CN104655977A - 基于转矩比较原理的发电机励磁绕组短路故障诊断方法 - Google Patents

基于转矩比较原理的发电机励磁绕组短路故障诊断方法 Download PDF

Info

Publication number
CN104655977A
CN104655977A CN201410820806.5A CN201410820806A CN104655977A CN 104655977 A CN104655977 A CN 104655977A CN 201410820806 A CN201410820806 A CN 201410820806A CN 104655977 A CN104655977 A CN 104655977A
Authority
CN
China
Prior art keywords
generator
torque
value
electromagnetic torque
fault diagnosis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410820806.5A
Other languages
English (en)
Other versions
CN104655977B (zh
Inventor
武玉才
张嘉赛
李永刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North China Electric Power University
Original Assignee
North China Electric Power University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North China Electric Power University filed Critical North China Electric Power University
Priority to CN201410820806.5A priority Critical patent/CN104655977B/zh
Publication of CN104655977A publication Critical patent/CN104655977A/zh
Application granted granted Critical
Publication of CN104655977B publication Critical patent/CN104655977B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明公开了一种基于转矩比较原理的发电机励磁绕组短路故障诊断方法,通过比较发电机电磁转矩的期望值和实际值判断励磁绕组短路故障。首先假定发电机励磁绕组正常,根据发电机的基本结构和电磁参数建立其二维仿真模型,将发电机的运行数据加载至模型中算得发电机磁场数据,并进一步计算电磁转矩的期望值,将之与按照计算得到的电磁转矩实际值比较,故障判据:当a%超过设定阈值即可判定汽轮发电机存在励磁绕组短路故障。本发明能够改进现有技术的不足,克服虚功率法需海量数据构建空载电动势函数的缺点,避开了发电机端电压波动对函数计算准确性的影响,同时不受谐波转矩有无和发电机是否存在偏心的影响。

Description

基于转矩比较原理的发电机励磁绕组短路故障诊断方法
技术领域
本发明涉及发电机技术领域,尤其是一种基于转矩比较原理的发电机励磁绕组短路故障诊断方法。
背景技术
近些年,我国汽轮发电机励磁绕组短路故障呈现多发态势,先后已有近百台汽轮发电机发生过该励磁绕组短路故障。如元宝山电厂1#发电机(300MW)、沙角A电厂4#发电机、平圩发电厂1#发电机(600MW)、浙江兰溪电厂3#发电机(600MW)、阜阳华润电厂1#发电机(600MW)、山东邹县发电厂6#发电机(600MW)、四川广安电厂2#发电机(600MW)等。我国广东省仅2007年至2011年就有9台大型发电机先后出现了转子绕组匝间短路故障。
汽轮发电机的励磁绕组短路故障最为显著的特征是转子磁场的不平衡并形成了不平衡电磁力,几乎所有的励磁绕组短路故障都伴随着发电机振动状态的恶化,使得发电厂不得不停机检修,由此造成了严重的经济损失。
2011年3月,贵州华电集团大龙电厂1号300MW汽轮发电机出现励磁绕组短路故障,#5瓦X方向振动由48μm跃变至168μm,非计划停运时间为60天,损失发电量约为4亿。2010年2月国内某电厂一台600MW汽轮发电机#7瓦Y方向振动跃升至143μm、#8瓦Y方向振动达到168μm,拆除转子护环后检查发现:极1的6、7号线圈和极2的7、8号线圈端部绝缘及过渡引线处焦黑变色,存在烧损现象,转子存在多点匝间短路,需返厂大修。张家口沙岭子电厂1号300MW发电机1993年3月转子接地信号报警,测试试验确定了该机组存在转子绕组匝间短路和转子绕组一点接地故障,发电机部分部件被磁化,停机抢修70天后恢复正常。广东粤电沙角A电厂4#QFN-300-2型汽轮发电机自1992年8月投运起,20多年来就一直存在转子振动不稳定、大修后每次启动时都需反复多次冲转、动平衡调节困难、效果不显著等问题。直至2012年12月4#发电机大修期间,经有关电气试验结果确认该发电机转子存在不稳定的匝间短路故障,并返厂维修处理,但在2012年1月13日的出厂试验时发现,不稳定的匝间短路故障依然存在,但因继续进行处理的条件有限,该转子返回沙角A电厂完成了回装工作。2013年2月8日,4#发电机重新并网投入运行,后续运行过程中,该发电机在启动过程中,转子的振动仍然出现异常增大的现象。在长达20年的运行时间里,为了解决励磁绕组短路带来的转子振动问题,该发电机从2000年至2013年先后进行了82次冲转、37次配重,耗时57天,加上返厂处理时间,共耗时120天左右,造成了极为严重的经济损失,近百次起停机严重影响了发电机的预期寿命和运行安全。
励磁绕组短路分为静态短路和动态短路两种类型,动态短路只有在发电机运行过程中才存在,停机检查时短路点断开,故障特征就消失了,因此常规的离线方法是无法发现动态匝间短路故障的,对励磁绕组健康状态实施在线监测是解决这一问题的唯一途径,也是未来状态监测的发展趋势。
目前,汽轮发电机励磁绕组短路故障的在线监测方法主要包括探测线圈法、励磁电流法、轴电压法和虚功率法等。其中探测线圈法应用最为广泛,目前中国300MW以上机组大部分均安装了探测线圈。该方法在发电机空载或三相短路时具有较高的检测灵敏度,可以实现故障定位,发电机负载运行时灵敏度下降严重。励磁电流法适用于静止励磁发电机,可以发现较为严重的励磁绕组短路故障,轻微故障时的检测灵敏度不高。此外,已有文献采用有限元方法分析了励磁绕组短路故障下汽轮发电机的电磁稳态特征,但仅确定了短路故障后发电机的励磁电流和无功功率的上下限,仍然采用励磁电流和无功功率变化量作为励磁绕组短路故障判据,实际上仍属于励磁电流法,只是近一步提出了在发电机过励时采用励磁电流绝对变化量作为判据,欠励时采用励磁电流相对变化量作为判据。轴电压法不受发电机励磁方式的限制,但轴电压信号的获取依赖于电刷与发电机转轴表面的可靠接触,大型汽轮发电机由于转轴表面极高的旋转线速度以及油污问题,信号获取存在一定的困难。
发明人在2014年5月14日公开的发明专利申请CN 103792463 A中,公开了虚功率法的检测过程。但是,经过发明人的深入研究和试验,发现虚功率法存在下述缺点:
虚功率法利用PM与PM′的偏差判断励磁绕组短路故障,虚功率法在实施过程中需要建立空载电动势期望值E0′的计算函数,函数的准确性直接影响到E0′的计算精度,并进一步影响励磁绕组短路故障判断的灵敏度。对多台发电机的运行数据计算发现:空载电动势期望值计算函数的自变量较多,以QFSN-660-2型发电机为例,从图2可以看到:在机端电压基本稳定的工况下,空载电动势受励磁电流和有功功率的影响都很明显,因此,E0′应为励磁电流If和有功P的二元函数,即E0′=f(If,P),准确建立该函数需要大量的发电机历史运行数据作为支撑。
在发电机机端电压波动工况下,发电机磁场饱和程度改变,所建立的函数E0′=f(If,P)的适用性变差。以内蒙电力试验研究所1992年在丰镇电厂对1#QFSN-200-2型汽轮发电机所作的进相运行试验为例,表1包含了该发电机深度进相、迟相等运行工况的试验数据。
表1QFSN-200-2型汽轮发电机运行数据
由上表得到发电机空载电动势与励磁电流及有功关系,见图3。可见:当发电机机端电压不稳时,保持有功不变改变无功时,空载电动势与励磁电流之间不再满足线性关系,在低励磁区出现了明显的转弯。因此,空载电动势的计算函数将更加难以构建,利用机端电压稳定工况建立起的E0′=f(If,P)函数无法计算电压大幅波动情况下的空载电动势期望值E0′。发电机电磁功率期望值的求取及虚功率法的应用受到了一定的限制。
在发电机运行故障的研究中,利用电磁转矩对定子绕组进行分析的方法已经被多篇文献作公开,例如:2009年4月天津大学学报发表的《同步发电机定子绕组匝间短路下电磁转矩和振动分析》、2007年5月中国电机工程学报发表的《定子绕组匝间短路时发电机电磁转矩分析》、2013年第五期大电机技术发表的《定子绕组匝间短路时发电机转子电磁转矩特性的有限元分析》等文献。这些文章均研究的是发电机的定子绕组匝间短路,分别采用解析法或数值法得出定子绕组匝间短路后发电机电磁转矩中出现2倍频脉动的结论,并通过发电机电磁转矩的2倍频的变化来判断定子绕组匝间短路的情况。而本申请的分析对象是发电机的转子绕组(励磁绕组)匝间短路故障,研究对象完全不同,而且发电机发生转子绕组匝间短路故障后,电磁转矩中也不存在2倍频脉动,本申请采用的是发电机电磁转矩的期望值与实际值偏差作为故障判据,也与上述分析完全不同。
2012年10月电工技术学报发表的《转子绕组短路故障时发电机转子不平衡电磁力分析》采用解析法分析了转子绕组匝间短路故障时的不平衡电磁力,但不平衡磁拉力和电磁转矩截然不同,不平衡磁拉力作用于转子径向,改变发电机的振动状态,而电磁转矩则作用于转子切向,只要原动机输入有功不变,电磁转矩是基本不变的。本申请采用的是发电机电磁转矩的期望值与实际值偏差作为故障判据,与不平衡磁拉力的分析完全不同。
2012年8月电机与控制学报发表的《转子绕组匝间短路对发电机转子电磁转矩影响分析》通过谐波转矩检测转子绕组匝间短路故障,此文献采用解析法得出的发电机谐波转矩问题在实际运行中是极小的,磁场饱和因素造成匝间短路产生的2次谐波磁势大幅衰减。运行中的汽轮发电机都存在偏心和振动问题,绝对对称的理想电机在实际中是不存在的。该文最后结论提及,对于一对极汽轮发电机,考虑振动偏心时谐波转矩是不存在的,因此也就失去了利用谐波转矩检测转子绕组匝间短路故障的可能性。本申请所提方法主要针对一对极汽轮发电机,诊断过程不受谐波转矩消失的影响,无论发电机是否存在偏心都可以有效诊断出匝间短路故障。
发明内容
本发明要解决的技术问题是提供一种基于转矩比较原理的发电机励磁绕组短路故障诊断方法,能够解决现有技术的不足,克服虚功率法需海量数据构建空载电动势函数的缺点,避开了发电机端电压波动对函数计算准确性的影响,同时不受谐波转矩有无和发电机是否存在偏心的影响。
为解决上述技术问题,本发明所采取的技术方案如下。
基于转矩比较原理的发电机励磁绕组短路故障诊断方法,它通过比较发电机电磁转矩的期望值和实际值判断励磁绕组短路故障。首先假定发电机励磁绕组正常,根据发电机的基本结构和电磁参数建立其二维仿真模型,将发电机的运行数据加载至模型中算得发电机磁场数据,并进一步计算电磁转矩的期望值,将之与按照计算得到的电磁转矩实际值比较,故障判据:当a%超过设定阈值即可判定汽轮发电机存在励磁绕组短路故障。具体步骤如下:
A、获取发电机的结构参数和BH特性曲线数据;
B、建立发电机二维数值仿真模型,在DCS系统上获取励磁绕组正常时的发电机实时运行数据,计算得到定子、转子电流密度值,将其加载到定子、转子绕组上,通过数值计算得到发电机磁场数据,在发电机气隙设定圆形路径,将磁场数据映射到路径上;
C、计算发电机电磁转矩的期望值TM′;
D、计算发电机电磁转矩的实际值TM
E、故障判据值:将判据值a%与其设定阈值相比较,若故障判据a%超出设定阈值,则判定该汽轮发电机存在励磁绕组短路故障。。
作为优选,所述故障判据a%的大小与励磁绕组匝间短路故障的程度高低呈同向变化趋势,短路越严重a%的值越大。
作为优选,所述故障判据a%的阈值设定为1%。
作为优选,步骤B中,从DCS系统上获取的发电机实时运行数据包括发电机线电压U1、线电流I、有功功率P、无功功率Q、励磁电流If
作为优选,步骤C中,电磁转矩的期望值TM′的计算公式为其中,μ0表示真空磁导率,R表示选取路径的半径,L表示转子有效长度,Bni表示积分路径第i点气隙磁密径向分量,Bti表示积分路径第i点气隙磁密切向分量,N表示积分路径上点的数量。
作为优选,步骤D中,电磁转矩的实际值TM的计算公式为其中,PM=pcua+P,pcua=mI2rara表示定子绕组电阻。
采用上述技术方案所带来的有益效果在于:本发明的诊断方法为非侵入式,不需要额外安装传感器,不需要大量发电机历史运行数据构建空载电动势函数,同时也避开了发电机端电压波动对诊断精度的影响,使得汽轮发电机励磁绕组短路故障的诊断更容易实现。该方法的通用性更好,只需要发电机的结构参数、BH特性曲线和实时运行数据,诊断不受发电机运行方式变化的影响,可以实现准实时监测励磁绕组健康状态。避免了探测线圈法、励磁电流法、轴电压法和虚功率法在诊断励磁绕组短路故障上的缺陷,创造性地使用发电机电磁转矩的期望值与实际值偏差作为故障判据,改进了对于发电机电磁转矩的使用和分析方法,从而达到了准确分析励磁绕组短路故障的目的,适用范围广。
附图说明
图1是短路后的汽轮发电机的时空相矢图。
图2是QFSN-660-2发电机空载电动势与励磁电流及有功关系。
图3是QFSN-200-2发电机空载电动势与励磁电流及有功关系。
图4是发电机二维仿真模型。
图5是有限元剖分。
图6是定子三相电流向量。
图7是积分路径。
图8是汽轮发电机的功率流程图。
图9是诊断流程图。
图10是实际电磁转矩与期望电磁转矩。
图11是发电机转子绕组变形情况。
图中,励磁磁势的实际值,励磁磁势的期望值,θ、功角,功率因数角,xS、发电机同步电抗,ra、定子绕组电阻,相电压,相电流,空载电动势理论值,空载电动势实际值,a%、故障判据,ψ、内功率因数角,P、发电机输出的有功功率,P1、原动机输入机械功率,PM、发电机电磁功率,pm、机械损耗功率,pfe、铁耗功率,pad、附加损耗功率,pcua、定子绕组铜耗功率,定子绕组A相电流,定子绕组B相电流,定子绕组C相电流,1、转子磁极表面,2、积分路径,3、定子内表面。
具体实施方式
首先获取发电机的B-H曲线和结构数据,采用Ansys有限元仿真软件建立发电机二维模型,见图4,在模型属性设定阶段,用已知的BH特性曲线数据定义铁磁材料属性,气隙磁导率设定为真空磁导率。随后,采用Ansys软件自带的剖分工具对所建二维模型进行自动剖分,形成若干节点和单元,见图5。随后是加载阶段,需要从DCS系统获取的汽轮发电机实时端电压U1、线电流I、有功功率P、无功功率Q和励磁电流If等数据,借助于发电机电动势相量图,采用式(1)可求得发电机的内功率因数角:
式中:U表示相电压,
图4中转子d轴刚好与A相绕组轴线垂直,A相感应电动势最大,向量图如图6所示。与+t轴重合如,落后于以ψ角,则定子三相电流分别为:
根据定、转子绕组的截面积,可以求得各绕组需加载的电流密度值,将其分别施加在模型的定子三相绕组和励磁绕组中,对定子外圆周施加磁力线平行边界条件,然后由Ansys软件完成自动求解,得到发电机正常运行时的磁场数据。
在发电机气隙中设置一圆形路径,将发电机气隙磁场数据映射到该路径上,见图7。获取发电机气隙磁通密度的径向分量Bn和切向分量Bt,并按下述表达式求得发电机的电磁转矩:
T M ′ = 2 π R 2 L N μ 0 Σ i = 1 N ( B in * B ti ) - - - ( 3 )
式中:μ0表示真空磁导率;R表示选取路径的半径;L表示转子有效长度;Bni表示积分路径第i点气隙磁密径向分量;Bti表示积分路径第i点气隙磁密切向分量;N表示积分路径上点的数量。
汽轮发电机的功率流程图如图8所示,根据功率流程图可以得到发电机实际电磁功率的表达式,即:
PM=pcua+P              (4)
其中:pcua=mI2ra
可以进一步得到发电机实际电磁转矩:
T M = P M ω - - - ( 5 )
其中:ω表示发电机旋转角速度。
当汽轮发电机未发生励磁绕组短路故障时,按式(3)的计算结果和按式(5)的计算结果应该是接近的;但是当汽轮发电机出现励磁绕组短路故障后,由于数值计算方法在加载过程中仍然按照绕组正常情况加载,因此求解得到的电磁转矩TM′必然大于发电机的实际电磁转矩TM,取故障判据为:
a % = T M ′ - T M T M ′ × 100 % - - - ( 6 )
则当a%大于设定阈值时即可判定该发电机存在励磁绕组短路故障,图9为诊断的流程图。
印度尼西亚芝拉扎电厂一台QFSN-300-2-20B型汽轮发电机发生过一次励磁绕组短路故障,并伴随着强烈振动。该发电机系我国东方电机厂生产,该厂的部分运行维护人员也来自中国。
在故障发生后,运行人员将发电机部分运行数据发送至我方咨询,见表2。
表2QFSN-300-2-20B型汽轮发电机运行数据
根据上述有限元计算流程得到电磁转矩的期望值,并与按式(5)计算的电磁转矩对比,结果见表3。
表3QFSN-300-2-20B型汽轮发电机电磁转矩及偏差
从电磁转矩偏差可以看到:在3月12日,发电机电磁转矩的实际值与期望值几乎相同,两者最大偏差为0.68%;在3月23日降负荷过程中,电磁转矩的实际值与期望值的偏差开始变大,最大偏差已经达到了3.48%,从3月23日的数据还可以看到,a%并非一直保持恒定,说明匝间短路处于动态发展阶段,短路点的接触并不稳定,故短路程度一直在变化;在3月27日,从测量数据看到短路故障发生了显著的恶化,短路程度基本维持在12%左右,偶有短路程度达到17%的瞬间。此时发电机已经出现了剧烈振动,被迫停机进行了故障处理,重新开机后发现发电机仍然存在较强烈的振动,从5月7日带病短暂运行的数据看,实际电磁转矩相对于期望电磁转矩的偏差已经达到15%,匝间短路故障仍在继续恶化。发电机整个故障发展过程电磁转矩的实际值与期望值见图10。
QFSN-300-2-20B型汽轮发电机系中国上海东方电机厂生产,转子共开有32个槽,每槽平均10匝绕组,励磁绕组总匝数在160匝左右。因此,即使转子一个槽内的全部绕组发生了匝间短路故障,电磁转矩的实际值与期望值的偏差也仅在6.5%左右,且转子的槽与槽之间被小齿隔开,跨越转子小齿的两槽及以上的匝间短路几乎是不可能发生的。
表3中电磁转矩的实际值与期望值的偏差达到了12%,甚至一度达到了17%,远超出了一槽内励磁绕组全部短路的转矩偏差,这证明一点:短路点一定位于发电机的励磁绕组端部。汽轮发电机端部的励磁绕组裸露在外面,通过适形材料和护环加以固定。在3000转/分的转速下,转子绕组可能因离心力以及绕组受热产生的轴向膨胀应力而发生变形,导致大面积的匝间短路。
厂家对发电机拔护环检修,最终确定了故障的原因:发电机的励磁绕组受热膨胀伸展,导致励磁绕组端部转角位置变形,相邻匝绕组发生短接见图11。从图11可以看到:绕组的第5、6、7、8匝均已发生显著变形,且部分绕组已经紧贴在一起,形成了此次匝间短路故障。该故障的处理总时长达三个月,造成了严重的经济损失,修复励磁绕组形变后匝间绝缘恢复,机组振动达到了运行要求。
汽轮发电机的励磁绕组一般有160匝左右,即使发生1匝短路a%也会超过0.5%,考虑到数值方法的计算误差,可以将励磁绕组短路故障判定阈值设置为1%,这样,两匝及以上的绕组短路都可以被有效检测出来
采用本专利提出的方法对上述故障实例数据的分析表明:通过电磁转矩偏差诊断励磁绕组短路故障,只需要发电机2维结构参数、BH曲线和实时运行数据,方法更容易实现,且具有普遍适应性。本方法不受汽轮发电机电压波动、励磁变化和有功变化等因素的影响,可以诊断出励磁绕组短路故障并显示故障程度,方法具有较高的灵敏性和可靠性。本方法利用数值工具计算电磁转矩,在普通计算机上每30秒即可完成一次诊断,属于准实时的故障检测方法,这对于发展速度较为缓慢的励磁绕组短路故障已经足够了。
以上显示和描述了本发明的基本原理和主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (6)

1.一种基于转矩比较原理的发电机励磁绕组短路故障诊断方法,其特征在于包括以下步骤:
A、获取发电机的结构参数和BH特性曲线数据;
B、建立发电机二维数值仿真模型,在DCS系统上获取励磁绕组正常时的发电机实时运行数据,计算得到定子、转子电流密度值,将其加载到定子、转子绕组上,通过数值计算得到发电机磁场数据,在发电机气隙设定圆形路径,将磁场数据映射到路径上;
C、计算发电机电磁转矩的期望值TM′;
D、计算发电机电磁转矩的实际值TM
E、故障判据值:将判据值a%与其设定阈值相比较,若故障判据a%超出设定阈值,则判定该汽轮发电机存在励磁绕组短路故障。
2.根据权利要求1所述的基于转矩比较原理的发电机励磁绕组短路故障诊断方法,其特征在于:所述故障判据a%的大小与励磁绕组匝间短路故障的程度呈同向变化趋势。
3.根据权利要求1或2所述的基于转矩比较原理的发电机励磁绕组短路故障诊断方法,其特征在于:所述故障判据a%的阈值设定为1%。
4.根据权利要求1所述的基于转矩比较原理的发电机励磁绕组短路故障诊断方法,其特征在于:步骤B中,从DCS系统上获取的发电机实时运行数据包括发电机线电压U1、线电流I、有功功率P、无功功率Q、励磁电流If
5.根据权利要求1所述的基于转矩比较原理的发电机励磁绕组短路故障诊断方法,其特征在于:步骤C中,电磁转矩的期望值TM′的计算公式为其中,μ0表示真空磁导率,R表示选取路径的半径,L表示转子有效长度,Bni表示积分路径第i点气隙磁密径向分量,Bti表示积分路径第i点气隙磁密切向分量,N表示积分路径上点的数量。
6.根据权利要求1所述的基于转矩比较原理的发电机励磁绕组短路故障诊断方法,其特征在于:步骤D中,电磁转矩的实际值TM的计算公式为其中,PM=pcua+P,pcua=mI2rara表示定子绕组电阻。
CN201410820806.5A 2014-12-19 2014-12-19 基于转矩比较原理的发电机励磁绕组短路故障诊断方法 Expired - Fee Related CN104655977B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410820806.5A CN104655977B (zh) 2014-12-19 2014-12-19 基于转矩比较原理的发电机励磁绕组短路故障诊断方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410820806.5A CN104655977B (zh) 2014-12-19 2014-12-19 基于转矩比较原理的发电机励磁绕组短路故障诊断方法

Publications (2)

Publication Number Publication Date
CN104655977A true CN104655977A (zh) 2015-05-27
CN104655977B CN104655977B (zh) 2017-11-07

Family

ID=53247340

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410820806.5A Expired - Fee Related CN104655977B (zh) 2014-12-19 2014-12-19 基于转矩比较原理的发电机励磁绕组短路故障诊断方法

Country Status (1)

Country Link
CN (1) CN104655977B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109470946A (zh) * 2018-09-18 2019-03-15 中国电力科学研究院有限公司 一种发电设备故障检测方法及系统
CN110488185A (zh) * 2018-05-14 2019-11-22 通用汽车环球科技运作有限责任公司 马达定子绕组故障的早期检测
CN112904237A (zh) * 2021-04-08 2021-06-04 南京师范大学 基于电流差值的水轮发电机单相接地故障选相定位方法
CN113311328A (zh) * 2021-04-23 2021-08-27 华北电力大学(保定) 一种基于定子—绕组系统振动特性的转子静偏心诊断方法
CN113419170A (zh) * 2021-05-25 2021-09-21 中国神华能源股份有限公司国华电力分公司 一种发电机转子的故障监测方法、装置及存储介质
CN113687261A (zh) * 2020-05-18 2021-11-23 中车株洲电力机车研究所有限公司 匝间短路故障诊断方法、存储介质和电子设备
CN116380445A (zh) * 2023-06-05 2023-07-04 吉林市特种设备检验中心(吉林市特种设备事故调查服务中心) 基于振动波形的设备状态诊断方法及相关装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0608442A1 (en) * 1992-12-30 1994-08-03 Ansaldo Energia S.P.A. Rotor winding short circuit detector
CN101017191A (zh) * 2007-03-01 2007-08-15 华北电力大学 一种汽轮发电机转子绕组匝间短路故障在线诊断方法
US20120259563A1 (en) * 2011-04-11 2012-10-11 General Electric Company Online monitoring system and method to identify shorted turns in a field winding of a rotor
CN102841291A (zh) * 2012-08-28 2012-12-26 北京交通大学 基于励磁磁势计算的同步发电机转子匝间短路监测方法
CN103792463A (zh) * 2014-02-25 2014-05-14 华北电力大学(保定) 基于虚功率原理的汽轮发电机转子绕组短路故障诊断方法
CN103926506A (zh) * 2014-02-25 2014-07-16 华北电力大学(保定) 基于构建函数的汽轮发电机转子绕组短路故障诊断方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0608442A1 (en) * 1992-12-30 1994-08-03 Ansaldo Energia S.P.A. Rotor winding short circuit detector
CN101017191A (zh) * 2007-03-01 2007-08-15 华北电力大学 一种汽轮发电机转子绕组匝间短路故障在线诊断方法
US20120259563A1 (en) * 2011-04-11 2012-10-11 General Electric Company Online monitoring system and method to identify shorted turns in a field winding of a rotor
CN102841291A (zh) * 2012-08-28 2012-12-26 北京交通大学 基于励磁磁势计算的同步发电机转子匝间短路监测方法
CN103792463A (zh) * 2014-02-25 2014-05-14 华北电力大学(保定) 基于虚功率原理的汽轮发电机转子绕组短路故障诊断方法
CN103926506A (zh) * 2014-02-25 2014-07-16 华北电力大学(保定) 基于构建函数的汽轮发电机转子绕组短路故障诊断方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
万书亭: "转子绕组匝间短路对发电机转子电磁转矩影响分析", 《电机与控制学报》 *
杨惠忠等: "基于ANSYS的直流励磁电机电磁场分析与计算", 《工业控制计算机》 *
武玉才等: "励磁绕组短路故障下汽轮发电机的电磁稳态特征", 《高电压技术》 *
武玉才等: "基于功率期望原理的汽轮发电机励磁绕组短路故障诊断", 《中国电机工程学报》 *
王成勇: "汽轮发电机转子匝间短路故障的仿真分析与在线识别", 《中国优秀硕士学位论文全文数据库工程科技Ⅱ辑 》 *
马波涛: "汽轮发电机失磁过程分析", 《中国优秀硕士学位论文全文数据库工程科技Ⅱ辑 》 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110488185A (zh) * 2018-05-14 2019-11-22 通用汽车环球科技运作有限责任公司 马达定子绕组故障的早期检测
CN110488185B (zh) * 2018-05-14 2021-12-28 通用汽车环球科技运作有限责任公司 马达定子绕组故障的早期检测
CN109470946A (zh) * 2018-09-18 2019-03-15 中国电力科学研究院有限公司 一种发电设备故障检测方法及系统
CN109470946B (zh) * 2018-09-18 2022-07-08 中国电力科学研究院有限公司 一种发电设备故障检测方法及系统
CN113687261B (zh) * 2020-05-18 2024-01-30 中车株洲电力机车研究所有限公司 匝间短路故障诊断方法、存储介质和电子设备
CN113687261A (zh) * 2020-05-18 2021-11-23 中车株洲电力机车研究所有限公司 匝间短路故障诊断方法、存储介质和电子设备
CN112904237A (zh) * 2021-04-08 2021-06-04 南京师范大学 基于电流差值的水轮发电机单相接地故障选相定位方法
CN112904237B (zh) * 2021-04-08 2024-04-16 南京师范大学 基于电流差值的水轮发电机单相接地故障选相定位方法
CN113311328A (zh) * 2021-04-23 2021-08-27 华北电力大学(保定) 一种基于定子—绕组系统振动特性的转子静偏心诊断方法
CN113311328B (zh) * 2021-04-23 2022-08-23 华北电力大学(保定) 一种基于定子—绕组系统振动特性的转子静偏心诊断方法
CN113419170A (zh) * 2021-05-25 2021-09-21 中国神华能源股份有限公司国华电力分公司 一种发电机转子的故障监测方法、装置及存储介质
CN116380445A (zh) * 2023-06-05 2023-07-04 吉林市特种设备检验中心(吉林市特种设备事故调查服务中心) 基于振动波形的设备状态诊断方法及相关装置
CN116380445B (zh) * 2023-06-05 2023-08-08 吉林市特种设备检验中心(吉林市特种设备事故调查服务中心) 基于振动波形的设备状态诊断方法及相关装置

Also Published As

Publication number Publication date
CN104655977B (zh) 2017-11-07

Similar Documents

Publication Publication Date Title
Kral et al. Detection of mechanical imbalances of induction machines without spectral analysis of time-domain signals
CN104655977A (zh) 基于转矩比较原理的发电机励磁绕组短路故障诊断方法
Faiz et al. Eccentricity fault detection–From induction machines to DFIG—A review
Nandi et al. Condition monitoring and fault diagnosis of electrical motors—A review
Li et al. Performance analysis of a three-phase induction machine with inclined static eccentricity
Faiz et al. Finite-element transient analysis of induction motors under mixed eccentricity fault
CN103713235B (zh) 基于端部畸变效应的汽轮发电机转子匝间短路故障诊断方法
Yucai et al. Diagnosis of short circuit faults within turbogenerator excitation winding based on the expected electromotive force method
CN102998591B (zh) 一种发电机转子绕组动态匝间短路故障的定位方法
Salah et al. A review of the monitoring and damping unbalanced magnetic pull in induction machines due to rotor eccentricity
CN110716152A (zh) 一种阻抗频谱监测发电机匝间短路的方法
Petrov et al. Adjusted electrical equivalent circuit model of induction motor with broken rotor bars and eccentricity faults
Faiz et al. A review of application of signal processing techniques for fault diagnosis of induction motors–Part I
Djerdir et al. Faults in permanent magnet traction motors: State of the art and modelling approaches
Bhattacharyya et al. Induction motor fault diagnosis by motor current signature analysis and neural network techniques
Salah et al. Monitoring and damping unbalanced magnetic pull due to eccentricity fault in induction machines: A review
Faiz et al. Review of eccentricity fault detection techniques in IMs focusing on DFIG
Gherabi et al. A proposed approach for separation between short circuit fault, magnetic saturation phenomenon and supply unbalance in permanent magnet synchronous motor
Mohammad-Alikhani et al. A wrapper-based feature selection approach for accurate fault detection of rotating diode rectifiers in brushless synchronous generators
Dilovar et al. Research of inter-turn short-circuit of a synchronous generator with permanent magnet
Ojaghi et al. Winding function approach to simulate induction motors under sleeve bearing fault
Nemec et al. Simplified model of induction machine with broken rotor bars
Priyanka et al. Inter-turn fault analysis of three phase induction motor
Kathiravan et al. Motor current signature analysis based Fault diagnosis of induction motor
Faiz et al. Impacts of eccentricity fault on permanent magnet generators for distributed generation

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20171107

Termination date: 20211219

CF01 Termination of patent right due to non-payment of annual fee