Critical patent/CN104657527A/en
Application granted granted Critical
Publication of CN104657527B publication Critical patent/CN104657527B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

The invention discloses a kind of Analysis of Electromagnetic Scattering method that stealthy airbound target is applied in ultrahigh speed scumbling.The nonuniformity of plasma around stealthy airbound target is applied for being wrapped in ultrahigh speed scumbling, employ volume integral equations method to be analyzed, the metal body of stealthy airbound target and its stealth material of coating apply analysis method using the scumbling based on Line Integral and be modeled analysis.Relative to All Media part using the conventional method of volume integral equations analysis, method in the present invention can save computing resource, simultaneously because the Green's function used in equation is the Green's function in vacuum, the quick multistage sub- technology of multilayer is used to further speed up solution so that the present invention applies the less calculating internal memory of stealthy airbound target scattering problems needs for solution ultrahigh speed scumbling and calculates the time.

Description

The Analysis of Electromagnetic Scattering method of stealthy airbound target is applied in ultrahigh speed scumbling
Technical field
It is particularly a kind of thin applied to ultrahigh speed the invention belongs to the quick computing technique field of electromagnetic characteristic of scattering Apply the Analysis of Electromagnetic Scattering method of stealthy airbound target.
Background technology
Hypervelocity flight target is due to flying speed quickly(More than 3 Mach)And higher flying height (More than 20Km), thousands of degrees Celsius of Aerodynamic Heating can be produced with windage during its flight, make its surrounding air due to ionization and Exist in ionic condition.When degree of ionization reaches to a certain degree, ionized gas has plasma properties.Now in airbound target The cladding flow field of near surface is commonly known as plasma cladding flow field, reenters plasma or plasma valve jacket, now Covered equivalent to airbound target by plasma(Normal rain supersonic speeds/hypersonic plasma Field Flow Numerical Simulation and its electricity Magnetic characteristic research, National University of Defense technology's thesis for the doctorate, 2009).Meanwhile in order to consider stealthy purpose, it will usually in aircraft Surface applies stealth material, plays a part of reducing RCS and reaching stealthy purpose.
Because air is ionized inhomogeneities of the plasma to be formed with respect to dielectric constant, and aircraft surface applies Absorbing material it is very thin, this all using the electromagnetic scattering problems of numerical method analysis airbound target is brought certain difficulty. Find that there is larger equivalent relative dielectric constant positioned at the plasma valve jacket of aircraft tip portion by studying, and from Daughter valve jacket other parts dielectric permittivity is close to air, and this results in uneven spy of the plasma with respect to dielectric parameter Property.For uneven plasma valve jacket, volume integral equations method is used(Schaubert D,Wilton D and Glisson A.A tetrahedral modeling method for electromagnetic scattering by arbitrarily shaped inhomogeneous dielectric bodies.IEEE Transaction on Antennas and Propagation,1984,32(1):77–85.)Analyzed;For the painting on metal body and its surface Structure is applied, metal part is normally used as perfect electronic conductor(PEC)To handle, and easily quilt cover integral Equation Methods(SIE) Come analysis and solution, wherein RWG basic functions(Rao M,Wilton D and Glisson A.Electromagnetic scattering by surfaces of arbitrary shape.IEEE Transaction on Antennas and Propagation,1982,30(3):409–418.)Because its flexibility is generally used as the base of expansion unknown current Function, while using the characteristics of stealth material is thin is applied, the volume charge in stealthy coating material and body electric current are converted into gold The faradic form of metal surface solves.But the electricity of stealthy airbound target is applied with above method analysis ultrahigh speed scumbling Magnetic scattering problem is faced with the problem of unknown quantity is big, and thus bring needs largely to calculate time and internal memory in solution procedure.
The content of the invention
It is an object of the invention to provide a kind of Analysis of Electromagnetic Scattering method that stealthy airbound target is applied in ultrahigh speed scumbling, from And realize and quickly obtain the Electromagnetic Scattering Characteristics parameter that stealthy airbound target is applied in ultrahigh speed scumbling.
The technical solution for realizing the object of the invention is:The Analysis of Electromagnetic Scattering of stealthy airbound target is applied in ultrahigh speed scumbling Method, step are as follows:
The first step, establish the electromagnetism ginseng of the stealthy airbound target of high speed and plasma valve jacket model, mainly plasma valve jacket The determination of exponential model, it is relevant with the flight environment of vehicle of high-speed flight target, such as flying height, flying speed and airbound target week Enclose atmospheric pressure and temperature etc..
Second step, grid processing.Triangle subdivision is used for metal and its coated portion, for plasma valve jacket part Using Tetrahedron subdivision.
3rd step, establish mixture Line Integral equation.According to the scattering properties of mixed structure, what the resultant field in target was equal to In-field and all scattered field sums, incident electric fields encourage to be known, and uniform plane wave is usually used to as incident electric fields, Scattering electric field can be represented with electric flux density and induced current density to be asked.
4th step, Green's function in free space is deployed based on addition theorem, the expression formula of combination Line Integral equation, The polymerizing factor of far-field portion is provided, transfer factor embodies form with the configuration factor.
5th step, matrix equation solves and the calculating of electromagnetic scattering parameter.
The present invention compared with prior art, its remarkable advantage:1. unknown quantity is few.Because interior polarization charge and electricity are applied in scumbling Stream is represented with the electric current on metal body, all not need extra unknown quantity to describe the electromagnetic parameter in coating.2. ask It is fast to solve speed.As a result of dignity integration equation analysis hypervelocity flight target and it is wrapped in outside hypervelocity flight target Non-homogeneous plasma, Green's function used is the Green's function of free space, facilitates the introducing of the quick multistage sub- technology of multilayer, Accelerate Matrix Solving.
Brief description of the drawings
Stealthy airbound target electromagnetic model schematic diagram is applied in Fig. 1 ultrahigh speed scumblings.
Stealthy airbound target structural representation is applied in Fig. 2 ultrahigh speed scumblings.
The RCS figure of stealthy airbound target is applied in Fig. 3 ultrahigh speed scumblings.
Embodiment
The present invention is described in further detail below in conjunction with the accompanying drawings.
The first step, establish hypervelocity flight target and plasma valve jacket model, the mainly electromagnetic parameter of plasma valve jacket The determination of model, it is relevant with the flight environment of vehicle of hypervelocity flight target, such as flying height, flying speed and airbound target week Enclose atmospheric pressure and temperature etc..By the flying height of airbound target, the angle of attack and flight Mach number parameter, with business software ANSYS carries out pneumatic analog calculating to object module, obtains the electron number densitiy of target, temperature, pressure information data, thus obtains To plasma characteristics frequency and collision frequency, then the equivalent relative dielectric constant of plasma valve jacket is obtained by the following formula,
Wherein ωpeFor plasma characteristics frequency, ω is wave frequency, and v is plasma collision frequency.
Second step, triangle subdivision is used for metal and its coated portion, for plasma valve jacket part using four sides Body subdivision.
3rd step, according to the scattering properties of the high hypervelocity airbound target structure of parcel plasma valve jacket, using moment method basis Theory, honorable integral equation is obtained, its matrix form equation is:
Wherein:
Wherein,WithBody and face test basic function are represented respectively, V represents areas of dielectric, and S represents metal surface, VTDS represents thin dielectric region, SRepresent thin-medium lower surface, SΔThin-medium upper surface is represented, ω is electromagnetism angular frequency, often Number system numberIt is the Green's function of free space.
The right vector is as caused by plane wave in above formula, can be write as
EiIt is incident electric fields.
ZDDRepresent effect of the medium to medium, ZDMRepresent medium to metal and the effect of coating, ZMDAll represent metal and painting Apply the effect to medium, ZMMRepresent the effect of metal to metal;
4th step, solution matrix equation, obtains current coefficient, and electromagnetic scattering is calculated by current coefficient further according to reciprocal theorem Parameter, such as RCS, nearly far field Electric Field Distribution.
For the feasibility of verification method, the example of the electromagnetic scattering of hypervelocity flight target shown below is.This example is The metal ball that one radius is 0.2 meter, it is coated with the film dielectric layer that a layer thickness is 0.02 meter, parameter εr=3-j0.006, μr= 2, wrap up the medium that a layer thickness is 0.08 meter, its relative dielectric constant ε again in the outside of film dielectric layerr=2.The present embodiment In plasma spy's valve jacket replaced with uniform dielectric, it is convenient to be compared with existing business software.From the figure 3, it may be seen that with radar scattering Exemplified by the parameter of section, the RCS that the inventive method calculates is consistent with business software FEKO result of calculation, checking The validity of the inventive method.

Claims (1)

1. the Analysis of Electromagnetic Scattering method of stealthy airbound target is applied in a kind of ultrahigh speed scumbling, it is characterised in that step is as follows:
The first step, establish ultrahigh speed scumbling and apply stealthy airbound target plasma valve jacket model, according to the flying height of airbound target, The angle of attack and flight Mach number parameter, pneumatic analog calculating is carried out to hypervelocity flight target, obtains electron number densitiy, the temperature of target Degree and pressure information data, thus obtain plasma characteristics frequency and collision frequency, then be obtained by the following formula plasma The equivalent relative dielectric constant of each locus of valve jacket,
<mrow> <msub> <mi>&amp;epsiv;</mi> <mi>r</mi> </msub> <mo>=</mo> <mn>1</mn> <mo>-</mo> <mfrac> <mrow> <msub> <msup> <mi>&amp;omega;</mi> <mn>2</mn> </msup> <mrow> <mi>p</mi> <mi>e</mi> </mrow> </msub> </mrow> <mrow> <msup> <mi>&amp;omega;</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>v</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>-</mo> <mi>j</mi> <mfrac> <mi>v</mi> <mi>&amp;omega;</mi> </mfrac> <mfrac> <mrow> <msub> <msup> <mi>&amp;omega;</mi> <mn>2</mn> </msup> <mrow> <mi>p</mi> <mi>e</mi> </mrow> </msub> </mrow> <mrow> <msup> <mi>&amp;omega;</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>v</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>
Wherein ωpeFor plasma characteristics frequency, ω is wave frequency, and v is plasma collision frequency;
Second step, according to the scattering properties of parcel plasma valve jacket hypervelocity flight object construction, using moment method basic theory, Integral equation is obtained, its matrix form equation is:
<mrow> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msubsup> <mi>Z</mi> <mrow> <mi>m</mi> <mi>n</mi> </mrow> <mrow> <mi>D</mi> <mi>D</mi> </mrow> </msubsup> </mtd> <mtd> <msubsup> <mi>Z</mi> <mrow> <mi>m</mi> <mi>n</mi> </mrow> <mrow> <mi>M</mi> <mi>D</mi> </mrow> </msubsup> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>Z</mi> <mrow> <mi>m</mi> <mi>n</mi> </mrow> <mrow> <mi>D</mi> <mi>M</mi> </mrow> </msubsup> </mtd> <mtd> <msubsup> <mi>Z</mi> <mrow> <mi>m</mi> <mi>n</mi> </mrow> <mrow> <mi>M</mi> <mi>M</mi> </mrow> </msubsup> </mtd> </mtr> </mtable> </mfenced> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>D</mi> <mi>n</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>I</mi> <mi>n</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msubsup> <mi>v</mi> <mi>m</mi> <mi>V</mi> </msubsup> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>v</mi> <mi>m</mi> <mi>S</mi> </msubsup> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow>
ZDDRepresent effect of the medium to medium, ZDMRepresent medium to metal and the effect of coating, ZMDAll represent metal and coating pair The effect of medium, ZMMRepresent the effect of metal to metal, DnAnd InIt is unknown current coefficient to be asked,WithIt is that the right vector swashs Encourage;
3rd step, solution matrix equation (2), obtains current coefficient DnAnd In, electromagnetism is calculated by current coefficient further according to reciprocal theorem Scattering parameters;
In step 2, matrix equation to embody form as follows:
<mrow> <mtable> <mtr> <mtd> <mrow> <msup> <mi>Z</mi> <mrow> <mi>D</mi> <mi>D</mi> </mrow> </msup> <mo>=</mo> <munder> <mo>&amp;Integral;</mo> <mi>V</mi> </munder> <mfrac> <mn>1</mn> <msub> <mi>&amp;epsiv;</mi> <mi>n</mi> </msub> </mfrac> <msubsup> <mi>f</mi> <mi>m</mi> <mi>V</mi> </msubsup> <mo>&amp;CenterDot;</mo> <msubsup> <mi>f</mi> <mi>n</mi> <mi>V</mi> </msubsup> <mi>d</mi> <mi>V</mi> <mo>-</mo> <msup> <mi>&amp;omega;</mi> <mn>2</mn> </msup> <msub> <mi>&amp;mu;</mi> <mn>0</mn> </msub> <munder> <mo>&amp;Integral;</mo> <msub> <mi>V</mi> <mi>m</mi> </msub> </munder> <munder> <mo>&amp;Integral;</mo> <msub> <mi>V</mi> <mi>n</mi> </msub> </munder> <msub> <mi>K</mi> <mi>n</mi> </msub> <msubsup> <mi>f</mi> <mi>m</mi> <mi>V</mi> </msubsup> <mo>&amp;CenterDot;</mo> <msubsup> <mi>f</mi> <mi>n</mi> <mi>V</mi> </msubsup> <msup> <mi>GdV</mi> <mo>&amp;prime;</mo> </msup> <mi>d</mi> <mi>V</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <mfrac> <mn>1</mn> <msub> <mi>&amp;epsiv;</mi> <mn>0</mn> </msub> </mfrac> <munder> <mo>&amp;Integral;</mo> <msub> <mi>V</mi> <mi>m</mi> </msub> </munder> <munder> <mo>&amp;Integral;</mo> <msub> <mi>V</mi> <mi>n</mi> </msub> </munder> <msub> <mi>K</mi> <mi>n</mi> </msub> <mo>&amp;dtri;</mo> <mo>&amp;CenterDot;</mo> <msubsup> <mi>f</mi> <mi>m</mi> <mi>V</mi> </msubsup> <msup> <mo>&amp;dtri;</mo> <mo>&amp;prime;</mo> </msup> <mo>&amp;CenterDot;</mo> <msubsup> <mi>f</mi> <mi>n</mi> <mi>V</mi> </msubsup> <msup> <mi>GdV</mi> <mo>&amp;prime;</mo> </msup> <mi>d</mi> <mi>V</mi> <mo>-</mo> <mfrac> <mn>1</mn> <msub> <mi>&amp;epsiv;</mi> <mn>0</mn> </msub> </mfrac> <munder> <mo>&amp;Integral;</mo> <msub> <mi>&amp;Omega;</mi> <mi>m</mi> </msub> </munder> <munder> <mo>&amp;Integral;</mo> <msub> <mi>V</mi> <mi>n</mi> </msub> </munder> <msub> <mi>K</mi> <mi>n</mi> </msub> <mover> <mi>n</mi> <mo>^</mo> </mover> <mo>&amp;CenterDot;</mo> <msubsup> <mi>f</mi> <mi>m</mi> <mi>V</mi> </msubsup> <msup> <mo>&amp;dtri;</mo> <mo>&amp;prime;</mo> </msup> <mo>&amp;CenterDot;</mo> <msubsup> <mi>f</mi> <mi>n</mi> <mi>V</mi> </msubsup> <msup> <mi>GdV</mi> <mo>&amp;prime;</mo> </msup> <mi>d</mi> <mi>V</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <mfrac> <mn>1</mn> <msub> <mi>&amp;epsiv;</mi> <mn>0</mn> </msub> </mfrac> <munder> <mo>&amp;Integral;</mo> <msub> <mi>V</mi> <mi>m</mi> </msub> </munder> <munder> <mo>&amp;Integral;</mo> <msub> <mi>V</mi> <mi>n</mi> </msub> </munder> <mo>&amp;dtri;</mo> <mo>&amp;CenterDot;</mo> <msubsup> <mi>f</mi> <mi>m</mi> <mi>V</mi> </msubsup> <mrow> <mo>(</mo> <mrow> <mo>&amp;dtri;</mo> <msub> <mi>K</mi> <mi>n</mi> </msub> </mrow> <mo>)</mo> </mrow> <mo>&amp;CenterDot;</mo> <msubsup> <mi>f</mi> <mi>n</mi> <mi>V</mi> </msubsup> <msup> <mi>GdV</mi> <mo>&amp;prime;</mo> </msup> <mi>d</mi> <mi>V</mi> <mo>-</mo> <mfrac> <mn>1</mn> <msub> <mi>&amp;epsiv;</mi> <mn>0</mn> </msub> </mfrac> <munder> <mo>&amp;Integral;</mo> <msub> <mi>&amp;Omega;</mi> <mi>m</mi> </msub> </munder> <munder> <mo>&amp;Integral;</mo> <msub> <mi>V</mi> <mi>n</mi> </msub> </munder> <mover> <mi>n</mi> <mo>^</mo> </mover> <mo>&amp;CenterDot;</mo> <msubsup> <mi>f</mi> <mi>m</mi> <mi>V</mi> </msubsup> <mrow> <mo>(</mo> <mrow> <mo>&amp;dtri;</mo> <msub> <mi>K</mi> <mi>n</mi> </msub> </mrow> <mo>)</mo> </mrow> <mo>&amp;CenterDot;</mo> <msubsup> <mi>f</mi> <mi>n</mi> <mi>V</mi> </msubsup> <msup> <mi>GdV</mi> <mo>&amp;prime;</mo> </msup> <mi>d</mi> <mi>V</mi> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <mtable> <mtr> <mtd> <mrow> <msup> <mi>Z</mi> <mrow> <mi>M</mi> <mi>D</mi> </mrow> </msup> <mo>=</mo> <msub> <mi>j&amp;omega;&amp;mu;</mi> <mn>0</mn> </msub> <munder> <mo>&amp;Integral;</mo> <msub> <mi>V</mi> <mi>m</mi> </msub> </munder> <munder> <mo>&amp;Integral;</mo> <msub> <mi>S</mi> <mi>n</mi> </msub> </munder> <msubsup> <mi>f</mi> <mi>m</mi> <mi>V</mi> </msubsup> <mo>&amp;CenterDot;</mo> <msubsup> <mi>f</mi> <mi>n</mi> <mi>S</mi> </msubsup> <msup> <mi>GdS</mi> <mo>&amp;prime;</mo> </msup> <mi>d</mi> <mi>V</mi> <mo>-</mo> <mfrac> <mn>1</mn> <mrow> <msub> <mi>j&amp;omega;&amp;epsiv;</mi> <mn>0</mn> </msub> </mrow> </mfrac> <munder> <mo>&amp;Integral;</mo> <msub> <mi>V</mi> <mi>m</mi> </msub> </munder> <munder> <mo>&amp;Integral;</mo> <msub> <mi>S</mi> <mi>n</mi> </msub> </munder> <mo>&amp;dtri;</mo> <mo>&amp;CenterDot;</mo> <msubsup> <mi>f</mi> <mi>m</mi> <mi>V</mi> </msubsup> <msup> <mo>&amp;dtri;</mo> <mo>&amp;prime;</mo> </msup> <mo>&amp;CenterDot;</mo> <msubsup> <mi>f</mi> <mi>n</mi> <mi>S</mi> </msubsup> <msup> <mi>GdS</mi> <mo>&amp;prime;</mo> </msup> <mi>d</mi> <mi>V</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <mfrac> <mn>1</mn> <mrow> <msub> <mi>j&amp;omega;&amp;epsiv;</mi> <mn>0</mn> </msub> </mrow> </mfrac> <munder> <mo>&amp;Integral;</mo> <msub> <mi>&amp;Omega;</mi> <mi>m</mi> </msub> </munder> <munder> <mo>&amp;Integral;</mo> <msub> <mi>S</mi> <mi>n</mi> </msub> </munder> <mover> <mi>n</mi> <mo>^</mo> </mover> <mo>&amp;CenterDot;</mo> <msubsup> <mi>f</mi> <mi>m</mi> <mi>V</mi> </msubsup> <msup> <mo>&amp;dtri;</mo> <mo>&amp;prime;</mo> </msup> <mo>&amp;CenterDot;</mo> <msubsup> <mi>f</mi> <mi>n</mi> <mi>S</mi> </msubsup> <msup> <mi>GdS</mi> <mo>&amp;prime;</mo> </msup> <mi>d</mi> <mi>V</mi> <mo>-</mo> <msub> <mi>j&amp;omega;&amp;mu;</mi> <mn>0</mn> </msub> <munder> <mo>&amp;Integral;</mo> <msub> <mi>V</mi> <mi>m</mi> </msub> </munder> <munder> <mo>&amp;Integral;</mo> <msub> <mi>V</mi> <mrow> <mi>n</mi> <mi>T</mi> <mi>D</mi> <mi>S</mi> </mrow> </msub> </munder> <msub> <mi>K</mi> <mi>n</mi> </msub> <msubsup> <mi>f</mi> <mi>m</mi> <mi>V</mi> </msubsup> <mo>&amp;CenterDot;</mo> <msup> <mover> <mi>n</mi> <mo>^</mo> </mover> <mo>&amp;prime;</mo> </msup> <msup> <mo>&amp;dtri;</mo> <mo>&amp;prime;</mo> </msup> <mo>&amp;CenterDot;</mo> <msubsup> <mi>f</mi> <mi>n</mi> <mi>S</mi> </msubsup> <msup> <mi>GdV</mi> <mo>&amp;prime;</mo> </msup> <mi>d</mi> <mi>V</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mfrac> <mn>1</mn> <mrow> <msub> <mi>j&amp;omega;&amp;epsiv;</mi> <mn>0</mn> </msub> </mrow> </mfrac> <munder> <mo>&amp;Integral;</mo> <msub> <mi>V</mi> <mi>m</mi> </msub> </munder> <munder> <mo>&amp;Integral;</mo> <msubsup> <mi>S</mi> <mi>n</mi> <mo>&amp;dtri;</mo> </msubsup> </munder> <msub> <mi>K</mi> <mi>n</mi> </msub> <mo>&amp;dtri;</mo> <mo>&amp;CenterDot;</mo> <msubsup> <mi>f</mi> <mi>m</mi> <mi>V</mi> </msubsup> <msup> <mo>&amp;dtri;</mo> <mo>&amp;prime;</mo> </msup> <mo>&amp;CenterDot;</mo> <msubsup> <mi>f</mi> <mi>n</mi> <mi>S</mi> </msubsup> <msup> <mi>GdS</mi> <mrow> <mo>&amp;dtri;</mo> <mo>&amp;prime;</mo> </mrow> </msup> <mi>d</mi> <mi>V</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mrow> <msub> <mi>j&amp;omega;&amp;epsiv;</mi> <mn>0</mn> </msub> </mrow> </mfrac> <munder> <mo>&amp;Integral;</mo> <msub> <mi>&amp;Omega;</mi> <mi>m</mi> </msub> </munder> <munder> <mo>&amp;Integral;</mo> <msubsup> <mi>S</mi> <mi>n</mi> <mo>&amp;dtri;</mo> </msubsup> </munder> <msub> <mi>K</mi> <mi>n</mi> </msub> <mover> <mi>n</mi> <mo>^</mo> </mover> <mo>&amp;CenterDot;</mo> <msubsup> <mi>f</mi> <mi>m</mi> <mi>V</mi> </msubsup> <msup> <mo>&amp;dtri;</mo> <mo>&amp;prime;</mo> </msup> <mo>&amp;CenterDot;</mo> <msubsup> <mi>f</mi> <mi>n</mi> <mi>S</mi> </msubsup> <msup> <mi>GdS</mi> <mrow> <mo>&amp;dtri;</mo> <mo>&amp;prime;</mo> </mrow> </msup> <mi>d</mi> <mi>V</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <mfrac> <mn>1</mn> <mrow> <msub> <mi>j&amp;omega;&amp;epsiv;</mi> <mn>0</mn> </msub> </mrow> </mfrac> <munder> <mo>&amp;Integral;</mo> <msub> <mi>V</mi> <mi>m</mi> </msub> </munder> <munder> <mo>&amp;Integral;</mo> <msubsup> <mi>S</mi> <mi>n</mi> <mi>&amp;Delta;</mi> </msubsup> </munder> <msub> <mi>K</mi> <mi>n</mi> </msub> <mo>&amp;dtri;</mo> <mo>&amp;CenterDot;</mo> <msubsup> <mi>f</mi> <mi>m</mi> <mi>V</mi> </msubsup> <msup> <mo>&amp;dtri;</mo> <mo>&amp;prime;</mo> </msup> <mo>&amp;CenterDot;</mo> <msubsup> <mi>f</mi> <mi>n</mi> <mi>S</mi> </msubsup> <msup> <mi>GdS</mi> <mrow> <mi>&amp;Delta;</mi> <mo>&amp;prime;</mo> </mrow> </msup> <mi>d</mi> <mi>V</mi> <mo>-</mo> <mfrac> <mn>1</mn> <mrow> <msub> <mi>j&amp;omega;&amp;epsiv;</mi> <mn>0</mn> </msub> </mrow> </mfrac> <munder> <mo>&amp;Integral;</mo> <msub> <mi>&amp;Omega;</mi> <mi>m</mi> </msub> </munder> <munder> <mo>&amp;Integral;</mo> <msubsup> <mi>S</mi> <mi>n</mi> <mi>&amp;Delta;</mi> </msubsup> </munder> <msub> <mi>K</mi> <mi>n</mi> </msub> <mover> <mi>n</mi> <mo>^</mo> </mover> <mo>&amp;CenterDot;</mo> <msubsup> <mi>f</mi> <mi>m</mi> <mi>V</mi> </msubsup> <msup> <mo>&amp;dtri;</mo> <mo>&amp;prime;</mo> </msup> <mo>&amp;CenterDot;</mo> <msubsup> <mi>f</mi> <mi>n</mi> <mi>S</mi> </msubsup> <msup> <mi>GdS</mi> <mrow> <mi>&amp;Delta;</mi> <mo>&amp;prime;</mo> </mrow> </msup> <mi>d</mi> <mi>V</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <msub> <mi>j&amp;omega;&amp;mu;</mi> <mn>0</mn> </msub> <mrow> <mo>(</mo> <mrow> <msub> <mi>&amp;mu;</mi> <mi>r</mi> </msub> <mo>-</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <munder> <mo>&amp;Integral;</mo> <msub> <mi>V</mi> <mi>m</mi> </msub> </munder> <munder> <mo>&amp;Integral;</mo> <msub> <mi>V</mi> <mrow> <mi>n</mi> <mi>T</mi> <mi>D</mi> <mi>S</mi> </mrow> </msub> </munder> <msubsup> <mi>f</mi> <mi>m</mi> <mi>V</mi> </msubsup> <mo>&amp;CenterDot;</mo> <msup> <mover> <mi>n</mi> <mo>^</mo> </mover> <mo>&amp;prime;</mo> </msup> <mo>&amp;times;</mo> <msubsup> <mi>f</mi> <mi>n</mi> <mi>S</mi> </msubsup> <mo>&amp;times;</mo> <mo>&amp;dtri;</mo> <msup> <mi>GdV</mi> <mo>&amp;prime;</mo> </msup> <mi>d</mi> <mi>V</mi> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <mtable> <mtr> <mtd> <mrow> <msup> <mi>Z</mi> <mrow> <mi>D</mi> <mi>M</mi> </mrow> </msup> <mo>=</mo> <mo>-</mo> <msup> <mi>&amp;omega;</mi> <mn>2</mn> </msup> <msub> <mi>&amp;mu;</mi> <mn>0</mn> </msub> <munder> <mo>&amp;Integral;</mo> <msub> <mi>S</mi> <mi>m</mi> </msub> </munder> <munder> <mo>&amp;Integral;</mo> <msub> <mi>V</mi> <mi>n</mi> </msub> </munder> <msub> <mi>K</mi> <mi>n</mi> </msub> <msubsup> <mi>f</mi> <mi>m</mi> <mi>S</mi> </msubsup> <mo>&amp;CenterDot;</mo> <msubsup> <mi>f</mi> <mi>n</mi> <mi>V</mi> </msubsup> <msup> <mi>GdV</mi> <mo>&amp;prime;</mo> </msup> <mi>d</mi> <mi>S</mi> <mo>+</mo> <mfrac> <mn>1</mn> <msub> <mi>&amp;epsiv;</mi> <mn>0</mn> </msub> </mfrac> <munder> <mo>&amp;Integral;</mo> <msub> <mi>S</mi> <mi>m</mi> </msub> </munder> <munder> <mo>&amp;Integral;</mo> <msub> <mi>V</mi> <mi>n</mi> </msub> </munder> <msub> <mi>K</mi> <mi>n</mi> </msub> <mo>&amp;dtri;</mo> <mo>&amp;CenterDot;</mo> <msubsup> <mi>f</mi> <mi>m</mi> <mi>S</mi> </msubsup> <msup> <mo>&amp;dtri;</mo> <mo>&amp;prime;</mo> </msup> <mo>&amp;CenterDot;</mo> <msubsup> <mi>f</mi> <mi>n</mi> <mi>V</mi> </msubsup> <msup> <mi>GdV</mi> <mo>&amp;prime;</mo> </msup> <mi>d</mi> <mi>S</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <mfrac> <mn>1</mn> <msub> <mi>&amp;epsiv;</mi> <mn>0</mn> </msub> </mfrac> <munder> <mo>&amp;Integral;</mo> <msub> <mi>S</mi> <mi>m</mi> </msub> </munder> <munder> <mo>&amp;Integral;</mo> <msub> <mi>V</mi> <mi>n</mi> </msub> </munder> <mo>&amp;dtri;</mo> <mo>&amp;CenterDot;</mo> <msubsup> <mi>f</mi> <mi>m</mi> <mi>S</mi> </msubsup> <mrow> <mo>(</mo> <mrow> <mo>&amp;dtri;</mo> <msub> <mi>K</mi> <mi>n</mi> </msub> </mrow> <mo>)</mo> </mrow> <mo>&amp;CenterDot;</mo> <msubsup> <mi>f</mi> <mi>n</mi> <mi>V</mi> </msubsup> <msup> <mi>GdV</mi> <mo>&amp;prime;</mo> </msup> <mi>d</mi> <mi>S</mi> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <mtable> <mtr> <mtd> <mrow> <msup> <mi>Z</mi> <mrow> <mi>M</mi> <mi>M</mi> </mrow> </msup> <mo>=</mo> <msub> <mi>j&amp;omega;&amp;mu;</mi> <mn>0</mn> </msub> <munder> <mo>&amp;Integral;</mo> <msub> <mi>S</mi> <mi>m</mi> </msub> </munder> <munder> <mo>&amp;Integral;</mo> <msub> <mi>S</mi> <mi>n</mi> </msub> </munder> <msubsup> <mi>f</mi> <mi>m</mi> <mi>S</mi> </msubsup> <mo>&amp;CenterDot;</mo> <msubsup> <mi>f</mi> <mi>n</mi> <mi>S</mi> </msubsup> <msup> <mi>GdS</mi> <mo>&amp;prime;</mo> </msup> <mi>d</mi> <mi>S</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mrow> <msub> <mi>j&amp;omega;&amp;epsiv;</mi> <mn>0</mn> </msub> </mrow> </mfrac> <munder> <mo>&amp;Integral;</mo> <msub> <mi>S</mi> <mi>m</mi> </msub> </munder> <munder> <mo>&amp;Integral;</mo> <msub> <mi>S</mi> <mi>n</mi> </msub> </munder> <mo>&amp;dtri;</mo> <mo>&amp;CenterDot;</mo> <msubsup> <mi>f</mi> <mi>m</mi> <mi>S</mi> </msubsup> <msup> <mo>&amp;dtri;</mo> <mo>&amp;prime;</mo> </msup> <mo>&amp;CenterDot;</mo> <msubsup> <mi>f</mi> <mi>n</mi> <mi>S</mi> </msubsup> <msup> <mi>GdS</mi> <mo>&amp;prime;</mo> </msup> <mi>d</mi> <mi>S</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <msub> <mi>j&amp;omega;&amp;mu;</mi> <mn>0</mn> </msub> <munder> <mo>&amp;Integral;</mo> <msub> <mi>S</mi> <mi>m</mi> </msub> </munder> <munder> <mo>&amp;Integral;</mo> <msub> <mi>V</mi> <mrow> <mi>n</mi> <mi>T</mi> <mi>D</mi> <mi>S</mi> </mrow> </msub> </munder> <msub> <mi>K</mi> <mi>n</mi> </msub> <msubsup> <mi>f</mi> <mi>m</mi> <mi>S</mi> </msubsup> <mo>&amp;CenterDot;</mo> <msup> <mover> <mi>n</mi> <mo>^</mo> </mover> <mo>&amp;prime;</mo> </msup> <msup> <mo>&amp;dtri;</mo> <mo>&amp;prime;</mo> </msup> <mo>&amp;CenterDot;</mo> <msubsup> <mi>f</mi> <mi>n</mi> <mi>S</mi> </msubsup> <msup> <mi>GdV</mi> <mo>&amp;prime;</mo> </msup> <mi>d</mi> <mi>S</mi> <mo>-</mo> <mfrac> <mn>1</mn> <mrow> <msub> <mi>j&amp;omega;&amp;epsiv;</mi> <mn>0</mn> </msub> </mrow> </mfrac> <munder> <mo>&amp;Integral;</mo> <msub> <mi>S</mi> <mi>m</mi> </msub> </munder> <munder> <mo>&amp;Integral;</mo> <msubsup> <mi>S</mi> <mi>n</mi> <mo>&amp;dtri;</mo> </msubsup> </munder> <msub> <mi>K</mi> <mi>n</mi> </msub> <mo>&amp;dtri;</mo> <mo>&amp;CenterDot;</mo> <msubsup> <mi>f</mi> <mi>m</mi> <mi>S</mi> </msubsup> <msup> <mo>&amp;dtri;</mo> <mo>&amp;prime;</mo> </msup> <mo>&amp;CenterDot;</mo> <msubsup> <mi>f</mi> <mi>n</mi> <mi>S</mi> </msubsup> <msup> <mi>GdS</mi> <mrow> <mo>&amp;dtri;</mo> <mo>&amp;prime;</mo> </mrow> </msup> <mi>d</mi> <mi>S</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <mfrac> <mn>1</mn> <mrow> <msub> <mi>j&amp;omega;&amp;epsiv;</mi> <mn>0</mn> </msub> </mrow> </mfrac> <munder> <mo>&amp;Integral;</mo> <msub> <mi>S</mi> <mi>m</mi> </msub> </munder> <munder> <mo>&amp;Integral;</mo> <msubsup> <mi>S</mi> <mi>n</mi> <mi>&amp;Delta;</mi> </msubsup> </munder> <msub> <mi>K</mi> <mi>n</mi> </msub> <mo>&amp;dtri;</mo> <mo>&amp;CenterDot;</mo> <msubsup> <mi>f</mi> <mi>m</mi> <mi>S</mi> </msubsup> <msup> <mo>&amp;dtri;</mo> <mo>&amp;prime;</mo> </msup> <mo>&amp;CenterDot;</mo> <msubsup> <mi>f</mi> <mi>n</mi> <mi>S</mi> </msubsup> <msup> <mi>GdS</mi> <mrow> <mi>&amp;Delta;</mi> <mo>&amp;prime;</mo> </mrow> </msup> <mi>d</mi> <mi>S</mi> <mo>+</mo> <msub> <mi>j&amp;omega;&amp;mu;</mi> <mn>0</mn> </msub> <mrow> <mo>(</mo> <mrow> <msub> <mi>&amp;mu;</mi> <mi>r</mi> </msub> <mo>-</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <munder> <mo>&amp;Integral;</mo> <msub> <mi>S</mi> <mi>m</mi> </msub> </munder> <munder> <mo>&amp;Integral;</mo> <msub> <mi>V</mi> <mrow> <mi>n</mi> <mi>T</mi> <mi>D</mi> <mi>S</mi> </mrow> </msub> </munder> <msubsup> <mi>f</mi> <mi>m</mi> <mi>S</mi> </msubsup> <mo>&amp;CenterDot;</mo> <msup> <mover> <mi>n</mi> <mo>^</mo> </mover> <mo>&amp;prime;</mo> </msup> <mo>&amp;times;</mo> <msubsup> <mi>f</mi> <mi>n</mi> <mi>S</mi> </msubsup> <mo>&amp;times;</mo> <mo>&amp;dtri;</mo> <msup> <mi>GdV</mi> <mo>&amp;prime;</mo> </msup> <mi>d</mi> <mi>S</mi> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow>
Wherein,WithBody and face test basic function are represented respectively, and V represents areas of dielectric, and S represents metal surface, VTDSRepresent thin Areas of dielectric,Represent thin-medium lower surface, SΔRepresent thin-medium upper surface, ω is electromagnetism angular frequency, constant coefficientIt is the Green's function of free space;
The right vector is as caused by plane wave in above formula, is write as
<mrow> <msubsup> <mi>v</mi> <mi>m</mi> <mi>V</mi> </msubsup> <mo>=</mo> <munder> <mo>&amp;Integral;</mo> <mi>V</mi> </munder> <msubsup> <mi>f</mi> <mi>m</mi> <mi>V</mi> </msubsup> <mrow> <mo>(</mo> <mi>r</mi> <mo>)</mo> </mrow> <mo>&amp;CenterDot;</mo> <msup> <mi>E</mi> <mi>i</mi> </msup> <mi>d</mi> <mi>V</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msubsup> <mi>v</mi> <mi>m</mi> <mi>S</mi> </msubsup> <mo>=</mo> <munder> <mo>&amp;Integral;</mo> <mi>V</mi> </munder> <msubsup> <mi>f</mi> <mi>m</mi> <mi>S</mi> </msubsup> <mrow> <mo>(</mo> <mi>r</mi> <mo>)</mo> </mrow> <mo>&amp;CenterDot;</mo> <msup> <mi>E</mi> <mi>i</mi> </msup> <mi>d</mi> <mi>V</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow>
EiIt is incident electric fields.
CN201310593931.2A 2013-11-21 2013-11-21 The Analysis of Electromagnetic Scattering method of stealthy airbound target is applied in ultrahigh speed scumbling Active CN104657527B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310593931.2A CN104657527B (en) 2013-11-21 2013-11-21 The Analysis of Electromagnetic Scattering method of stealthy airbound target is applied in ultrahigh speed scumbling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310593931.2A CN104657527B (en) 2013-11-21 2013-11-21 The Analysis of Electromagnetic Scattering method of stealthy airbound target is applied in ultrahigh speed scumbling

Publications (2)

Publication Number Publication Date
CN104657527A CN104657527A (en) 2015-05-27
CN104657527B true CN104657527B (en) 2018-04-03

Family

ID=53248653

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310593931.2A Active CN104657527B (en) 2013-11-21 2013-11-21 The Analysis of Electromagnetic Scattering method of stealthy airbound target is applied in ultrahigh speed scumbling

Country Status (1)

Country Link
CN (1) CN104657527B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106250610B (en) * 2016-07-28 2019-04-16 西安交通大学 A kind of manufacturing method of electromagnetic wave structure stealth

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103177193A (en) * 2013-04-18 2013-06-26 南京理工大学 Rotationally symmetric target electromagnetic scattering rapid calculation method of thin-medium-coated metal
CN103198227A (en) * 2013-04-18 2013-07-10 南京理工大学 Electromagnetic scattering analyzing method for superspeed flight targets
CN103279601A (en) * 2013-05-17 2013-09-04 南京理工大学 Method for simulating wide-band electromagnetic scattering property of conductor target

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9167985B2 (en) * 2010-03-19 2015-10-27 University Of Manitoba Microwave tomography systems and methods

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103177193A (en) * 2013-04-18 2013-06-26 南京理工大学 Rotationally symmetric target electromagnetic scattering rapid calculation method of thin-medium-coated metal
CN103198227A (en) * 2013-04-18 2013-07-10 南京理工大学 Electromagnetic scattering analyzing method for superspeed flight targets
CN103279601A (en) * 2013-05-17 2013-09-04 南京理工大学 Method for simulating wide-band electromagnetic scattering property of conductor target

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
目标电磁散射的快速预估和基于多分辨基函数的高效算法;丁建军;《中国博士学位论文全文数据库 基础科学辑》;20120515(第5期);第A005-32页 *

Also Published As

Publication number Publication date
CN104657527A (en) 2015-05-27

Similar Documents

Publication Publication Date Title
CN107942309B (en) Rapid calculation method for electromagnetic scattering of ultrahigh-speed target in thin atmosphere
CN108152799B (en) Method for rapidly calculating radar scattering cross section of hypersonic aircraft
CN109581340A (en) A kind of plasma electromagnetic scattering modeling method based on time domain Shooting and bouncing rays
CN107992684B (en) Modeling method for time-varying plasma equivalent layered medium model
CN105653747B (en) The emulation mode of the conformal sub- grid Electromagnetic Scattering of super speed vehicle
CN107958105B (en) Method for reducing reflection of electromagnetic waves on metal surface by using plasma coating
CN106294894B (en) Finite element boundary integration method for rapidly analyzing electromagnetic scattering characteristics of non-uniform target
CN112257350B (en) Aircraft electromagnetic characteristic modeling method under high-speed flight state
Mei et al. Effects of a hypersonic plasma sheath on the performances of dipole antenna and horn antenna
Lu et al. A study on zoning coating method of absorbing materials for stealth aircraft
Sun et al. Analysis of electromagnetic scattering characteristics of plasma sheath surrounding a hypersonic aerocraft based on high-order auxiliary differential equation finite-difference time-domain
CN104657527B (en) The Analysis of Electromagnetic Scattering method of stealthy airbound target is applied in ultrahigh speed scumbling
CN105630740B (en) Emi analysis method based on matrix Taylor series expansion
He et al. Numerical investigation on interference and absorption of electromagnetic waves in the plasma-covered cavity using FDTD method
CN104732050A (en) Method for estimating distribution of electromagnetism in flying targets made of carbon fiber materials under lightning pulses
Colliander et al. Electromagnetic scattering from rough surface using single integral equation and adaptive integral method
CN107305536A (en) Mix the discontinuous Jia Lvejin methods of rank time domain
CN112986943B (en) Method for calculating electromagnetic scattering of honeycomb composite material target
Cheung et al. Application of computational fluid dynamics to sonic boom near-and mid-field prediction
Zhou et al. Efficient EDM-PO method for the scattering from electrically large objects with the high-order impedance boundary condition
CN103198227B (en) The Analysis of Electromagnetic Scattering method of hypervelocity flight target
Lai et al. Attenuation characteristics of electromagnetic waves in plasma generated by coating radionuclide on surface structures
CN105095154A (en) High-order volume-surface integral equation method for analyzing electromagnetic scattering of ultra-high-speed flying target
CN106294898B (en) Complex point source solving method for accelerating analysis of electromagnetic scattering characteristics of medium target
Chen et al. Study on the Z-FDTD for electromagnetic scattering characteristics of two-dimensional inhomogeneous plasma sheath

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant