CN104655131A - Initial inertial navigation alignment method based on terated strong tracking spherical simplex radial cubature Kalman filter (ISTSSRCKF) - Google Patents

Initial inertial navigation alignment method based on terated strong tracking spherical simplex radial cubature Kalman filter (ISTSSRCKF) Download PDF

Info

Publication number
CN104655131A
CN104655131A CN201510063634.6A CN201510063634A CN104655131A CN 104655131 A CN104655131 A CN 104655131A CN 201510063634 A CN201510063634 A CN 201510063634A CN 104655131 A CN104655131 A CN 104655131A
Authority
CN
China
Prior art keywords
mrow
msub
msubsup
mtd
msup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510063634.6A
Other languages
Chinese (zh)
Other versions
CN104655131B (en
Inventor
徐晓苏
田泽鑫
张涛
刘义亭
孙进
姚逸卿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201510063634.6A priority Critical patent/CN104655131B/en
Publication of CN104655131A publication Critical patent/CN104655131A/en
Application granted granted Critical
Publication of CN104655131B publication Critical patent/CN104655131B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
    • G01C25/005Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass initial alignment, calibration or starting-up of inertial devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Navigation (AREA)

Abstract

The invention discloses an initial alignment method based on an iterated strong tracking spherical simplex radial cubature Kalman filter (ISTSSRCKF). The method comprises the following steps: selecting the cubature point of a CKF by adopting an SSR rule; introducing a fading factor in a strong tracking filter into the time and measurement update equation of the CKF; and introducing a Gauss-Newton iterative algorithm and improving the corresponding information variance and covariance in the iterative process. According to the initial alignment problem under the conditions of large misalignment angle and base sway, the excessive sampling points in the high-order CKF are reduced during sampling by adopting the SSR rule, and the problem that the performance of the CKF is reduced when a model is inaccurate is solved by introducing a strong tracking algorithm. Latest measurement information is fully utilized in using the iterative process, so that the state estimation error is effectively reduced, and the initial alignment precision superior to standard CKF is obtained.

Description

Inertial navigation initial alignment method based on ISTSSRCKF
Technical Field
The invention mainly relates to the technical field of navigation, in particular to an inertial navigation initial alignment method based on ISTSRCKF.
Background
The initial alignment is firstly carried out before the inertial navigation system enters a working state, the inertial sensor, namely a gyroscope and an accelerometer, of the strapdown inertial navigation system are directly and fixedly connected with a carrier, and a computing platform is obtained through calculation to replace a physical platform, so that the initial alignment problem of the strapdown inertial navigation system is to solve an attitude matrix at an initial moment. The initial alignment of the SINS directly affects the navigation performance, i.e. navigation accuracy and reaction time, of the strapdown system. An Autonomous Underwater Vehicle (AUV) is a task controller which integrates artificial intelligence and other advanced computing technologies, and is a bottleneck problem for determining the technical development and application of the AUV in order to enable the AUV to complete a preset mission and not to leave an AUV navigation technology. In practical application environments, particularly under the conditions of large misalignment angle and severe shaking, a classical Kalman filtering method using a small linear misalignment angle as an alignment model cannot be used for filtering, only a nonlinear alignment model can be established, and the traditional nonlinear filtering algorithms such as EKF (extended Kalman Filter) and UKF (unscented Kalman Filter) have the defects of low alignment precision and unstable numerical value in a high-dimensional state and poor uncertain factor coping capability, so that the alignment method under the SINS nonlinear shaking base, which effectively copes with complex environments and has certain strong tracking capability, has important significance.
Disclosure of Invention
The purpose of the invention is as follows: in order to overcome the defects in the existing nonlinear alignment technology, the invention provides an inertial navigation initial alignment method based on the ISTSRCKF, which can improve the SINS alignment precision.
The technical scheme is as follows: in order to solve the technical problem, the invention provides an inertial navigation initial alignment method based on the ISTSRCKF, which comprises the following steps:
step 1: establishing an SINS shaking base alignment model under a large misalignment angle state, wherein the alignment model comprises a SINS nonlinear error model, a nonlinear filtering state model and a nonlinear filtering measurement model:
wherein, the process of establishing the SINS nonlinear error model is as follows:
step 1.1: a northeast geographic coordinate system is used as a navigation coordinate system n, a coordinate system formed by a carrier right front upper direction vector right hand rule is used as a carrier coordinate system b, and the real attitude angle isTrue velocity of v s n = v e n v n n v u n T , The real geographic coordinate is p ═ L lambda H]T(ii) a The attitude actually solved by SINS isAt a speed of v ~ s n = v ~ e n v ~ n n v ~ u n T , The geographic coordinates are <math> <mrow> <mover> <mi>p</mi> <mo>~</mo> </mover> <mo>=</mo> <msup> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mover> <mi>L</mi> <mo>~</mo> </mover> </mtd> <mtd> <mover> <mi>&lambda;</mi> <mo>~</mo> </mover> </mtd> <mtd> <mover> <mi>H</mi> <mo>~</mo> </mover> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> <mo>,</mo> </mrow> </math> Recording coordinate system established by geographical position resolved by SINS as calculationA navigation coordinate system n' is defined as SINS attitude angle and speed error respectivelyPhi and vnThe differential equation of (a) is as follows:
<math> <mrow> <mover> <mi>&phi;</mi> <mo>&CenterDot;</mo> </mover> <mo>=</mo> <msubsup> <mi>C</mi> <mi>&omega;</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>[</mo> <mrow> <mo>(</mo> <msubsup> <mrow> <mi>I</mi> <mo>-</mo> <mi>C</mi> </mrow> <mi>n</mi> <msup> <mi>n</mi> <mo>&prime;</mo> </msup> </msubsup> <mo>)</mo> </mrow> <msubsup> <mover> <mi>&omega;</mi> <mo>~</mo> </mover> <mi>m</mi> <mi>n</mi> </msubsup> <mo>+</mo> <msubsup> <mi>C</mi> <mi>n</mi> <msup> <mi>n</mi> <mo>&prime;</mo> </msup> </msubsup> <msubsup> <mi>&delta;&omega;</mi> <mi>in</mi> <mi>n</mi> </msubsup> <mo>-</mo> <msubsup> <mi>C</mi> <mi>b</mi> <msup> <mi>n</mi> <mo>&prime;</mo> </msup> </msubsup> <mrow> <mo>(</mo> <msup> <mi>&epsiv;</mi> <mi>b</mi> </msup> <mo>+</mo> <msubsup> <mi>&omega;</mi> <mi>g</mi> <mi>b</mi> </msubsup> <mo>)</mo> </mrow> <mo>]</mo> </mrow> </math>
<math> <mrow> <mi>&delta;</mi> <msup> <mover> <mi>v</mi> <mo>&CenterDot;</mo> </mover> <mi>n</mi> </msup> <mo>=</mo> <mo>[</mo> <mi>I</mi> <mo>-</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>C</mi> <mi>n</mi> <msup> <mi>n</mi> <mo>&prime;</mo> </msup> </msubsup> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mo>]</mo> <msubsup> <mi>C</mi> <mi>b</mi> <msup> <mi>n</mi> <mo>&prime;</mo> </msup> </msubsup> <msup> <mover> <mi>f</mi> <mo>~</mo> </mover> <mi>b</mi> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>C</mi> <mi>n</mi> <msup> <mi>n</mi> <mo>&prime;</mo> </msup> </msubsup> <mo>)</mo> </mrow> <mi>T</mi> </msup> <msubsup> <mi>C</mi> <mi>b</mi> <msup> <mi>n</mi> <mo>&prime;</mo> </msup> </msubsup> <mrow> <mo>(</mo> <msup> <mo>&dtri;</mo> <mi>b</mi> </msup> <mo>+</mo> <msubsup> <mi>&omega;</mi> <mi>a</mi> <mi>b</mi> </msubsup> <mo>)</mo> </mrow> <mo>-</mo> <mrow> <mo>(</mo> <msubsup> <mrow> <mn>2</mn> <mi>&delta;&omega;</mi> </mrow> <mi>ie</mi> <mi>n</mi> </msubsup> <mo>+</mo> <msubsup> <mi>&delta;&omega;</mi> <mi>en</mi> <mi>n</mi> </msubsup> <mo>)</mo> </mrow> <mo>&times;</mo> <msubsup> <mover> <mi>v</mi> <mo>~</mo> </mover> <mi>s</mi> <mi>n</mi> </msubsup> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <msubsup> <mover> <mi>&omega;</mi> <mo>~</mo> </mover> <mi>en</mi> <mi>n</mi> </msubsup> <mo>+</mo> <msubsup> <mover> <mi>&omega;</mi> <mo>~</mo> </mover> <mi>en</mi> <mi>n</mi> </msubsup> <mo>)</mo> </mrow> <mo>&times;</mo> <mi>&delta;</mi> <msup> <mi>v</mi> <mi>n</mi> </msup> </mrow> </math>
wherein phi is [ phi ]e φn φu]TV is the pitch angle, roll angle and course angle errorn=[ve vn vu]TFor east, north and sky speed errors, <math> <mrow> <msup> <mi>&epsiv;</mi> <mi>b</mi> </msup> <mo>=</mo> <msup> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msubsup> <mi>&epsiv;</mi> <mi>x</mi> <mi>b</mi> </msubsup> </mtd> <mtd> <msubsup> <mi>&epsiv;</mi> <mi>y</mi> <mi>b</mi> </msubsup> </mtd> <mtd> <msubsup> <mi>&epsiv;</mi> <mi>z</mi> <mi>b</mi> </msubsup> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> </mrow> </math> b is the constant error of the lower triaxial gyro,is b is the random error of the lower three-axis gyroscope, <math> <mrow> <msup> <mo>&dtri;</mo> <mi>b</mi> </msup> <mo>=</mo> <msup> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msubsup> <mo>&dtri;</mo> <mi>x</mi> <mi>b</mi> </msubsup> </mtd> <mtd> <msubsup> <mo>&dtri;</mo> <mi>y</mi> <mi>b</mi> </msubsup> </mtd> <mtd> <msubsup> <mo>&dtri;</mo> <mi>z</mi> <mi>b</mi> </msubsup> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> </mrow> </math> b is the constant error of the lower triaxial accelerometer,to be b is the random error of the lower three-axis accelerometer,is the actual output of the accelerometer,for the speed of the solution of the SINS,for the calculated angular velocity of rotation in the navigation coordinate system,for the purpose of calculating the angular velocity of rotation of the earth,for the calculated angular velocity of the navigation coordinate system relative to the earth's rotation, to correspond toThe error in the calculation of (a) is,n is a rotation angle phi in sequencee、φn、φuObtaining a directional cosine matrix formed by n',is a state transition matrix from b series to n' series, i.e. a calculated attitude matrix, CwFor coefficient matrix of Euler angle differential equation, superscript T represents transposition, matrixAnd CwThe method specifically comprises the following steps:
<math> <mrow> <msubsup> <mi>C</mi> <mi>n</mi> <msup> <mi>n</mi> <mo>,</mo> </msup> </msubsup> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mrow> <mi>cos</mi> <mi>&phi;</mi> </mrow> <mi>n</mi> </msub> <mi>cos</mi> <msub> <mi>&phi;</mi> <mi>u</mi> </msub> <mo>-</mo> <mi>sin</mi> <msub> <mi>&phi;</mi> <mi>n</mi> </msub> <msub> <mrow> <mi>sin</mi> <mi>&phi;</mi> </mrow> <mi>e</mi> </msub> <msub> <mrow> <mi>sin</mi> <mi>&phi;</mi> </mrow> <mi>u</mi> </msub> </mtd> <mtd> <msub> <mrow> <mi>cos</mi> <mi>&phi;</mi> </mrow> <mi>n</mi> </msub> <msub> <mrow> <mi>sin</mi> <mi>&phi;</mi> </mrow> <mi>u</mi> </msub> <mo>+</mo> <msub> <mrow> <mi>sin</mi> <mi>&phi;</mi> </mrow> <mi>n</mi> </msub> <msub> <mrow> <mi>sin</mi> <mi>&phi;</mi> </mrow> <mi>e</mi> </msub> <mi>cos</mi> <msub> <mi>&phi;</mi> <mi>u</mi> </msub> </mtd> <mtd> <mo>-</mo> <msub> <mrow> <mi>sin</mi> <mi>&phi;</mi> </mrow> <mi>n</mi> </msub> <mi>cos</mi> <msub> <mi>&phi;</mi> <mi>e</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mrow> <mo>-</mo> <mi>cos</mi> <mi>&phi;</mi> </mrow> <mi>e</mi> </msub> <mi>sin</mi> <msub> <mi>&phi;</mi> <mi>u</mi> </msub> </mtd> <mtd> <msub> <mrow> <mi>cos</mi> <mi>&phi;</mi> </mrow> <mi>e</mi> </msub> <mi>cos</mi> <msub> <mi>&phi;</mi> <mi>u</mi> </msub> </mtd> <mtd> <mrow> <mi>sin</mi> <msub> <mi>&phi;</mi> <mi>e</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mrow> <mi>sin</mi> <mi>&phi;</mi> </mrow> <mi>n</mi> </msub> <mi>cos</mi> <msub> <mi>&phi;</mi> <mi>u</mi> </msub> <mo>+</mo> <msub> <mrow> <mi>cos</mi> <mi>&phi;</mi> </mrow> <mi>n</mi> </msub> <msub> <mrow> <mi>sin</mi> <mi>&phi;</mi> </mrow> <mi>e</mi> </msub> <mi>sin</mi> <msub> <mi>&phi;</mi> <mi>u</mi> </msub> </mtd> <mtd> <msub> <mrow> <mi>sin</mi> <mi>&phi;</mi> </mrow> <mi>n</mi> </msub> <mi>sin</mi> <msub> <mi>&phi;</mi> <mi>u</mi> </msub> <mo>-</mo> <mi>cos</mi> <msub> <mi>&phi;</mi> <mi>n</mi> </msub> <mi>sin</mi> <msub> <mi>&phi;</mi> <mi>e</mi> </msub> <msub> <mrow> <mi>sin</mi> <mi>&phi;</mi> </mrow> <mi>u</mi> </msub> </mtd> <mtd> <mi>cos</mi> <msub> <mi>&phi;</mi> <mi>n</mi> </msub> <msub> <mrow> <mi>cos</mi> <mi>&phi;</mi> </mrow> <mi>e</mi> </msub> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
<math> <mrow> <msub> <mi>C</mi> <mi>w</mi> </msub> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mrow> <mi>cos</mi> <mi>&phi;</mi> </mrow> <mi>n</mi> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mrow> <mo>-</mo> <mi>sin</mi> <mi>&phi;</mi> </mrow> <mi>n</mi> </msub> <msub> <mrow> <mi>cos</mi> <mi>&phi;</mi> </mrow> <mi>e</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <msub> <mrow> <mi>sin</mi> <mi>&phi;</mi> </mrow> <mi>e</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mi>sin</mi> <msub> <mi>&phi;</mi> <mi>n</mi> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mrow> <mi>cos</mi> <mi>&phi;</mi> </mrow> <mi>n</mi> </msub> <msub> <mrow> <mi>cos</mi> <mi>&phi;</mi> </mrow> <mi>e</mi> </msub> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
the nonlinear filtering state model establishing process comprises the following steps:
step 1.2: taking the Euler platform error angle phi of the SINSe、φn、φuVelocity error ve、vnAnd b is the gyro constant errorConstant error of accelerometer under b systemConstructing state vectors <math> <mrow> <mi>x</mi> <mo>=</mo> <msup> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>&phi;</mi> <mi>e</mi> </msub> </mtd> <mtd> <msub> <mi>&phi;</mi> <mi>n</mi> </msub> </mtd> <mtd> <msub> <mi>&phi;</mi> <mi>u</mi> </msub> </mtd> <mtd> <mi>&delta;</mi> <msub> <mi>v</mi> <mi>e</mi> </msub> </mtd> <mtd> <mi>&delta;</mi> <msub> <mi>v</mi> <mi>n</mi> </msub> </mtd> <mtd> <msubsup> <mi>&epsiv;</mi> <mi>x</mi> <mi>b</mi> </msubsup> </mtd> <mtd> <msubsup> <mi>&epsiv;</mi> <mi>y</mi> <mi>b</mi> </msubsup> </mtd> <mtd> <msubsup> <mi>&epsiv;</mi> <mi>z</mi> <mi>b</mi> </msubsup> </mtd> <mtd> <msubsup> <mo>&dtri;</mo> <mi>x</mi> <mi>b</mi> </msubsup> </mtd> <mtd> <msubsup> <mo>&dtri;</mo> <mi>y</mi> <mi>b</mi> </msubsup> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> <mo>,</mo> </mrow> </math> Under the shaking baseAndapproximately zero, the state equation for the nonlinear filtering can be simplified as:
<math> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <mover> <mi>&phi;</mi> <mo>&CenterDot;</mo> </mover> <mo>=</mo> <msubsup> <mi>C</mi> <mi>&omega;</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>[</mo> <mrow> <mo>(</mo> <mi>I</mi> <mo>-</mo> <msubsup> <mi>C</mi> <mi>n</mi> <msup> <mi>n</mi> <mo>&prime;</mo> </msup> </msubsup> <mo>)</mo> </mrow> <msubsup> <mover> <mi>&omega;</mi> <mo>^</mo> </mover> <mi>m</mi> <mi>n</mi> </msubsup> <mo>+</mo> <msubsup> <mi>C</mi> <mi>n</mi> <msup> <mi>n</mi> <mo>&prime;</mo> </msup> </msubsup> <msubsup> <mi>&delta;&omega;</mi> <mi>in</mi> <mi>n</mi> </msubsup> <mo>-</mo> <msubsup> <mi>C</mi> <mi>b</mi> <msup> <mi>n</mi> <mo>&prime;</mo> </msup> </msubsup> <msup> <mi>&epsiv;</mi> <mi>b</mi> </msup> <mo>]</mo> <mo>+</mo> <msub> <mi>&omega;</mi> <mi>g</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mi>&delta;</mi> <msup> <mover> <mi>v</mi> <mo>&CenterDot;</mo> </mover> <mi>n</mi> </msup> <mo>=</mo> <mo>[</mo> <mi>I</mi> <mo>-</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>C</mi> <mi>n</mi> <msup> <mi>n</mi> <mo>&prime;</mo> </msup> </msubsup> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mo>]</mo> <msubsup> <mi>C</mi> <mi>b</mi> <msup> <mi>n</mi> <mo>&prime;</mo> </msup> </msubsup> <msup> <mover> <mi>f</mi> <mo>^</mo> </mover> <mi>b</mi> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>C</mi> <mi>b</mi> <msup> <mi>n</mi> <mo>&prime;</mo> </msup> </msubsup> <mo>)</mo> </mrow> <mi>T</mi> </msup> <msubsup> <mi>C</mi> <mi>b</mi> <msup> <mi>n</mi> <mo>&prime;</mo> </msup> </msubsup> <msup> <mo>&dtri;</mo> <mi>b</mi> </msup> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <msubsup> <mover> <mi>&omega;</mi> <mo>^</mo> </mover> <mi>ie</mi> <mi>n</mi> </msubsup> <mo>+</mo> <msubsup> <mover> <mi>&omega;</mi> <mo>^</mo> </mover> <mi>en</mi> <mi>n</mi> </msubsup> <mo>)</mo> </mrow> <mo>&times;</mo> <msup> <mi>&delta;v</mi> <mi>n</mi> </msup> <mo>+</mo> <msub> <mi>&omega;</mi> <mi>a</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msup> <mover> <mi>&epsiv;</mi> <mo>&CenterDot;</mo> </mover> <mi>b</mi> </msup> <mo>=</mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <msup> <mover> <mo>&dtri;</mo> <mo>&CenterDot;</mo> </mover> <mi>b</mi> </msup> <mo>=</mo> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> </math>
wherein,taking only the first two-dimensional state, ω (t) ═ ωg ωa 01×3 01×2]TFor the zero-mean white gaussian noise process, the nonlinear filter state equation is simplified as:
<math> <mrow> <mover> <mi>x</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>&omega;</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </math>
the nonlinear measurement equation is established as follows:
step 1.3: the true velocity denoted by b is vbThe actual speed under b isAttitude matrix handlebar resolved by SINSIs converted intoTo be provided withAndthe east and north velocity components in (b) are used as matching information sources, and then the measurement equation of the nonlinear filtering is:
<math> <mrow> <mi>z</mi> <mo>=</mo> <msubsup> <mover> <mi>v</mi> <mo>~</mo> </mover> <mi>s</mi> <mi>n</mi> </msubsup> <mo>-</mo> <msubsup> <mi>C</mi> <mi>b</mi> <msup> <mi>n</mi> <mo>&prime;</mo> </msup> </msubsup> <msup> <mover> <mi>v</mi> <mo>~</mo> </mover> <mi>b</mi> </msup> <mo>=</mo> <mi>&delta;</mi> <msup> <mi>v</mi> <mi>n</mi> </msup> <mo>-</mo> <mo>[</mo> <mi>I</mi> <mo>-</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>C</mi> <mi>n</mi> <msup> <mi>n</mi> <mo>&prime;</mo> </msup> </msubsup> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mo>]</mo> <msubsup> <mi>C</mi> <mi>b</mi> <msup> <mi>n</mi> <mo>&prime;</mo> </msup> </msubsup> <msup> <mi>v</mi> <mi>b</mi> </msup> <mo>+</mo> <mi>v</mi> </mrow> </math>
taking the former two dimensions of z as an observed value, taking v as a zero-mean Gaussian white noise process, and summarizing the continuous nonlinear filtering measurement equation as:
z(t)=h(x,t)+v(t)
step 2: with a sampling period TsAs a filter period, and with TsFor discretization of the step size, willDiscretization into xk=xk-1+[f(xk-1,tk-1)+ω(tk-1)]TsThe equation of state can be found:
xk=f(xk-1)+ωk-1
discretizing z (t) h (x, t) + v (t) to zk=h(xk,tk)+v(tk) The measurement equation can be obtained:
zk=h(xk)+vk
the following discrete nonlinear system is composed of a state equation and a measurement equation:
<math> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mi>x</mi> <mi>k</mi> </msub> <mo>=</mo> <mi>f</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>&omega;</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>z</mi> <mi>k</mi> </msub> <mo>=</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>v</mi> <mi>k</mi> </msub> </mtd> </mtr> </mtable> </mfenced> </math>
in the formula, xkIs the state vector of the system at the moment k; z is a radical ofkMeasured value of system state at k moment; random system noise omegak~N(0,Qk) (ii) a Random observation noise vk~N(0,Rk);
And step 3: using current measurement value zkSubtracting the measurement predicted value at the same timeObtaining the residual error of the current momentkCalculating a suboptimal fading factor lambda according to the strong tracking principlekThen using λkCorrecting the updating process of the filtering time;
and 4, step 4: time-updated predictive estimatesAnd the predicted variance Pk/k-1Performing an iteration process for the initial value, performing a maximum number of iterations NmaxPerforming secondary iteration to complete measurement updating;
wherein N ismaxThe number of iterations can be selected as required, and is taken as10。
And 5: euler plateau angle estimation obtained by filtering with filterAnd velocity estimateCorrecting SINS resolved attitude matrixAnd velocityTaking the corrected value as the initial value of the next strapdown calculation, and utilizing the currently obtained gyro constant error estimation valueAnd a constant error estimate of the accelerometerCorrecting the gyro output at the next momentAnd output of the accelerometerThe specific correction formula is calculated according to the following formula:
<math> <mrow> <msubsup> <mi>C</mi> <mi>b</mi> <mi>n</mi> </msubsup> <mo>=</mo> <msubsup> <mover> <mi>C</mi> <mo>^</mo> </mover> <msup> <mi>n</mi> <mo>&prime;</mo> </msup> <mi>n</mi> </msubsup> <msubsup> <mi>C</mi> <mi>b</mi> <msup> <mi>n</mi> <mo>&prime;</mo> </msup> </msubsup> <mo>,</mo> <msubsup> <mi>v</mi> <mi>s</mi> <mi>n</mi> </msubsup> <mo>=</mo> <msubsup> <mover> <mi>v</mi> <mo>~</mo> </mover> <mi>s</mi> <mi>n</mi> </msubsup> <mo>-</mo> <mi>&delta;</mi> <msubsup> <mover> <mi>v</mi> <mo>~</mo> </mover> <mi>k</mi> <mi>n</mi> </msubsup> <mo>,</mo> <msubsup> <mi>&omega;</mi> <mi>ib</mi> <mi>b</mi> </msubsup> <mo>=</mo> <msubsup> <mover> <mi>&omega;</mi> <mo>~</mo> </mover> <mi>ib</mi> <mi>b</mi> </msubsup> <mo>-</mo> <msubsup> <mover> <mi>&epsiv;</mi> <mo>~</mo> </mover> <mi>k</mi> <mi>b</mi> </msubsup> <mo>,</mo> <msup> <mi>f</mi> <mi>b</mi> </msup> <mo>=</mo> <msup> <mover> <mi>f</mi> <mo>~</mo> </mover> <mi>b</mi> </msup> <mo>-</mo> <msubsup> <mover> <mo>&dtri;</mo> <mo>^</mo> </mover> <mi>k</mi> <mi>b</mi> </msubsup> </mrow> </math>
and if the precision reaches the preset initial alignment requirement, ending the process, otherwise, continuously and circularly executing the steps 2-5 until the initial alignment is ended.
Further, in 2), the step of performing time update according to the obtained discretization model in a framework of the cubature kalman filter specifically includes:
step 2.2: setting system state initial valueInitial error covariance matrix:
P0=diag{(1°)2(1°)2(10°)2(0.1)2(0.1)2
(0.01°/h)2(0.01°/h)2(0.01°/h)2(100μg)2(100μg)2}*10
and to P0Cholesky decomposition is carried out to obtain the characteristic square root S of the initial error covariance matrix0
Step 2.3: sampling points are selected by adopting an SSR rule, and the following vectors are taken:
aj=[aj,1 aj,2 … aj,n]Tj is 1,2, …, n +1, where n is the number of state quantities, then
<math> <mrow> <msub> <mi>a</mi> <mrow> <mi>j</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>&equiv;</mo> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <mo>-</mo> <msqrt> <mfrac> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> <mrow> <mi>n</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>-</mo> <mi>i</mi> <mo>+</mo> <mn>2</mn> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>n</mi> <mo>-</mo> <mi>i</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </mfrac> </msqrt> <mo>,</mo> </mtd> <mtd> <mi>i</mi> <mo>&lt;</mo> <mi>j</mi> </mtd> </mtr> <mtr> <mtd> <msqrt> <mfrac> <mrow> <mrow> <mo>(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>n</mi> <mo>-</mo> <mi>j</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> <mrow> <mi>n</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>-</mo> <mi>j</mi> <mo>+</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> </mfrac> </msqrt> <mo>,</mo> </mtd> <mtd> <mi>i</mi> <mo>=</mo> <mi>j</mi> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> <mo>,</mo> </mtd> <mtd> <mi>i</mi> <mo>></mo> <mi>j</mi> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
Xi is selectediRepresents the ith volume point, and m is 2(n +1) volume points:
<math> <mrow> <msub> <mi>&xi;</mi> <mi>i</mi> </msub> <mo>=</mo> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msqrt> <mi>n</mi> </msqrt> <msub> <mi>a</mi> <mi>j</mi> </msub> <mo>,</mo> </mtd> <mtd> <mi>i</mi> <mo>=</mo> <mn>1,2</mn> <mo>,</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>,</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <msqrt> <mi>n</mi> </msqrt> <msub> <mi>a</mi> <mi>j</mi> </msub> <mo>,</mo> </mtd> <mtd> <mi>i</mi> <mo>=</mo> <mi>n</mi> <mo>+</mo> <mn>2</mn> <mo>,</mo> <mi>n</mi> <mo>+</mo> <mn>3</mn> <mo>,</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>,</mo> <mn>2</mn> <mrow> <mo>(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
wherein n is the number of state quantities, and n is 10; shorthand non-linear multi-dimensional integralQ (f), SSR rules <math> <mrow> <mi>Q</mi> <mrow> <mo>(</mo> <mi>f</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>m</mi> </munderover> <mi>f</mi> <mrow> <mo>(</mo> <msub> <mi>&xi;</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>;</mo> </mrow> </math>
Step 2.4: calculating a state one-step prediction valueCovariance matrix P of sum-step prediction errorsk/k-1: decomposing error covariance matrix P by Choleskyk-1/k-1To obtain Sk-1/k-1
Pk-1/k-1=Sk-1/k-1ST k-1/k-1
Calculate the cubage point (i ═ 1,2, …, n + 1; m ═ 2(n + 1)):
<math> <mrow> <msub> <mi>X</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>S</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msub> <mi>&xi;</mi> <mi>i</mi> </msub> <mo>+</mo> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mrow> </math>
propagating the Cufoundation point through the equation of state:
X* i,k/k-1=f(Xi,k-1/k-1)
estimating a state prediction value at the k moment:
<math> <mrow> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>m</mi> </munderover> <mfrac> <mn>1</mn> <mi>m</mi> </mfrac> <msub> <msup> <mi>X</mi> <mo>*</mo> </msup> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mrow> </math>
estimating the state error covariance at time k:
<math> <mrow> <msub> <mi>P</mi> <mrow> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mi>m</mi> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>m</mi> </munderover> <msub> <msup> <mi>X</mi> <mo>*</mo> </msup> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msub> <msup> <mi>X</mi> <mrow> <mo>*</mo> <mi>T</mi> </mrow> </msup> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msubsup> <mover> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mi>T</mi> </msubsup> <mo>+</mo> <msub> <mi>Q</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>.</mo> </mrow> </math>
further, in the step 3:
calculating a suboptimal fading factor lambda according to a strong tracking principlekThe operation process is as follows:
using current measurement value zkSubtracting the measurement predicted value at the same timeThe residual error at the current moment is obtained as follows:
<math> <mrow> <msub> <mi>&epsiv;</mi> <mi>k</mi> </msub> <mo>=</mo> <msub> <mi>z</mi> <mi>k</mi> </msub> <mo>-</mo> <msub> <mover> <mi>z</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mrow> </math>
taking a covariance matrix of an actual output sequence:
<math> <mrow> <msub> <mi>V</mi> <mi>k</mi> </msub> <mo>=</mo> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mi>&epsiv;</mi> <mn>1</mn> </msub> <msubsup> <mi>&epsiv;</mi> <mn>1</mn> <mi>T</mi> </msubsup> <mo>,</mo> </mtd> <mtd> <mrow> <mo>(</mo> <mi>k</mi> <mo>=</mo> <mn>1</mn> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mfrac> <mrow> <mi>&rho;</mi> <msub> <mi>V</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>&epsiv;</mi> <mi>k</mi> </msub> <msubsup> <mi>&epsiv;</mi> <mi>k</mi> <mi>T</mi> </msubsup> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <mi>&rho;</mi> </mrow> </mfrac> <mo>,</mo> </mtd> <mtd> <mrow> <mo>(</mo> <mi>k</mi> <mo>></mo> <mn>1</mn> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
in the formula, rho is a forgetting factor, and the value range is generally that rho is more than or equal to 0.95 and less than or equal to 0.98;
calculating a matrix:
N k = V k - P T xz , k / k - 1 P k / k - 1 - 1 Q k - 1 P k / k - 1 - 1 P xz , k / k - 1 - R k
Mk=Pzz,k/k-1+Nk-Vk
in the formula Pzz,k/k-1For outputting prediction covariance matrix, Pxz,k/k-1Is a cross variance matrix.
Calculating a suboptimal fading factor lambdak
<math> <mrow> <msub> <mi>&lambda;</mi> <mi>k</mi> </msub> <mo>=</mo> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mi>&lambda;</mi> <mn>0</mn> </msub> <mo>,</mo> </mtd> <mtd> <mrow> <mo>(</mo> <msub> <mi>&lambda;</mi> <mn>0</mn> </msub> <mo>&GreaterEqual;</mo> <mn>1</mn> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> <mo>,</mo> </mtd> <mtd> <mrow> <mo>(</mo> <msub> <mi>&lambda;</mi> <mn>0</mn> </msub> <mo>&lt;</mo> <mn>1</mn> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> <msub> <mi>&lambda;</mi> <mn>0</mn> </msub> <mo>=</mo> <mfrac> <mrow> <mi>tr</mi> <mo>[</mo> <msub> <mi>N</mi> <mi>k</mi> </msub> <mo>]</mo> </mrow> <mrow> <mi>tr</mi> <mo>[</mo> <msub> <mi>M</mi> <mi>k</mi> </msub> <mo>]</mo> </mrow> </mfrac> </mrow> </math>
Where tr [ □ ] represents the traces of the matrix.
Further, the iterative CKF algorithm in step 4:
step 4.1.1: using the formulas in step 2.4 to calculate the one-step predicted value of the stateCovariance matrix P of sum-step prediction errorsk/k-1
Step 4.1.2: calculating an evanescent factor lambdakDecomposition of P by Choleskyk/k-1
Pk/k-1=Sk/k-1ST k/k-1
Calculate the cubage point (i ═ 1,2, …, n + 1; m ═ 2(n + 1)):
<math> <mrow> <msub> <mi>X</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>S</mi> <mrow> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msub> <mi>&xi;</mi> <mi>i</mi> </msub> <mo>+</mo> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mrow> </math>
propagating the Cufoundation point through the observation equation:
Zi,k/k-1=h(Xi,k/k-1)
estimating an observation predicted value at the k moment:
<math> <mrow> <msub> <mover> <mi>z</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mi>m</mi> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>m</mi> </munderover> <msub> <mi>Z</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mrow> </math>
estimating an autocorrelation covariance matrix:
<math> <mrow> <msub> <mi>P</mi> <mrow> <mi>zz</mi> <mo>,</mo> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mo>-</mo> <msub> <mover> <mi>z</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msubsup> <mover> <mi>z</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mi>T</mi> </msubsup> <mo>+</mo> <mfrac> <mn>1</mn> <mi>m</mi> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>m</mi> </munderover> <msub> <mi>Z</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msub> <msup> <mi>Z</mi> <mi>T</mi> </msup> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>R</mi> <mi>k</mi> </msub> </mrow> </math>
estimating cross-correlation covariance matrix:
<math> <mrow> <msub> <mi>P</mi> <mrow> <mi>xz</mi> <mo>,</mo> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mo>-</mo> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msubsup> <mover> <mi>z</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mi>T</mi> </msubsup> <mo>+</mo> <mfrac> <mn>1</mn> <mi>m</mi> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>m</mi> </munderover> <msub> <mi>X</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msub> <msup> <mi>Z</mi> <mi>T</mi> </msup> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mrow> </math>
calculating the fading factor lambda according to the step 3k
Step 4.1.3: using the determined fading factor lambdakFor state prediction covariance matrix Pk/k-1The following transformations are performed:
<math> <mrow> <msub> <mi>P</mi> <mrow> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>&lambda;</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mfrac> <mn>1</mn> <mi>m</mi> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>m</mi> </munderover> <msub> <msup> <mi>X</mi> <mo>*</mo> </msup> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msubsup> <mi>X</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mrow> <mo>*</mo> <mi>T</mi> </mrow> </msubsup> <mo>-</mo> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msubsup> <mover> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mi>T</mi> </msubsup> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>Q</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mrow> </math>
step 4.2.1: the measurement is updated byAnd Pk/k-1An iterative process of initial values. Let the estimate and variance of the ith iteration beAnd(i=0,1,2,…,Nmax):
step 4.2.2: new factorizations and volume points are generated, chol (□) represents the Cholesky decomposition of the matrix:
S ^ k ( i ) = chol ( P k ( i ) )
<math> <mrow> <msubsup> <mi>X</mi> <mrow> <mi>j</mi> <mo>,</mo> <mi>k</mi> </mrow> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </msubsup> <mo>=</mo> <msubsup> <mover> <mi>S</mi> <mo>^</mo> </mover> <mi>k</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </msubsup> <msub> <mi>&xi;</mi> <mi>j</mi> </msub> <mo>+</mo> <msubsup> <mover> <mi>x</mi> <mo>^</mo> </mover> <mi>k</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </msubsup> </mrow> </math>
in which ξjRepresents the jth volume point;
step 4.2.3: with P in step 4.1.3k/k-1Recalculating the formulas in step 4.1.2 to obtain Pzz,k/k-1、Pxz,k/k-1
Calculate the state and variance estimates for the ith iteration:
W k ( i ) = P xz , k ( i ) ( P zz , k ( i ) ) - 1
x ^ k ( i + 1 ) = x ^ k / k - 1 + W k ( i ) [ z k - h ( x ^ k ( i ) ) - ( P xz , k ( i ) ) T ( P k / k - 1 ) - 1 ( x ^ k / k - 1 - x ^ k ( i ) ) ]
P k ( i + 1 ) = P k / k - 1 - W k ( i ) ( P zz , k ( i ) ) ( W k ( i ) ) T
step 4.2.4: if the iteration number is N when the iteration is terminated, the state estimation and covariance at the moment k are as follows:
x ^ k = x ^ k ( N ) , P k = P k ( N ) .
the invention discloses an initial alignment method based on ISTSSRCKF, which adopts SSR rules to select volume points of CKF; introducing an evanescent factor in the strong tracking filtering into a time and measurement updating equation of the CKF; and introducing and improving corresponding innovation variance and covariance in an iterative process by using a Gauss-Newton iterative algorithm. For the initial alignment problem under the conditions of large misalignment angle and base shaking, the invention reduces excessive sampling points in high-order CKF by adopting SSR rule sampling, introduces a strong tracking algorithm to overcome the problem of performance reduction of the CKF when the model is inaccurate, and fully utilizes the latest measurement information by using an iterative process, thereby effectively reducing the state estimation error and obtaining the initial alignment precision superior to the standard CKF.
Has the advantages that: compared with the prior art, the invention has the following advantages:
1) the problem that CKF alignment precision is reduced under the conditions of shaking the base and large misalignment angle is solved, and high-precision initial attitude information is provided for accurate navigation and positioning of the strapdown inertial navigation system.
2) The sampling points are selected according to the SSR rules, so that the problem of excessive high-order CKF sampling points is solved, the operation complexity is reduced, and the calculation precision is improved.
3) In order to solve the problem of performance reduction of the CKF when the model is inaccurate, an evanescence factor in a strong tracking algorithm is introduced into a time and measurement updating equation of the CKF. A Gauss-Newton iterative algorithm is introduced, the latest measurement information is fully utilized in the iterative process, and the innovation variance and covariance generated in the iterative process are improved, so that the state estimation error can be effectively reduced, and the alignment precision superior to the standard CKF is obtained.
Drawings
FIG. 1 is an installation view of a three-axis gyroscope and three-axis accelerometer of the present invention.
FIG. 2 is a diagram of an alignment scheme of the SINS shaking base of the present invention.
Fig. 3 is a schematic diagram of an initial alignment method based on the istsssrckf according to the present invention.
FIG. 4 is a rocking simulation diagram of the pitch angle, roll angle and course angle of the rocking base according to the present invention.
Fig. 5 is a simulation diagram of the output of the SINS three-axis gyroscope of the present invention.
FIG. 6 is a simulation diagram of the output of the SINS triaxial accelerometer of the present invention.
FIG. 7 is a diagram of the initial alignment pitch angle error under the SINS shaking base of the present invention.
FIG. 8 is a diagram of the initial alignment roll angle error under the SINS shaking base of the present invention.
FIG. 9 is a diagram of the initial alignment course angle error under the SINS shaking base according to the present invention.
Detailed Description
The present invention will be further described with reference to the accompanying drawings.
Step 1: establishing an SINS shaking base alignment model under a large misalignment angle state, wherein the alignment model comprises a SINS nonlinear error model, a nonlinear filtering state model and a nonlinear filtering measurement model:
wherein, the process of establishing the SINS nonlinear error model is as follows:
step 1.1: a northeast geographic coordinate system is used as a navigation coordinate system n, a coordinate system formed by a carrier right front upper direction vector right hand rule is used as a carrier coordinate system b, and the real attitude angle isTrue velocity of v s n = v e n v n n v u n T , The real geographic coordinate is p ═ L lambda H]T(ii) a The attitude actually solved by SINS isAt a speed of v ~ s n = v ~ e n v ~ n n v ~ u n T , The geographic coordinates are <math> <mrow> <mover> <mi>p</mi> <mo>~</mo> </mover> <mo>=</mo> <msup> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mover> <mi>L</mi> <mo>~</mo> </mover> </mtd> <mtd> <mover> <mi>&lambda;</mi> <mo>~</mo> </mover> </mtd> <mtd> <mover> <mi>H</mi> <mo>~</mo> </mover> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> <mo>,</mo> </mrow> </math> Recording a coordinate system established by the geographical position solved by the SINS as a calculation navigation coordinate system n', and defining SINS attitude angle and speed error asPhi and vnThe differential equation of (a) is as follows:
<math> <mrow> <mover> <mi>&phi;</mi> <mo>&CenterDot;</mo> </mover> <mo>=</mo> <msubsup> <mi>C</mi> <mi>&omega;</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>[</mo> <mrow> <mo>(</mo> <msubsup> <mrow> <mi>I</mi> <mo>-</mo> <mi>C</mi> </mrow> <mi>n</mi> <msup> <mi>n</mi> <mo>&prime;</mo> </msup> </msubsup> <mo>)</mo> </mrow> <msubsup> <mover> <mi>&omega;</mi> <mo>~</mo> </mover> <mi>m</mi> <mi>n</mi> </msubsup> <mo>+</mo> <msubsup> <mi>C</mi> <mi>n</mi> <msup> <mi>n</mi> <mo>&prime;</mo> </msup> </msubsup> <msubsup> <mi>&delta;&omega;</mi> <mi>in</mi> <mi>n</mi> </msubsup> <mo>-</mo> <msubsup> <mi>C</mi> <mi>b</mi> <msup> <mi>n</mi> <mo>&prime;</mo> </msup> </msubsup> <mrow> <mo>(</mo> <msup> <mi>&epsiv;</mi> <mi>b</mi> </msup> <mo>+</mo> <msubsup> <mi>&omega;</mi> <mi>g</mi> <mi>b</mi> </msubsup> <mo>)</mo> </mrow> <mo>]</mo> </mrow> </math>
<math> <mrow> <mi>&delta;</mi> <msup> <mover> <mi>v</mi> <mo>&CenterDot;</mo> </mover> <mi>n</mi> </msup> <mo>=</mo> <mo>[</mo> <mi>I</mi> <mo>-</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>C</mi> <mi>n</mi> <msup> <mi>n</mi> <mo>&prime;</mo> </msup> </msubsup> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mo>]</mo> <msubsup> <mi>C</mi> <mi>b</mi> <msup> <mi>n</mi> <mo>&prime;</mo> </msup> </msubsup> <msup> <mover> <mi>f</mi> <mo>~</mo> </mover> <mi>b</mi> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>C</mi> <mi>n</mi> <msup> <mi>n</mi> <mo>&prime;</mo> </msup> </msubsup> <mo>)</mo> </mrow> <mi>T</mi> </msup> <msubsup> <mi>C</mi> <mi>b</mi> <msup> <mi>n</mi> <mo>&prime;</mo> </msup> </msubsup> <mrow> <mo>(</mo> <msup> <mo>&dtri;</mo> <mi>b</mi> </msup> <mo>+</mo> <msubsup> <mi>&omega;</mi> <mi>a</mi> <mi>b</mi> </msubsup> <mo>)</mo> </mrow> <mo>-</mo> <mrow> <mo>(</mo> <msubsup> <mrow> <mn>2</mn> <mi>&delta;&omega;</mi> </mrow> <mi>ie</mi> <mi>n</mi> </msubsup> <mo>+</mo> <msubsup> <mi>&delta;&omega;</mi> <mi>en</mi> <mi>n</mi> </msubsup> <mo>)</mo> </mrow> <mo>&times;</mo> <msubsup> <mover> <mi>v</mi> <mo>~</mo> </mover> <mi>s</mi> <mi>n</mi> </msubsup> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <msubsup> <mover> <mi>&omega;</mi> <mo>~</mo> </mover> <mi>en</mi> <mi>n</mi> </msubsup> <mo>+</mo> <msubsup> <mover> <mi>&omega;</mi> <mo>~</mo> </mover> <mi>en</mi> <mi>n</mi> </msubsup> <mo>)</mo> </mrow> <mo>&times;</mo> <mi>&delta;</mi> <msup> <mi>v</mi> <mi>n</mi> </msup> </mrow> </math>
wherein phi is [ phi ]e φn φu]TV is the pitch angle, roll angle and course angle errorn=[ve vn vu]TIs east and northAnd the error of the speed in the direction of the sky, <math> <mrow> <msup> <mi>&epsiv;</mi> <mi>b</mi> </msup> <mo>=</mo> <msup> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msubsup> <mi>&epsiv;</mi> <mi>x</mi> <mi>b</mi> </msubsup> </mtd> <mtd> <msubsup> <mi>&epsiv;</mi> <mi>y</mi> <mi>b</mi> </msubsup> </mtd> <mtd> <msubsup> <mi>&epsiv;</mi> <mi>z</mi> <mi>b</mi> </msubsup> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> </mrow> </math> b is the constant error of the lower triaxial gyro,is b is the random error of the lower three-axis gyroscope, <math> <mrow> <msup> <mo>&dtri;</mo> <mi>b</mi> </msup> <mo>=</mo> <msup> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msubsup> <mo>&dtri;</mo> <mi>x</mi> <mi>b</mi> </msubsup> </mtd> <mtd> <msubsup> <mo>&dtri;</mo> <mi>y</mi> <mi>b</mi> </msubsup> </mtd> <mtd> <msubsup> <mo>&dtri;</mo> <mi>z</mi> <mi>b</mi> </msubsup> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> </mrow> </math> b is the constant error of the lower triaxial accelerometer,to be b is the random error of the lower three-axis accelerometer,is the actual output of the accelerometer,for the speed of the solution of the SINS,for the calculated angular velocity of rotation in the navigation coordinate system,for the purpose of calculating the angular velocity of rotation of the earth,for the calculated angular velocity of the navigation coordinate system relative to the earth's rotation, to correspond toThe error in the calculation of (a) is,n is a rotation angle phi in sequencee、φn、φuObtaining a directional cosine matrix formed by n',is a state transition matrix from b series to n' series, i.e. a calculated attitude matrix, CwFor coefficient matrix of Euler angle differential equation, superscript T represents transposition, matrixAnd CwThe method specifically comprises the following steps:
<math> <mrow> <msubsup> <mi>C</mi> <mi>n</mi> <msup> <mi>n</mi> <mo>,</mo> </msup> </msubsup> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mrow> <mi>cos</mi> <mi>&phi;</mi> </mrow> <mi>n</mi> </msub> <mi>cos</mi> <msub> <mi>&phi;</mi> <mi>u</mi> </msub> <mo>-</mo> <mi>sin</mi> <msub> <mi>&phi;</mi> <mi>n</mi> </msub> <msub> <mrow> <mi>sin</mi> <mi>&phi;</mi> </mrow> <mi>e</mi> </msub> <msub> <mrow> <mi>sin</mi> <mi>&phi;</mi> </mrow> <mi>u</mi> </msub> </mtd> <mtd> <msub> <mrow> <mi>cos</mi> <mi>&phi;</mi> </mrow> <mi>n</mi> </msub> <msub> <mrow> <mi>sin</mi> <mi>&phi;</mi> </mrow> <mi>u</mi> </msub> <mo>+</mo> <msub> <mrow> <mi>sin</mi> <mi>&phi;</mi> </mrow> <mi>n</mi> </msub> <msub> <mrow> <mi>sin</mi> <mi>&phi;</mi> </mrow> <mi>e</mi> </msub> <mi>cos</mi> <msub> <mi>&phi;</mi> <mi>u</mi> </msub> </mtd> <mtd> <mo>-</mo> <msub> <mrow> <mi>sin</mi> <mi>&phi;</mi> </mrow> <mi>n</mi> </msub> <mi>cos</mi> <msub> <mi>&phi;</mi> <mi>e</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mrow> <mo>-</mo> <mi>cos</mi> <mi>&phi;</mi> </mrow> <mi>e</mi> </msub> <mi>sin</mi> <msub> <mi>&phi;</mi> <mi>u</mi> </msub> </mtd> <mtd> <msub> <mrow> <mi>cos</mi> <mi>&phi;</mi> </mrow> <mi>e</mi> </msub> <mi>cos</mi> <msub> <mi>&phi;</mi> <mi>u</mi> </msub> </mtd> <mtd> <mrow> <mi>sin</mi> <msub> <mi>&phi;</mi> <mi>e</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mrow> <mi>sin</mi> <mi>&phi;</mi> </mrow> <mi>n</mi> </msub> <mi>cos</mi> <msub> <mi>&phi;</mi> <mi>u</mi> </msub> <mo>+</mo> <msub> <mrow> <mi>cos</mi> <mi>&phi;</mi> </mrow> <mi>n</mi> </msub> <msub> <mrow> <mi>sin</mi> <mi>&phi;</mi> </mrow> <mi>e</mi> </msub> <mi>sin</mi> <msub> <mi>&phi;</mi> <mi>u</mi> </msub> </mtd> <mtd> <msub> <mrow> <mi>sin</mi> <mi>&phi;</mi> </mrow> <mi>n</mi> </msub> <mi>sin</mi> <msub> <mi>&phi;</mi> <mi>u</mi> </msub> <mo>-</mo> <mi>cos</mi> <msub> <mi>&phi;</mi> <mi>n</mi> </msub> <mi>sin</mi> <msub> <mi>&phi;</mi> <mi>e</mi> </msub> <msub> <mrow> <mi>sin</mi> <mi>&phi;</mi> </mrow> <mi>u</mi> </msub> </mtd> <mtd> <mi>cos</mi> <msub> <mi>&phi;</mi> <mi>n</mi> </msub> <msub> <mrow> <mi>cos</mi> <mi>&phi;</mi> </mrow> <mi>e</mi> </msub> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
<math> <mrow> <msub> <mi>C</mi> <mi>w</mi> </msub> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mrow> <mi>cos</mi> <mi>&phi;</mi> </mrow> <mi>n</mi> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mrow> <mo>-</mo> <mi>sin</mi> <mi>&phi;</mi> </mrow> <mi>n</mi> </msub> <msub> <mrow> <mi>cos</mi> <mi>&phi;</mi> </mrow> <mi>e</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <msub> <mrow> <mi>sin</mi> <mi>&phi;</mi> </mrow> <mi>e</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mi>sin</mi> <msub> <mi>&phi;</mi> <mi>n</mi> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mrow> <mi>cos</mi> <mi>&phi;</mi> </mrow> <mi>n</mi> </msub> <msub> <mrow> <mi>cos</mi> <mi>&phi;</mi> </mrow> <mi>e</mi> </msub> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
the nonlinear filtering state model establishing process comprises the following steps:
step 1.2: taking the Euler platform error angle phi of the SINSe、φn、φuVelocity error ve、vnAnd b is the gyro constant errorConstant error of accelerometer under b systemConstructing state vectors <math> <mrow> <mi>x</mi> <mo>=</mo> <msup> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>&phi;</mi> <mi>e</mi> </msub> </mtd> <mtd> <msub> <mi>&phi;</mi> <mi>n</mi> </msub> </mtd> <mtd> <msub> <mi>&phi;</mi> <mi>u</mi> </msub> </mtd> <mtd> <mi>&delta;</mi> <msub> <mi>v</mi> <mi>e</mi> </msub> </mtd> <mtd> <mi>&delta;</mi> <msub> <mi>v</mi> <mi>n</mi> </msub> </mtd> <mtd> <msubsup> <mi>&epsiv;</mi> <mi>x</mi> <mi>b</mi> </msubsup> </mtd> <mtd> <msubsup> <mi>&epsiv;</mi> <mi>y</mi> <mi>b</mi> </msubsup> </mtd> <mtd> <msubsup> <mi>&epsiv;</mi> <mi>z</mi> <mi>b</mi> </msubsup> </mtd> <mtd> <msubsup> <mo>&dtri;</mo> <mi>x</mi> <mi>b</mi> </msubsup> </mtd> <mtd> <msubsup> <mo>&dtri;</mo> <mi>y</mi> <mi>b</mi> </msubsup> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> <mo>,</mo> </mrow> </math> Under the shaking baseAndapproximately zero, the state equation for the nonlinear filtering can be simplified as:
<math> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <mover> <mi>&phi;</mi> <mo>&CenterDot;</mo> </mover> <mo>=</mo> <msubsup> <mi>C</mi> <mi>&omega;</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>[</mo> <mrow> <mo>(</mo> <mi>I</mi> <mo>-</mo> <msubsup> <mi>C</mi> <mi>n</mi> <msup> <mi>n</mi> <mo>&prime;</mo> </msup> </msubsup> <mo>)</mo> </mrow> <msubsup> <mover> <mi>&omega;</mi> <mo>^</mo> </mover> <mi>m</mi> <mi>n</mi> </msubsup> <mo>+</mo> <msubsup> <mi>C</mi> <mi>n</mi> <msup> <mi>n</mi> <mo>&prime;</mo> </msup> </msubsup> <msubsup> <mi>&delta;&omega;</mi> <mi>in</mi> <mi>n</mi> </msubsup> <mo>-</mo> <msubsup> <mi>C</mi> <mi>b</mi> <msup> <mi>n</mi> <mo>&prime;</mo> </msup> </msubsup> <msup> <mi>&epsiv;</mi> <mi>b</mi> </msup> <mo>]</mo> <mo>+</mo> <msub> <mi>&omega;</mi> <mi>g</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mi>&delta;</mi> <msup> <mover> <mi>v</mi> <mo>&CenterDot;</mo> </mover> <mi>n</mi> </msup> <mo>=</mo> <mo>[</mo> <mi>I</mi> <mo>-</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>C</mi> <mi>n</mi> <msup> <mi>n</mi> <mo>&prime;</mo> </msup> </msubsup> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mo>]</mo> <msubsup> <mi>C</mi> <mi>b</mi> <msup> <mi>n</mi> <mo>&prime;</mo> </msup> </msubsup> <msup> <mover> <mi>f</mi> <mo>^</mo> </mover> <mi>b</mi> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>C</mi> <mi>b</mi> <msup> <mi>n</mi> <mo>&prime;</mo> </msup> </msubsup> <mo>)</mo> </mrow> <mi>T</mi> </msup> <msubsup> <mi>C</mi> <mi>b</mi> <msup> <mi>n</mi> <mo>&prime;</mo> </msup> </msubsup> <msup> <mo>&dtri;</mo> <mi>b</mi> </msup> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <msubsup> <mover> <mi>&omega;</mi> <mo>^</mo> </mover> <mi>ie</mi> <mi>n</mi> </msubsup> <mo>+</mo> <msubsup> <mover> <mi>&omega;</mi> <mo>^</mo> </mover> <mi>en</mi> <mi>n</mi> </msubsup> <mo>)</mo> </mrow> <mo>&times;</mo> <msup> <mi>&delta;v</mi> <mi>n</mi> </msup> <mo>+</mo> <msub> <mi>&omega;</mi> <mi>a</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msup> <mover> <mi>&epsiv;</mi> <mo>&CenterDot;</mo> </mover> <mi>b</mi> </msup> <mo>=</mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <msup> <mover> <mo>&dtri;</mo> <mo>&CenterDot;</mo> </mover> <mi>b</mi> </msup> <mo>=</mo> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> </math>
wherein,taking only the first two-dimensional state, ω (t) ═ ωg ωa 01×3 01×2]TFor the zero-mean white gaussian noise process, the nonlinear filter state equation is simplified as:
<math> <mrow> <mover> <mi>x</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>&omega;</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </math>
the nonlinear measurement equation is established as follows:
step 1.3: the true velocity denoted by b is vbThe actual speed under b isAttitude matrix handlebar resolved by SINSIs converted intoTo be provided withAndthe east and north velocity components in (b) are used as matching information sources, and then the measurement equation of the nonlinear filtering is:
<math> <mrow> <mi>z</mi> <mo>=</mo> <msubsup> <mover> <mi>v</mi> <mo>~</mo> </mover> <mi>s</mi> <mi>n</mi> </msubsup> <mo>-</mo> <msubsup> <mi>C</mi> <mi>b</mi> <msup> <mi>n</mi> <mo>&prime;</mo> </msup> </msubsup> <msup> <mover> <mi>v</mi> <mo>~</mo> </mover> <mi>b</mi> </msup> <mo>=</mo> <mi>&delta;</mi> <msup> <mi>v</mi> <mi>n</mi> </msup> <mo>-</mo> <mo>[</mo> <mi>I</mi> <mo>-</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>C</mi> <mi>n</mi> <msup> <mi>n</mi> <mo>&prime;</mo> </msup> </msubsup> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mo>]</mo> <msubsup> <mi>C</mi> <mi>b</mi> <msup> <mi>n</mi> <mo>&prime;</mo> </msup> </msubsup> <msup> <mi>v</mi> <mi>b</mi> </msup> <mo>+</mo> <mi>v</mi> </mrow> </math>
taking the former two dimensions of z as an observed value, taking v as a zero-mean Gaussian white noise process, and summarizing the continuous nonlinear filtering measurement equation as:
z(t)=h(x,t)+v(t)
step 2: with a sampling period TsAs a filter period, and with TsFor discretization of the step size, willDiscretization into xk=xk-1+[f(xk-1,tk-1)+ω(tk-1)]TsThe equation of state can be found:
xk=f(xk-1)+ωk-1
the measurement equation z (t) is discretized into z (h (x, t) + v (t)k=h(xk,tk)+v(tk) The measurement equation can be obtained:
zk=h(xk)+vk
step 2.1: the following discrete nonlinear system is composed of a state equation and a measurement equation:
<math> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mi>x</mi> <mi>k</mi> </msub> <mo>=</mo> <mi>f</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>&omega;</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>z</mi> <mi>k</mi> </msub> <mo>=</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>v</mi> <mi>k</mi> </msub> </mtd> </mtr> </mtable> </mfenced> </math>
in the formula, xkIs the state vector of the system at the moment k; z is a radical ofkMeasured value of system state at k moment; random system noise omegak~N(0,Qk) (ii) a Random observation noise vk~N(0,Rk)。
Step 2.2: setting system state initial valueInitial error covariance matrix:
P0=diag{(1°)2(1°)2(10°)2(0.1)2(0.1)2
(0.01°/h)2(0.01°/h)2(0.01°/h)2(100μg)2(100μg)2}*10
and to P0Cholesky decomposition is carried out to obtain the characteristic square root S of the initial error covariance matrix0
Step 2.3: sampling points are taken by adopting an SSR rule, and a group of vectors are taken as follows: a isj=[aj,1 aj,2 … aj,n]TJ is 1,2, …, n +1, where n is the number of state quantities, then
<math> <mrow> <msub> <mi>a</mi> <mrow> <mi>j</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>&equiv;</mo> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <mo>-</mo> <msqrt> <mfrac> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> <mrow> <mi>n</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>-</mo> <mi>i</mi> <mo>+</mo> <mn>2</mn> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>n</mi> <mo>-</mo> <mi>i</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </mfrac> </msqrt> <mo>,</mo> </mtd> <mtd> <mi>i</mi> <mo>&lt;</mo> <mi>j</mi> </mtd> </mtr> <mtr> <mtd> <msqrt> <mfrac> <mrow> <mrow> <mo>(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>n</mi> <mo>-</mo> <mi>j</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> <mrow> <mi>n</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>-</mo> <mi>j</mi> <mo>+</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> </mfrac> </msqrt> <mo>,</mo> </mtd> <mtd> <mi>i</mi> <mo>=</mo> <mi>j</mi> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> <mo>,</mo> </mtd> <mtd> <mi>i</mi> <mo>></mo> <mi>j</mi> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> </mrow> </math>
Xi is selectediRepresents the ith volume point, and m is 2(n +1) volume points:
<math> <mrow> <msub> <mi>&xi;</mi> <mi>i</mi> </msub> <mo>=</mo> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msqrt> <mi>n</mi> </msqrt> <msub> <mi>a</mi> <mi>j</mi> </msub> <mo>,</mo> </mtd> <mtd> <mi>i</mi> <mo>=</mo> <mn>1,2</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <msqrt> <mi>n</mi> </msqrt> <msub> <mi>a</mi> <mi>j</mi> </msub> <mo>,</mo> </mtd> <mtd> <mi>i</mi> <mo>=</mo> <mi>n</mi> <mo>+</mo> <mn>2</mn> <mo>,</mo> <mi>n</mi> <mo>+</mo> <mn>3</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mn>2</mn> <mrow> <mo>(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
wherein n is the number of state quantities, and n is 10; shorthand non-linear multi-dimensional integralQ (f), SSR rules <math> <mrow> <mi>Q</mi> <mrow> <mo>(</mo> <mi>f</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>m</mi> </munderover> <mi>f</mi> <mrow> <mo>(</mo> <msub> <mi>&xi;</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>.</mo> </mrow> </math>
Step 2.4: calculating a state one-step prediction valueCovariance matrix of sum-step prediction errorsDecomposing error covariance matrix P by Choleskyk-1/k-1To obtain Sk-1/k-1
Pk-1/k-1=Sk-1/k-1ST k-1/k-1
Calculate the cubage point (i ═ 1,2, …, n + 1; m ═ 2(n + 1)):
<math> <mrow> <msub> <mi>X</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>S</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msub> <mi>&xi;</mi> <mi>i</mi> </msub> <mo>+</mo> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mrow> </math>
propagating the Cufoundation point through the equation of state:
X* i,k/k-1=f(Xi,k-1/k-1)
estimating a state prediction value at the k moment:
<math> <mrow> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>m</mi> </munderover> <mfrac> <mn>1</mn> <mi>m</mi> </mfrac> <msub> <msup> <mi>X</mi> <mo>*</mo> </msup> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mrow> </math>
estimating the state error covariance at time k:
<math> <mrow> <msub> <mi>P</mi> <mrow> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mi>m</mi> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>m</mi> </munderover> <msub> <msup> <mi>X</mi> <mo>*</mo> </msup> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msub> <msup> <mi>X</mi> <mrow> <mo>*</mo> <mi>T</mi> </mrow> </msup> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msubsup> <mover> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mi>T</mi> </msubsup> <mo>+</mo> <msub> <mi>Q</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mrow> </math>
and step 3: using current measurement value zkSubtracting the measurement predicted value at the same timeThe residual error at the current moment is obtained as follows:
<math> <mrow> <msub> <mi>&epsiv;</mi> <mi>k</mi> </msub> <mo>=</mo> <msub> <mi>z</mi> <mi>k</mi> </msub> <mo>-</mo> <msub> <mover> <mi>z</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mrow> </math>
taking a covariance matrix of an actual output sequence:
<math> <mrow> <msub> <mi>V</mi> <mi>k</mi> </msub> <mo>=</mo> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mi>&epsiv;</mi> <mn>1</mn> </msub> <msubsup> <mi>&epsiv;</mi> <mn>1</mn> <mi>T</mi> </msubsup> <mo>,</mo> </mtd> <mtd> <mrow> <mo>(</mo> <mi>k</mi> <mo>=</mo> <mn>1</mn> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mfrac> <mrow> <mi>&rho;</mi> <msub> <mi>V</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>&epsiv;</mi> <mi>k</mi> </msub> <msubsup> <mi>&epsiv;</mi> <mi>k</mi> <mi>T</mi> </msubsup> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <mi>&rho;</mi> </mrow> </mfrac> <mo>,</mo> </mtd> <mtd> <mrow> <mo>(</mo> <mi>k</mi> <mo>></mo> <mn>1</mn> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
in the formula, rho is a forgetting factor, and the value range is generally that rho is more than or equal to 0.95 and less than or equal to 0.98;
calculating a matrix:
N k = V k - P T xz , k / k - 1 P k / k - 1 - 1 Q k - 1 P k / k - 1 - 1 P xz , k / k - 1 - R k
Mk=Pzz,k/k-1+Nk-Vk
in the formula Pzz,k/k-1For outputting prediction covariance matrix, Pxz,k/k-1Is a cross variance matrix.
Calculating a suboptimal fading factor lambdak
<math> <mrow> <msub> <mi>&lambda;</mi> <mi>k</mi> </msub> <mo>=</mo> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mi>&lambda;</mi> <mn>0</mn> </msub> <mo>,</mo> </mtd> <mtd> <mrow> <mo>(</mo> <msub> <mi>&lambda;</mi> <mn>0</mn> </msub> <mo>&GreaterEqual;</mo> <mn>1</mn> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> <mo>,</mo> </mtd> <mtd> <mrow> <mo>(</mo> <msub> <mi>&lambda;</mi> <mn>0</mn> </msub> <mo>&lt;</mo> <mn>1</mn> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> <msub> <mi>&lambda;</mi> <mn>0</mn> </msub> <mo>=</mo> <mfrac> <mrow> <mi>tr</mi> <mo>[</mo> <msub> <mi>N</mi> <mi>k</mi> </msub> <mo>]</mo> </mrow> <mrow> <mi>tr</mi> <mo>[</mo> <msub> <mi>M</mi> <mi>k</mi> </msub> <mo>]</mo> </mrow> </mfrac> </mrow> </math>
Where tr [ □ ] represents the traces of the matrix.
And 4, step 4: time-updated predictive estimatesAnd the predicted variance Pk/k-1Performing an iterative process for the initial value, performing NmaxPerforming secondary iteration to complete measurement updating;
the iterative CKF algorithm process is as follows:
step 4.1.1: using the formulas in step 2.4 to calculate the one-step predicted value of the stateCovariance matrix P of sum-step prediction errorsk/k-1
Step 4.1.2: calculating an evanescent factor lambdakDecomposition of P by Choleskyk/k-1
Pk/k-1=Sk/k-1ST k/k-1
Calculate the cubage point (i ═ 1,2, …, n + 1; m ═ 2(n + 1)):
<math> <mrow> <msub> <mi>X</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>S</mi> <mrow> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msub> <mi>&xi;</mi> <mi>i</mi> </msub> <mo>+</mo> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mrow> </math>
propagating the Cufoundation point through the observation equation:
Zi,k/k-1=h(Xi,k/k-1)
estimating an observation predicted value at the k moment:
<math> <mrow> <msub> <mover> <mi>z</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mi>m</mi> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>m</mi> </munderover> <msub> <mi>Z</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mrow> </math>
estimating an autocorrelation covariance matrix:
<math> <mrow> <msub> <mi>P</mi> <mrow> <mi>zz</mi> <mo>,</mo> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mo>-</mo> <msub> <mover> <mi>z</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msubsup> <mover> <mi>z</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mi>T</mi> </msubsup> <mo>+</mo> <mfrac> <mn>1</mn> <mi>m</mi> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>m</mi> </munderover> <msub> <mi>Z</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msub> <msup> <mi>Z</mi> <mi>T</mi> </msup> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>R</mi> <mi>k</mi> </msub> </mrow> </math>
estimating cross-correlation covariance matrix:
<math> <mrow> <msub> <mi>P</mi> <mrow> <mi>xz</mi> <mo>,</mo> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mo>-</mo> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msubsup> <mover> <mi>z</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mi>T</mi> </msubsup> <mo>+</mo> <mfrac> <mn>1</mn> <mi>m</mi> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>m</mi> </munderover> <msub> <mi>X</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msub> <msup> <mi>Z</mi> <mi>T</mi> </msup> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mrow> </math>
calculating the fading factor lambda according to the step 3k
Step 4.1.3: using the determined fading factor lambdakFor state prediction covariance matrix Pk/k-1The following transformations are performed:
<math> <mrow> <msub> <mi>P</mi> <mrow> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>&lambda;</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mfrac> <mn>1</mn> <mi>m</mi> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>m</mi> </munderover> <msub> <msup> <mi>X</mi> <mo>*</mo> </msup> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msubsup> <mi>X</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mrow> <mo>*</mo> <mi>T</mi> </mrow> </msubsup> <mo>-</mo> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msubsup> <mover> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mi>T</mi> </msubsup> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>Q</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mrow> </math>
step 4.2.1: the measurement is updated byAnd Pk/k-1An iterative process of initial values. Let the estimate and variance of the ith iteration beAnd(i=0,1,2,…,Nmax):
step 4.2.2: new factorizations and volume points are generated, chol (□) represents the Cholesky decomposition of the matrix:
S ^ k ( i ) = chol ( P k ( i ) )
<math> <mrow> <msubsup> <mi>X</mi> <mrow> <mi>j</mi> <mo>,</mo> <mi>k</mi> </mrow> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </msubsup> <mo>=</mo> <msubsup> <mover> <mi>S</mi> <mo>^</mo> </mover> <mi>k</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </msubsup> <msub> <mi>&xi;</mi> <mi>j</mi> </msub> <mo>+</mo> <msubsup> <mover> <mi>x</mi> <mo>^</mo> </mover> <mi>k</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </msubsup> </mrow> </math>
in which ξjRepresenting the jth volume point.
Step 4.2.3: with P in step 4.1.3k/k-1Recalculating the formulas in step 4.1.2 to obtain Pzz,k/k-1、Pxz,k/k-1
Calculate the state and variance estimates for the ith iteration:
W k ( i ) = P xz , k ( i ) ( P zz , k ( i ) ) - 1
x ^ k ( i + 1 ) = x ^ k / k - 1 + W k ( i ) [ z k - h ( x ^ k ( i ) ) - ( P xz , k ( i ) ) T ( P k / k - 1 ) - 1 ( x ^ k / k - 1 - x ^ k ( i ) ) ]
P k ( i + 1 ) = P k / k - 1 - W k ( i ) ( P zz , k ( i ) ) ( W k ( i ) ) T
step 4.2.4: if the iteration number is N when the iteration is terminated, the state estimation and covariance at the moment k are as follows:
x ^ k = x ^ k ( N ) , P k = P k ( N )
and 5: using currently acquired EulerPlatform angle estimateAnd velocity estimateCorrecting SINS resolved attitude matrixAnd velocityTaking the corrected value as the initial value of the next strapdown calculation, and utilizing the currently obtained gyro constant error estimation valueAnd a constant error estimate of the accelerometerCorrecting the gyro output at the next momentAnd output of the accelerometerThe specific correction formula is calculated according to the following formula:
<math> <mrow> <msubsup> <mi>C</mi> <mi>b</mi> <mi>n</mi> </msubsup> <mo>=</mo> <msubsup> <mover> <mi>C</mi> <mo>^</mo> </mover> <msup> <mi>n</mi> <mo>&prime;</mo> </msup> <mi>n</mi> </msubsup> <msubsup> <mi>C</mi> <mi>b</mi> <msup> <mi>n</mi> <mo>&prime;</mo> </msup> </msubsup> <mo>,</mo> <msubsup> <mi>v</mi> <mi>s</mi> <mi>n</mi> </msubsup> <mo>=</mo> <msubsup> <mover> <mi>v</mi> <mo>~</mo> </mover> <mi>s</mi> <mi>n</mi> </msubsup> <mo>-</mo> <mi>&delta;</mi> <msubsup> <mover> <mi>v</mi> <mo>~</mo> </mover> <mi>k</mi> <mi>n</mi> </msubsup> <mo>,</mo> <msubsup> <mi>&omega;</mi> <mi>ib</mi> <mi>b</mi> </msubsup> <mo>=</mo> <msubsup> <mover> <mi>&omega;</mi> <mo>~</mo> </mover> <mi>ib</mi> <mi>b</mi> </msubsup> <mo>-</mo> <msubsup> <mover> <mi>&epsiv;</mi> <mo>~</mo> </mover> <mi>k</mi> <mi>b</mi> </msubsup> <mo>,</mo> <msup> <mi>f</mi> <mi>b</mi> </msup> <msup> <mover> <mi>f</mi> <mo>~</mo> </mover> <mi>b</mi> </msup> <mo>-</mo> <msubsup> <mover> <mo>&dtri;</mo> <mo>^</mo> </mover> <mi>k</mi> <mi>b</mi> </msubsup> </mrow> </math>
and if the precision meets the requirement of initial alignment, ending the process, otherwise, continuously and circularly executing the steps 2-5 until the initial alignment is ended.
Fig. 1 shows that three gyroscopes and three accelerometers are orthogonally and fixedly installed inside an AUV, fig. 2 is a schematic diagram of an alignment scheme of an SINS shaking base according to the present invention, and fig. 3 is a schematic diagram of an initial alignment method based on istsssrckf according to the present invention.
The following description is directed to a generic underwater vehicle.
The following simulation examples are used to illustrate the practical effects of the present invention:
1) ship motion condition and parameter setting
The initial simulation moment is at 32 degrees north latitude and 118 degrees east longitude, and at 20m underwater, under the action of an underwater environment, the three-axis sine swinging motion is respectively carried out around a pitch axis, a roll axis and a heading axis, the swinging amplitudes of a pitch angle theta, a roll angle gamma and a heading angle psi are 10 degrees, 8 degrees and 6 degrees in sequence, the corresponding swinging periods are 6s, 8s and 10s, and curves simulated by the parameters are shown in FIG. 4.
2) Parameter setting for gyros and accelerometers
The strapdown inertial navigation usually adopts a fiber-optic gyroscope and a flexible accelerometer, the constant drift of the gyroscope is 0.02 degree/h, the random drift of the gyroscope is 0.01 degree/h, and the constant offset of the accelerometer is 100 multiplied by 10-6g, random error of accelerometer is 50 × 10-6g (g is gravity acceleration), and simulating the output omega of the three-axis gyroscopex、ωy、ωzAs shown in FIG. 5, the triaxial accelerometer output fx、fy、fzAs shown in fig. 6.
3) Analysis of simulation results
The initial misalignment angle is set to 10 degrees, 10 degrees and 10 degrees, the nonlinear filtering algorithm provided by the invention is used for carrying out the initial alignment of the SINS shaking base, and the pitch angle error phi after the alignment is finishedxRoll angle error phiyAnd course angle error phizAs shown in fig. 7, 8 and 9, respectively. Simulation results show that the nonlinear filtering technology provided by the invention has higher alignment precision under the conditions of a complex water area under the conditions of shaking a base and existence of a large misalignment angle, and can meet the initial alignment requirement of navigation positioning.
The above description is only of the preferred embodiments of the present invention, and it should be noted that: it will be apparent to those skilled in the art that various modifications and adaptations can be made without departing from the principles of the invention and these are intended to be within the scope of the invention.

Claims (4)

1. An inertial navigation initial alignment method based on ISTSRCKF is characterized by comprising the following steps:
step 1: establishing an SINS shaking base alignment model under a large misalignment angle state, wherein the alignment model comprises a SINS nonlinear error model, a nonlinear filtering state model and a nonlinear filtering measurement model:
wherein, the process of establishing the SINS nonlinear error model is as follows:
step 1.1: taking a northeast geographic coordinate system as a navigation coordinate system n and a carrier right front upper direction vector right handA coordinate system is formed by the rule as a carrier coordinate system b, and the real attitude angle isTrue velocity ofThe real geographic coordinate is p ═ L lambda H]T(ii) a The attitude actually solved by SINS isAt a speed ofThe geographic coordinates areRecording a coordinate system established by the geographical position solved by the SINS as a calculation navigation coordinate system n', and defining SINS attitude angle and speed error as Phi and vnThe differential equation of (a) is as follows:
wherein phi is [ phi ]e φn φu]TV is the pitch angle, roll angle and course angle errorn=[ve vn vu]TFor east, north and sky speed errors,b is the constant error of the lower triaxial gyro,is b is the random error of the lower three-axis gyroscope,b is the constant error of the lower triaxial accelerometer,to be b is the random error of the lower three-axis accelerometer,is the actual output of the accelerometer,for the speed of the solution of the SINS,for the calculated angular velocity of rotation in the navigation coordinate system,for the purpose of calculating the angular velocity of rotation of the earth,for the calculated angular velocity of the navigation coordinate system relative to the earth's rotation, to correspond toThe error in the calculation of (a) is,n is a rotation angle phi in sequencee、φn、φuObtaining a directional cosine matrix formed by n',is a state transition matrix from b series to n' series, i.e. a calculated attitude matrix, CwFor coefficient matrix of Euler angle differential equation, superscript T represents transposition, matrixAnd CwThe method specifically comprises the following steps:
the nonlinear filtering state model establishing process comprises the following steps:
step 1.2: taking the Euler platform error angle phi of the SINSe、φn、φuVelocity error ve、vnAnd b is the gyro constant errorConstant error of accelerometer under b systemConstructing state vectorsUnder the shaking baseAndapproximately zero, the state equation for the nonlinear filtering can be simplified as:
wherein,taking only the first two-dimensional state, ω (t) ═ ωg ωa 01×3 01×2]TFor the zero-mean white gaussian noise process, the nonlinear filter state equation is simplified as:
the nonlinear measurement equation is established as follows:
step 1.3: the true velocity denoted by b is vbThe actual speed under b isAttitude matrix handlebar resolved by SINSIs converted intoTo be provided withAndthe east and north velocity components in (b) are used as matching information sources, and then the measurement equation of the nonlinear filtering is:
taking the former two dimensions of z as an observed value, taking v as a zero-mean Gaussian white noise process, and summarizing the continuous nonlinear filtering measurement equation as:
z(t)=h(x,t)+v(t)
step 2: with a sampling period TsAs a filter period, and with TsFor discretization of the step size, willDiscretization into xk=xk-1+[f(xk-1,tk-1)+ω(tk-1)]TsThe equation of state can be found:
xk=f(xk-1)+ωk-1
discretizing z (t) h (x, t) + v (t) to zk=h(xk,tk)+v(tk) The measurement equation can be obtained:
zk=h(xk)+vk
the following discrete nonlinear system is composed of a state equation and a measurement equation:
in the formula, xkIs the state vector of the system at the moment k; z is a radical ofkMeasured value of system state at k moment; random system noise omegak~N(0,Qk) (ii) a Random observation noise vk~N(0,Rk);
And step 3: using current measurement value zkSubtracting the measurement predicted value at the same timeObtaining the residual error of the current momentkCalculating a suboptimal fading factor lambda according to the strong tracking principlekThen using λkCorrection filterA wave time updating process;
and 4, step 4: time-updated predictive estimatesAnd the predicted variance Pk/k-1Performing an iteration process for the initial value, performing a maximum number of iterations NmaxPerforming secondary iteration to complete measurement updating;
and 5: euler plateau angle estimation obtained by filtering with filterAnd velocity estimateCorrecting SINS resolved attitude matrixAnd velocityTaking the corrected value as the initial value of the next strapdown calculation, and utilizing the currently obtained gyro constant error estimation valueAnd a constant error estimate of the accelerometerCorrecting the gyro output at the next momentAnd output of the accelerometerThe specific correction formula is calculated according to the following formula:
and if the precision reaches the preset initial alignment requirement, ending the process, otherwise, continuously and circularly executing the steps 2-5 until the initial alignment is ended.
2. The inertial navigation initial alignment method based on the ISTSRCKF of claim 1, wherein: in the step 2), the step of performing time update according to the obtained discretization model in the framework of the volume kalman filter specifically includes:
step 2.2: setting system state initial valueInitial error covariance matrix:
P0=diag{(1°)2(1°)2(10°)2(0.1)2(0.1)2
(0.01°/h)2(0.01°/h)2(0.01°/h)2(100μg)2(100μg)2}*10
and to P0Cholesky decomposition is carried out to obtain the characteristic square root S of the initial error covariance matrix0
Step 2.3: sampling points are selected by adopting an SSR rule, and the following vectors are taken:
aj=[aj,1 aj,2 … aj,n]Tj is 1, 2., n +1, where n is the number of state quantities, then
Xi is selectediRepresents the ith volume point, and m is 2(n +1) volume points:
wherein n is the number of state quantities, and n is 10; shorthand non-linear multi-dimensional integral
Q (f), SSR rules
Step 2.4: calculating a state one-step prediction valueCovariance matrix P of sum-step prediction errorsk/k-1
Decomposing error covariance matrix P by Choleskyk-1/k-1To obtain Sk-1/k-1
Pk-1/k-1=Sk-1/k-1ST k-1/k-1
Calculate the cubage point (i ═ 1,2, …, n + 1; m ═ 2(n + 1)):
propagating the Cufoundation point through the equation of state:
X* i,k/k-1=f(Xi,k-1/k-1)
estimating a state prediction value at the k moment:
estimating the state error covariance at time k:
3. the inertial navigation initial alignment method based on the ISTSRCKF of claim 1, wherein: in the step 3:
said strong tracking of evidencePrinciple calculation of suboptimal evanescence factor lambdakThe operation process is as follows:
using current measurement value zkSubtracting the measurement predicted value at the same timeThe residual error at the current moment is obtained as follows:
taking a covariance matrix of an actual output sequence:
in the formula, rho is a forgetting factor, and the value range is generally that rho is more than or equal to 0.95 and less than or equal to 0.98;
calculating a matrix:
in the formula Pzz,k/k-1For outputting prediction covariance matrix, Pxz,k/k-1Is a cross variance matrix.
Calculating a suboptimal fading factor lambdak
Where tr [ □ ] represents the traces of the matrix.
4. The inertial navigation initial alignment method based on the ISTSRCKF of claim 1, wherein: the iterative CKF algorithm in step 4:
step 4.1.1: using the formulas in step 2.4 to calculate the one-step predicted value of the stateAnd a stepPrediction error covariance matrix Pk/k-1
Step 4.1.2: calculating an evanescent factor lambdakDecomposition of P by Choleskyk/k-1
Pk/k-1=Sk/k-1ST k/k-1
Calculate the cubage point (i ═ 1,2, …, n + 1; m ═ 2(n + 1)):
propagating the Cufoundation point through the observation equation:
Zi,k/k-1=h(Xi,k/k-1)
estimating an observation predicted value at the k moment:
estimating an autocorrelation covariance matrix:
estimating cross-correlation covariance matrix:
calculating the fading factor lambda according to the step 3k
Step 4.1.3: using the determined fading factor lambdakFor state prediction covariance matrix Pk/k-1The following transformations are performed:
step 4.2.1: the measurement is updated byAnd Pk/k-1An iterative process of initial values. Let the estimate and variance of the ith iteration beAnd
step 4.2.2: new factorizations and volume points are generated, chol (□) represents the Cholesky decomposition of the matrix:
in which ξjRepresents the jth volume point;
step 4.2.3: with P in step 4.1.3k/k-1Recalculating the formulas in step 4.1.2 to obtain Pzz,k/k-1、Pxz,k/k-1
Calculate the state and variance estimates for the ith iteration:
step 4.2.4: if the iteration number is N when the iteration is terminated, the state estimation and covariance at the moment k are as follows:
CN201510063634.6A 2015-02-06 2015-02-06 Inertial navigation Initial Alignment Method based on ISTSSRCKF Active CN104655131B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510063634.6A CN104655131B (en) 2015-02-06 2015-02-06 Inertial navigation Initial Alignment Method based on ISTSSRCKF

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510063634.6A CN104655131B (en) 2015-02-06 2015-02-06 Inertial navigation Initial Alignment Method based on ISTSSRCKF

Publications (2)

Publication Number Publication Date
CN104655131A true CN104655131A (en) 2015-05-27
CN104655131B CN104655131B (en) 2017-07-18

Family

ID=53246535

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510063634.6A Active CN104655131B (en) 2015-02-06 2015-02-06 Inertial navigation Initial Alignment Method based on ISTSSRCKF

Country Status (1)

Country Link
CN (1) CN104655131B (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105021212A (en) * 2015-07-06 2015-11-04 中国人民解放军国防科学技术大学 Initial orientation information assisted rapid transfer alignment method for autonomous underwater vehicle
CN105806363A (en) * 2015-11-16 2016-07-27 东南大学 Alignment method of an underwater large misalignment angle based on SINS (Strapdown Inertial Navigation System)/DVL (Doppler Velocity Log) of SRQKF (Square-root Quadrature Kalman Filter)
CN106153073A (en) * 2016-06-21 2016-11-23 东南大学 A kind of nonlinear initial alignment method of full attitude SINS
CN106595711A (en) * 2016-12-21 2017-04-26 东南大学 Strapdown inertial navigation system coarse alignment method based on recursive quaternion
CN106679648A (en) * 2016-12-08 2017-05-17 东南大学 Vision-inertia integrated SLAM (Simultaneous Localization and Mapping) method based on genetic algorithm
CN106949906A (en) * 2017-03-09 2017-07-14 东南大学 One kind is based on integral form extended state observer large misalignment angle rapid alignment method
CN107063245A (en) * 2017-04-19 2017-08-18 东南大学 A kind of SINS/DVL integrated navigation filtering methods based on 5 rank SSRCKF
CN107729585A (en) * 2016-08-12 2018-02-23 贵州火星探索科技有限公司 A kind of method that noise covariance to unmanned plane is estimated
CN107782309A (en) * 2017-09-21 2018-03-09 天津大学 Noninertial system vision and double tops instrument multi tate CKF fusion attitude measurement methods
CN108225373A (en) * 2017-12-22 2018-06-29 东南大学 A kind of large misalignment angle alignment methods based on improved 5 rank volume Kalman
CN108304612A (en) * 2017-12-26 2018-07-20 南京邮电大学 The car radar method for tracking target of iterative square root CKF based on noise compensation
CN109211276A (en) * 2018-10-30 2019-01-15 东南大学 SINS Initial Alignment Method based on GPR Yu improved SRCKF
CN109829938A (en) * 2019-01-28 2019-05-31 杭州电子科技大学 A kind of self-adapted tolerance volume kalman filter method applied in target following
CN109945895A (en) * 2019-04-09 2019-06-28 扬州大学 Inertial navigation Initial Alignment Method based on the smooth structure changes filtering that fades
CN110567490A (en) * 2019-08-29 2019-12-13 桂林电子科技大学 SINS initial alignment method under large misalignment angle
CN111649745A (en) * 2020-05-18 2020-09-11 北京三快在线科技有限公司 Attitude estimation method and apparatus for electronic device, and storage medium
CN115077530A (en) * 2022-06-16 2022-09-20 哈尔滨工业大学(威海) Multi-AUV collaborative navigation method and system based on strong tracking extended-dimension ECKF algorithm

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101915579A (en) * 2010-07-15 2010-12-15 哈尔滨工程大学 Novel CKF(Crankshaft Fluctuation Sensor)-based SINS (Ship Inertial Navigation System) large misalignment angle initially-aligning method
US20110085702A1 (en) * 2009-10-08 2011-04-14 University Of Southern California Object tracking by hierarchical association of detection responses
CN103471616A (en) * 2013-09-04 2013-12-25 哈尔滨工程大学 Initial alignment method of SINS (strapdown inertial navigation system) with moving base and at large azimuth misalignment angle
CN103759742A (en) * 2014-01-22 2014-04-30 东南大学 Serial inertial navigation nonlinear alignment method based on fuzzy self-adaptation control technology
CN104062672A (en) * 2013-11-28 2014-09-24 哈尔滨工程大学 SINSGPS integrated navigation method based on strong tracking self-adaptive Kalman filtering

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110085702A1 (en) * 2009-10-08 2011-04-14 University Of Southern California Object tracking by hierarchical association of detection responses
CN101915579A (en) * 2010-07-15 2010-12-15 哈尔滨工程大学 Novel CKF(Crankshaft Fluctuation Sensor)-based SINS (Ship Inertial Navigation System) large misalignment angle initially-aligning method
CN103471616A (en) * 2013-09-04 2013-12-25 哈尔滨工程大学 Initial alignment method of SINS (strapdown inertial navigation system) with moving base and at large azimuth misalignment angle
CN104062672A (en) * 2013-11-28 2014-09-24 哈尔滨工程大学 SINSGPS integrated navigation method based on strong tracking self-adaptive Kalman filtering
CN103759742A (en) * 2014-01-22 2014-04-30 东南大学 Serial inertial navigation nonlinear alignment method based on fuzzy self-adaptation control technology

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
SHIYUAN WANG 等: "Spherical Simplex-Radial Cubature Kalman Filter", 《IEEE SIGNAL PROCESSING LETTERS》 *
刘锡祥 等: "基于数据存储与循环解算的SINS快速对准方法", 《中国惯性技术学报》 *
张涛 等: "基于简化无迹Kalman滤波的非线性SINS初始对准", 《中国惯性技术学报》 *

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105021212A (en) * 2015-07-06 2015-11-04 中国人民解放军国防科学技术大学 Initial orientation information assisted rapid transfer alignment method for autonomous underwater vehicle
CN105021212B (en) * 2015-07-06 2017-09-26 中国人民解放军国防科学技术大学 A kind of lower submariner device fast transfer alignment method of initial orientation information auxiliary
CN105806363B (en) * 2015-11-16 2018-08-21 东南大学 The underwater large misalignment angle alignment methods of SINS/DVL based on SRQKF
CN105806363A (en) * 2015-11-16 2016-07-27 东南大学 Alignment method of an underwater large misalignment angle based on SINS (Strapdown Inertial Navigation System)/DVL (Doppler Velocity Log) of SRQKF (Square-root Quadrature Kalman Filter)
CN106153073A (en) * 2016-06-21 2016-11-23 东南大学 A kind of nonlinear initial alignment method of full attitude SINS
CN106153073B (en) * 2016-06-21 2018-10-12 东南大学 A kind of nonlinear initial alignment method of full posture Strapdown Inertial Navigation System
CN107729585B (en) * 2016-08-12 2020-08-28 贵州火星探索科技有限公司 Method for estimating noise covariance of unmanned aerial vehicle
CN107729585A (en) * 2016-08-12 2018-02-23 贵州火星探索科技有限公司 A kind of method that noise covariance to unmanned plane is estimated
CN106679648A (en) * 2016-12-08 2017-05-17 东南大学 Vision-inertia integrated SLAM (Simultaneous Localization and Mapping) method based on genetic algorithm
CN106595711A (en) * 2016-12-21 2017-04-26 东南大学 Strapdown inertial navigation system coarse alignment method based on recursive quaternion
CN106949906B (en) * 2017-03-09 2020-04-24 东南大学 Large misalignment angle rapid alignment method based on integral extended state observer
CN106949906A (en) * 2017-03-09 2017-07-14 东南大学 One kind is based on integral form extended state observer large misalignment angle rapid alignment method
CN107063245A (en) * 2017-04-19 2017-08-18 东南大学 A kind of SINS/DVL integrated navigation filtering methods based on 5 rank SSRCKF
CN107782309A (en) * 2017-09-21 2018-03-09 天津大学 Noninertial system vision and double tops instrument multi tate CKF fusion attitude measurement methods
CN108225373A (en) * 2017-12-22 2018-06-29 东南大学 A kind of large misalignment angle alignment methods based on improved 5 rank volume Kalman
CN108304612B (en) * 2017-12-26 2021-08-10 南京邮电大学 Iterative square root CKF (tracking of target) automobile radar target tracking method based on noise compensation
CN108304612A (en) * 2017-12-26 2018-07-20 南京邮电大学 The car radar method for tracking target of iterative square root CKF based on noise compensation
CN109211276A (en) * 2018-10-30 2019-01-15 东南大学 SINS Initial Alignment Method based on GPR Yu improved SRCKF
CN109829938A (en) * 2019-01-28 2019-05-31 杭州电子科技大学 A kind of self-adapted tolerance volume kalman filter method applied in target following
CN109945895A (en) * 2019-04-09 2019-06-28 扬州大学 Inertial navigation Initial Alignment Method based on the smooth structure changes filtering that fades
CN110567490A (en) * 2019-08-29 2019-12-13 桂林电子科技大学 SINS initial alignment method under large misalignment angle
CN110567490B (en) * 2019-08-29 2022-02-18 桂林电子科技大学 SINS initial alignment method under large misalignment angle
CN111649745A (en) * 2020-05-18 2020-09-11 北京三快在线科技有限公司 Attitude estimation method and apparatus for electronic device, and storage medium
CN111649745B (en) * 2020-05-18 2022-04-05 北京三快在线科技有限公司 Attitude estimation method and apparatus for electronic device, and storage medium
CN115077530A (en) * 2022-06-16 2022-09-20 哈尔滨工业大学(威海) Multi-AUV collaborative navigation method and system based on strong tracking extended-dimension ECKF algorithm
CN115077530B (en) * 2022-06-16 2024-04-23 哈尔滨工业大学(威海) Multi-AUV collaborative navigation method and system based on strong tracking dimension-expanding ECKF algorithm

Also Published As

Publication number Publication date
CN104655131B (en) 2017-07-18

Similar Documents

Publication Publication Date Title
CN104655131B (en) Inertial navigation Initial Alignment Method based on ISTSSRCKF
CN105737823B (en) A kind of GPS/SINS/CNS Combinated navigation methods based on five rank CKF
CN103759742B (en) Serial inertial navigation nonlinear alignment method based on fuzzy adaptivecontroller technology
CN104075715B (en) A kind of underwater navigation localization method of Combining with terrain and environmental characteristic
CN103471616B (en) Initial Alignment Method under a kind of moving base SINS Large azimuth angle condition
CN109931955B (en) Initial alignment method of strap-down inertial navigation system based on state-dependent lie group filtering
CN104344837B (en) Speed observation-based redundant inertial navigation system accelerometer system level calibration method
CN110514203B (en) Underwater integrated navigation method based on ISR-UKF
CN106885569A (en) A kind of missile-borne deep combination ARCKF filtering methods under strong maneuvering condition
CN105424036A (en) Terrain-aided inertial integrated navigational positioning method of low-cost underwater vehicle
CN103389506A (en) Adaptive filtering method for strapdown inertia/Beidou satellite integrated navigation system
CN106767797A (en) A kind of inertia based on dual quaterion/GPS Combinated navigation methods
CN103557864A (en) Initial alignment method for micro electro mechanical system (MEMS) strap-down inertial navigation adaptive square-root cubature Kalman filtering (SCKF)
CN107576327A (en) Varistructure integrated navigation system design method based on Observable degree analysis of Beidou double
CN103344260A (en) Initial alignment method of large azimuth misalignment angle of strapdown inertial navigation system based on RBCKF (rao-black-wellised cubature kalman filter)
CN105091907A (en) Estimation method of installation error of DVL direction in SINS and DVL combination
CN106441291B (en) A kind of integrated navigation system and air navigation aid based on strong tracking SDRE filtering
CN105806363A (en) Alignment method of an underwater large misalignment angle based on SINS (Strapdown Inertial Navigation System)/DVL (Doppler Velocity Log) of SRQKF (Square-root Quadrature Kalman Filter)
CN106153073A (en) A kind of nonlinear initial alignment method of full attitude SINS
CN104374405A (en) MEMS strapdown inertial navigation initial alignment method based on adaptive central difference Kalman filtering
CN112013849A (en) Autonomous positioning method and system for surface ship
Huang et al. A novel positioning module and fusion algorithm for unmanned aerial vehicle monitoring
CN103616026B (en) A kind of AUV control model based on H ∞ filtering is assisted inertial navigation Combinated navigation method
CN109029499A (en) A kind of accelerometer bias iteration optimizing estimation method based on gravity apparent motion model
Gu et al. A Kalman filter algorithm based on exact modeling for FOG GPS/SINS integration

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant