CN104641707A - 物理下行信道的物理资源的指示方法及装置 - Google Patents

物理下行信道的物理资源的指示方法及装置 Download PDF

Info

Publication number
CN104641707A
CN104641707A CN201380035066.8A CN201380035066A CN104641707A CN 104641707 A CN104641707 A CN 104641707A CN 201380035066 A CN201380035066 A CN 201380035066A CN 104641707 A CN104641707 A CN 104641707A
Authority
CN
China
Prior art keywords
physical
channel
resource block
down channel
downlink control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201380035066.8A
Other languages
English (en)
Inventor
成艳
马瑞泽·大卫
薛丽霞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huawei Technologies Co Ltd
Original Assignee
Huawei Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co Ltd filed Critical Huawei Technologies Co Ltd
Publication of CN104641707A publication Critical patent/CN104641707A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path

Abstract

本发明实施例提供一种物理下行信道的物理资源的指示方法及装置。该指示方法,通过第一物理下行信道来承载物理下行控制信道的配置信息,并通过配置信息进一步获得物理下行控制信道的物理资源块,根据物理资源块便可以接收物理下行控制信道,以此为物理下行控制信道的传输机制提供了有效的解决方案。

Description

物理下行信道的物理资源的指示方法及装置 技术领域
本发明实施例涉及通信技术, 尤其涉及一种物理下行信道的物理资源的 指示方法及装置。 背景技术
在长期演进 (Long Term Evolution, 简称 LTE) 版本 11中, 引入了增强 的物理下行控制信道 (Enhanced Physical Downlink Control Channel, 简称 EPDCCH), 它与物理下行共享信道(Physical Downlink Shared Channel, 简称 PDSCH)频分复用。在后向兼容载波上, 仅存在 EPDCCH专用搜索空间, 其 与 PDCCH公共搜索空间一起实现后向兼容载波上下行控制信道的传输。 新 载波类型 (New Carrier Type, 简称 NCT) 将不支持 PDCCH公共搜索空间, 因而不能如后向兼容载波一样利用 EPDCCH专用搜索空间和 PDCCH公共搜 索空间实现下行控制信道传输, 因此如何设计物理下行控制信道的传输机制 就成为当前亟需解决的问题。 发明内容
本发明实施例提供一种物理下行信道的物理资源的指示方法及装置, 为 物理下行控制信道的传输提供解决方案。
第一方面, 提供了一种物理下行信道的物理资源的指示方法, 包括: 用户设备 UE确定第一物理下行信道的物理资源块, 其中, 所述第一物 理下行信道承载第二物理下行信道的配置信息, 所述第二物理下行信道为物 理下行控制信道;
所述 UE从所述第一物理下行信道的物理资源块上接收所述第一物理下 行信道;
所述 UE从所述第一物理下行信道上获取所述配置信息; 以及
所述 UE根据所述配置信息确定所述物理下行控制信道的物理资源块。 在第一方面的第一种可能的实现方式中, 所述方法还包括: 所述 UE根据载波的传输带宽, 确定所述第一物理下行信道的传输块大 小, 其中, 所述载波为承载所述物理下行控制信道的载波;
所述 UE从所述第一物理下行信道上获取所述配置信息, 包括: 所述 UE根据所述第一物理下行信道的传输块大小, 从所述第一物理下 行信道上获取所述配置信息。
结合第一方面的第一种可能的实现方式, 在第二种可能的实现方式中, 所述 UE根据载波的传输带宽, 确定所述第一物理下行信道的传输块大小之 前 还包括:
所述 UE接收第二广播信道, 所述第二广播信道承载第三指示信息, 所 述第三指示信息用于指示所述载波的传输带宽;
所述 UE根据载波的传输带宽, 确定所述第一物理下行信道的传输块大 小, 包括: 所述 UE根据所述第三指示信息指示的所述载波的传输带宽确定 所述第一物理下行信道的传输块大小。
结合第一方面的第一种或第二种可能的实现方式, 在第三种可能的实现 方式中, 所述 UE根据载波的传输带宽, 确定所述第一物理下行信道的传输 块大小, 包括:
所述 UE接收第三广播信道, 所述第三广播信道承载第四指示信息, 所 述第四指示信息用于指示所述物理下行控制信道的集合的个数; 以及
所述 UE根据所述载波的传输带宽和所述集合的个数, 确定所述第一物 理下行信道的传输块大小。
结合第一方面或第一方面的任一种可能的实现方式, 在第四种可能的实 现方式中, 所述配置信息包括第一指示信息, 所述第一指示信息用于指示所 述物理下行控制信道的物理资源块;
所述 UE根据所述配置信息确定物理下行控制信道的物理资源块, 包括: 所述 UE根据所述配置信息中的所述第一指示信息确定所述物理下行控 制信道的物理资源块。
结合第一方面或第一方面的任一种可能的实现方式, 在第五种可能的实 现方式中, 所述 UE确定第一物理下行信道的物理资源块, 包括:
所述 UE接收第一广播信道, 所述第一广播信道承载第二指示信息, 所 述第二指示信息用于指示所述第一物理下行信道的物理资源块; 以及 所述 UE根据所述第二指示信息确定所述第一物理下行信道的物理资源 块。
结合第一方面的第五种可能的实现方式中,在第六种可能的实现方式中, 所述 UE接收第一广播信道, 包括:
所述 UE根据预设的下行传输带宽确定所述第二指示信息的比特数; 以 及
所述 UE根据所述第二指示信息的比特数接收所述第一广播信道。
结合第一方面的第五种可能的实现方式中,在第七种可能的实现方式中, 所述 UE根据所述第二指示信息确定所述第一物理下行信道的物理资源块, 包括:
所述 UE根据预设的下行传输带宽对所述第二指示信息进行解析, 确定 所述第一物理下行信道的物理资源块。
结合第一方面的第六种或第七种可能的实现方式中, 在第八种可能的实 现方式中, 所述预设的下行传输带宽为 25个物理资源块对。
结合第一方面或第一方面的第一种、第四种或第七种可能的实现方式中, 在第九种可能的实现方式中, 所述第一物理下行信道的物理资源块是预先定 义的。
结合第一方面或第一方面的任一种可能的实现方式中, 在第十种可能的 实现方式中, 所述 UE根据所述配置信息确定下行控制信道的物理资源块, 包括:
所述 UE接收第三物理下行信道, 所述第三物理下行信道承载第五指示 信息, 所述第五指示信息用于指示传输所述物理下行控制信道的物理资源大 小; 以及
所述 UE根据所述配置信息和所述物理资源大小确定所述物理下行控制 信道的物理资源块。
结合第一方面的第十种可能的实现方式中, 在第十一种可能的实现方式 中, 所述第三物理下行信道的物理资源块与物理广播信道 PBCH或增强的物 理广播信道 EPBCH的物理资源块相同。
结合第一方面或第一方面的任一种可能的实现方式中, 在第十二种可能 的实现方式中, 所述第一物理下行信道为物理下行共享信道 PDSCH, 所述物 理下行控制信道为增强的物理下行控制信道 EPDCCH, 所述物理下行控制信 道的物理资源块为 EPDCCH公共搜索空间对应的物理资源块。第二方面, 提 供了一种物理下行信道的物理资源的指示方法, 包括:
基站确定第二物理下行信道的物理资源块, 并确定所述第二物理下行信 道的配置信息, 所述配置信息用于向用户设备 UE指示所述第二物理下行信 道的物理资源块; 所述第二物理下行信道为物理下行控制信道;
所述基站在第一物理下行信道上发送所述配置信息。
在第二方面的第一种可能的实现方式中, 所述方法还包括:
所述基站发送第二广播信道, 所述第二广播信道承载第三指示信息, 所 述第三指示信息用于指示载波的传输带宽; 其中, 所述载波为承载所述物理 下行控制信道的载波。
在第二方面的第二种可能的实现方式中, 所述方法还包括:
所述基站发送第三广播信道, 所述第三广播信道承载第四指示信息, 所 述第四指示信息用于指示所述物理下行控制信道的集合的个数。
结合第二方面或第二方面的任一种可能的实现方式, 在第三种可能的实 现方式中, 所述配置信息包括第一指示信息, 所述第一指示信息用于指示所 述物理下行控制信道的物理资源块。
结合第二方面或第二方面的任一种可能的实现方式, 在第四种可能的实 现方式中, 所述方法还包括:
所述基站发送第一广播信道, 所述第一广播信道承载第二指示信息, 所 述第二指示信息用于指示所述第一物理下行信道的物理资源块。
结合第二方面的第四种可能的实现方式, 在第五种可能的实现方式中, 所述第二指示信息的比特数是所述基站根据预设的下行传输带宽确定的。
结合第二方面的第五种可能的实现方式, 在第六种可能的实现方式中, 所述预设的下行传输带宽为 25个物理资源块对。
结合第二方面的第四种可能的实现方式, 在第七种可能的实现方式中, 所述第一物理下行信道的物理资源块是预先定义的。
结合第二方面或第二方面的任一种可能的实现方式, 在第八种可能的实 现方式中, 所述方法还包括:
所述基站发送第三物理下行信道, 所述第三物理下行信道承载第五指示 信息, 所述第五指示信息用于指示传输所述物理下行控制信道的物理资源大 小。
结合第二方面的第八种可能的实现方式, 在第九种可能的实现方式中, 所述第三物理下行信道的物理资源块与物理广播信道 PBCH或增强的物理广 播信道 EPBCH的物理资源块相同。
结合第二方面或第二方面的任一种可能的实现方式, 在第十种可能的实 现方式中, 所述第一物理下行信道为物理下行共享信道 PDSCH, 所述物理下 行控制信道为增强的物理下行控制信道 EPDCCH, 所述物理下行控制信道的 物理资源块为 EPDCCH公共搜索空间对应的物理资源块。
第三方面, 提供了一种用户设备, 包括:
第一确定模块, 用于确定第一物理下行信道的物理资源块, 其中, 所述 第一物理下行信道承载第二物理下行信道的配置信息, 所述第二物理下行信 道为物理下行控制信道; 以及, 用于根据获取模块获得的所述配置信息确定 所述物理下行控制信道的物理资源块;
所述获取模块, 用于根据所述第一确定模块获得的所述第一物理下行信 道的物理资源块上接收所述第一物理下行信道, 并从所述第一物理下行信道 上获取所述配置信息。
在第三方面的第一种可能的实现方式, 在第二种可能的实现方式中, 所 述第一确定模块还用于: 根据载波的传输带宽, 确定所述第一物理下行信道 的传输块大小, 其中, 所述载波为承载所述物理下行控制信道的载波;
所述获取模块从所述第一物理下行信道上获取所述配置信息具体包括: 所述获取模块根据所述第一物理下行信道的传输块大小, 从所述第一物理下 行信道上获取所述配置信息。
结合第三方面的第一种可能的实现方式, 在第二种可能的实现方式中, 所述用户设备还包括:
接收模块, 用于接收第二广播信道, 所述第二广播信道承载第三指示信 息, 所述第三指示信息用于指示所述载波的传输带宽;
所述第一确定模块根据载波的传输带宽, 确定所述第一物理下行信道的 传输块大小具体包括: 所述第一确定模块根据所述第三指示信息指示的所述 载波的传输带宽确定所述第一物理下行信道的传输块大小 结合第三方面的第一种或第二种可能的实现方式, 在第三种可能的实现 方式中, 所述接收模块还用于: 接收第三广播信道, 所述第三广播信道承载 第四指示信息, 所述第四指示信息用于指示所述物理下行控制信道的集合的 个数;
所述第一确定模块根据载波的传输带宽, 确定所述第一物理下行信道的 传输块大小具体包括: 所述第一确定模块根据所述载波的传输带宽和所述集 合的个数, 确定所述第一物理下行信道的传输块大小。
结合第三方面或第三方面的任一种可能的实现方式, 在第四种可能的实 现方式中, 所述配置信息包括第一指示信息, 所述第一指示信息用于指示所 述物理下行控制信道的物理资源块;
所述第一确定模块根据获取模块获得的所述配置信息确定所述物理下行 控制信道的物理资源块具体包括:
所述第一确定模块根据所述配置信息中的所述第一指示信息确定所述物 理下行控制信道的物理资源块。
结合第三方面或第三方面的任一种可能的实现方式, 在第五种可能的实 现方式中, 所述接收模块还用于: 接收第一广播信道, 所述第一广播信道承 载第二指示信息, 所述第二指示信息用于指示所述第一物理下行信道的物理 资源块;
所述第一确定模块确定第一物理下行信道的物理资源块具体包括: 所述 第一确定模块根据所述第二指示信息确定所述第一物理下行信道的物理资源 块。
结合第三方面的第五种可能的实现方式中,在第六种可能的实现方式中, 所述用户设备还包括:
第一存储模块, 用于存储预设的下行传输带宽;
所述接收模块接收第一广播信道具体包括: 所述接收模块根据所述第一 存储模块存储的预设的下行传输带宽确定所述第二指示信息的比特数, 并根 据所述第二指示信息的比特数接收所述第一广播信道。
结合第三方面的第五种可能的实现方式中,在第七种可能的实现方式中, 所述用户设备还包括:
第一存储模块, 用于存储预设的下行传输带宽; 所述第一确定模块根据所述第二指示信息确定所述第一物理下行信道的 物理资源块具体包括: 所述第一确定模块根据所述第一存储模块存储的所述 预设的下行传输带宽对所述第二指示信息进行解析, 确定所述第一物理下行 信道的物理资源块。
结合第三方面的第六种或第七种可能的实现方式中, 在第八种可能的实 现方式中,所述第一存储模块存储的所述预设的下行传输带宽为 25个物理资 源块对。
结合第三方面或第三方面的第一种、第四种或第七种可能的实现方式中, 在第九种可能的实现方式中, 所述用户设备还包括:
第二存储模块, 用于存储预先定义的所述第一物理下行信道的物理资源 块。
结合第三方面或第三方面的任一种可能的实现方式中, 在第十种可能的 实现方式中, 所述接收模块还用于接收第三物理下行信道, 所述第三物理下 行信道承载第五指示信息, 所述第五指示信息用于指示传输所述物理下行控 制信道的物理资源大小;
所述第一确定模块用于根据获取模块获得的所述配置信息确定所述物理 下行控制信道的物理资源块具体包括:
所述第一确定模块根据所述配置信息和所述物理资源大小确定所述物理 下行控制信道的物理资源块。
结合第三方面的第十种可能的实现方式中, 在第十一种可能的实现方式 中, 所述接收模块接收的所述第三物理下行信道的物理资源块与物理广播信 道 PBCH或增强的物理广播信道 EPBCH的物理资源块相同。
结合第三方面或第三方面的任一种可能的实现方式中, 在第十二种可能 的实现方式中, 所述获取模块接收的所述第一物理下行信道为物理下行共享 信道 PDSCH, 所述物理下行控制信道为增强的物理下行控制信道 EPDCCH, 所述物理下行控制信道的物理资源块为 EPDCCH公共搜索空间对应的物理资 源块。
第四方面, 提供了一种基站, 包括:
第二确定模块, 用于确定第二物理下行信道的物理资源块, 并确定所述 第二物理下行信道的配置信息, 所述配置信息用于向用户设备 UE指示所述 第二物理下行信道的物理资源块, 其中, 所述第二物理下行信道为物理下行 控制信道;
发送模块, 用于在第一物理下行信道上发送所述第二确定模块确定的所 述配置信息。
在第四方面的第一种可能的实现方式中, 所述发送模块还用于: 发送第 二广播信道, 所述第二广播信道承载第三指示信息, 所述第三指示信息用于 指示载波的传输带宽; 其中, 所述载波为承载所述物理下行控制信道的载波。
在第四方面的第二种可能的实现方式中, 所述发送模块还用于: 发送第 三广播信道, 所述第三广播信道承载第四指示信息, 所述第四指示信息用于 指示所述物理下行控制信道的集合的个数。
结合第四方面或第四方面的任一种可能的实现方式, 在第三种可能的实 现方式中, 所述第二确定模块确定的所述配置信息包括第一指示信息, 所述 第一指示信息用于指示所述物理下行控制信道的物理资源块。
结合第四方面或第四方面的任一种可能的实现方式, 在第四种可能的实 现方式中, 所述发送模块还用于:
发送第一广播信道, 所述第一广播信道承载第二指示信息, 所述第二指 示信息用于指示所述第一物理下行信道的物理资源块。
结合第四方面的第四种可能的实现方式, 在第五种可能的实现方式中, 所述基站还包括:
第三存储模块, 用于存储预设的下行传输带宽;
所述第二指示信息的比特数是所述发送模块根据所述第三存储模块存储 的所述预设的下行传输带宽确定的。
结合第四方面的第五种可能的实现方式, 在第六种可能的实现方式中, 第三存储模块存储的所述预设的下行传输带宽为 25个物理资源块对。
结合第四方面的第四种可能的实现方式, 在第七种可能的实现方式中, 所述基站还包括:
第四存储模块, 用于存储预先定义的所述第一物理下行信道的物理资源 块。
结合第四方面或第四方面的任一种可能的实现方式, 在第八种可能的实 现方式中, 所述发送模块还用于: 发送第三物理下行信道, 所述第三物理下 行信道承载第五指示信息, 所述第五指示信息用于指示传输所述物理下行控 制信道的物理资源大小。
结合第四方面的第八种可能的实现方式, 在第九种可能的实现方式中, 所述发送模块发送的所述第三物理下行信道的物理资源块与物理广播信道 PBCH或增强的物理广播信道 EPBCH的物理资源块相同。
结合第四方面或第四方面的任一种可能的实现方式, 在第十种可能的实 现方式中, 所述第一物理下行信道为物理下行共享信道 PDSCH, 所述物理下 行控制信道为增强的物理下行控制信道 EPDCCH, 所述物理下行控制信道的 物理资源块为 EPDCCH公共搜索空间对应的物理资源块。
第五方面, 提供了另一种用户设备, 包括:
处理器, 用于确定第一物理下行信道的物理资源块, 其中, 所述第一物 理下行信道承载第二物理下行信道的配置信息, 所述第二物理下行信道为物 理下行控制信道; 以及, 用于根据接收器获得的所述配置信息确定所述物理 下行控制信道的物理资源块;
所述接收器, 用于根据所述处理器获得的所述第一物理下行信道的物理 资源块上接收所述第一物理下行信道, 并从所述第一物理下行信道上获取所 述配置信息。
在第五方面的第一种可能的实现方式, 在第二种可能的实现方式中, 所 述处理器还用于: 根据载波的传输带宽, 确定所述第一物理下行信道的传输 块大小, 其中, 所述载波为承载所述物理下行控制信道的载波;
所述接收器从所述第一物理下行信道上获取所述配置信息具体包括: 所 述接收器根据所述第一物理下行信道的传输块大小, 从所述第一物理下行信 道上获取所述配置信息。
结合第五方面的第一种可能的实现方式, 在第二种可能的实现方式中, 所述接收器还用于: 接收第二广播信道, 所述第二广播信道承载第三指示信 息, 所述第三指示信息用于指示所述载波的传输带宽;
所述处理器根据载波的传输带宽, 确定所述第一物理下行信道的传输块 大小具体包括: 所述处理器根据所述第三指示信息指示的所述载波的传输带 宽确定所述第一物理下行信道的传输块大小。
结合第五方面的第一种或第二种可能的实现方式, 在第三种可能的实现 方式中, 所述接收器还用于: 接收第三广播信道, 所述第三广播信道承载第 四指示信息, 所述第四指示信息用于指示所述物理下行控制信道的集合的个 数;
所述处理器根据载波的传输带宽, 确定所述第一物理下行信道的传输块 大小具体包括: 所述处理器根据所述载波的传输带宽和所述集合的个数, 确 定所述第一物理下行信道的传输块大小。
结合第五方面或第五方面的任一种可能的实现方式, 在第四种可能的实 现方式中, 所述配置信息包括第一指示信息, 所述第一指示信息用于指示所 述物理下行控制信道的物理资源块;
所述处理器根据接收器获得的所述配置信息确定所述物理下行控制信道 的物理资源块具体包括:
所述处理器根据所述配置信息中的所述第一指示信息确定所述物理下行 控制信道的物理资源块。
结合第五方面或第五方面的任一种可能的实现方式, 在第五种可能的实 现方式中, 所述接收器还用于: 接收第一广播信道, 所述第一广播信道承载 第二指示信息, 所述第二指示信息用于指示所述第一物理下行信道的物理资 源块;
所述处理器确定第一物理下行信道的物理资源块具体包括: 所述处理器 根据所述第二指示信息确定所述第一物理下行信道的物理资源块。
结合第五方面的第五种可能的实现方式中,在第六种可能的实现方式中, 所述用户设备还包括:
存储器, 用于存储预设的下行传输带宽;
所述接收器接收第一广播信道具体包括: 所述接收器根据所述存储器存 储的所述预设的下行传输带宽确定所述第二指示信息的比特数, 并根据所述 接收器接收的所述第二指示信息的比特数接收所述第一广播信道。
结合第五方面的第五种可能的实现方式中,在第七种可能的实现方式中, 所述用户设备还包括:
存储器, 用于存储预设的下行传输带宽;
所述处理器根据所述第二指示信息确定所述第一物理下行信道的物理资 源块具体包括: 所述处理器根据所述存储器存储的所述预设的下行传输带宽 对所述第二指示信息进行解析, 确定所述第一物理下行信道的物理资源块。 结合第五方面的第六种或第七种可能的实现方式中, 在第八种可能的实 现方式中, 所述存储器存储的所述预设的下行传输带宽为 25 个物理资源块 对。
结合第五方面或第五方面的第一种、第四种或第七种可能的实现方式中, 在第九种可能的实现方式中,
所述存储器还用于, 存储预先定义的所述第一物理下行信道的物理资源 块。
结合第五方面或第五方面的任一种可能的实现方式中, 在第十种可能的 实现方式中, 所述接收器还用于接收第三物理下行信道, 所述第三物理下行 信道承载第五指示信息, 所述第五指示信息用于指示传输所述物理下行控制 信道的物理资源大小;
所述处理器用于根据接收器获得的所述配置信息确定所述物理下行控制 信道的物理资源块具体包括:
所述处理器根据所述配置信息和所述物理资源大小确定所述物理下行控 制信道的物理资源块。
结合第五方面的第十种可能的实现方式中, 在第十一种可能的实现方式 中, 所述接收器接收的所述第三物理下行信道的物理资源块与物理广播信道
PBCH或增强的物理广播信道 EPBCH的物理资源块相同。
结合第五方面或第五方面的任一种可能的实现方式中, 在第十二种可能 的实现方式中, 所述接收器接收的所述第一物理下行信道为物理下行共享信 道 PDSCH,所述物理下行控制信道为增强的物理下行控制信道 EPDCCH,所 述物理下行控制信道的物理资源块为 EPDCCH公共搜索空间对应的物理资源 块。
第六方面, 提供了另一种基站, 包括:
处理器, 用于确定第二物理下行信道的物理资源块, 并确定所述第二物 理下行信道的配置信息, 所述配置信息用于向用户设备 UE指示所述第二物 理下行信道的物理资源块, 其中, 所述第二物理下行信道为物理下行控制信 道;
发送器, 用于在第一物理下行信道上发送所述处理器确定的所述配置信 在第六方面的第一种可能的实现方式中, 所述发送器还用于: 发送第二 广播信道, 所述第二广播信道承载第三指示信息, 所述第三指示信息用于指 示载波的传输带宽; 其中, 所述载波为承载所述物理下行控制信道的载波。
在第四方面的第二种可能的实现方式中, 所述发送器还用于: 发送第三 广播信道, 所述第三广播信道承载第四指示信息, 所述第四指示信息用于指 示所述物理下行控制信道的集合的个数。
结合第六方面或第六方面的任一种可能的实现方式, 在第三种可能的实 现方式中, 所述处理器确定的所述配置信息包括第一指示信息, 所述第一指 示信息用于指示所述物理下行控制信道的物理资源块。
结合第六方面或第六方面的任一种可能的实现方式, 在第四种可能的实 现方式中, 所述发送器还用于:
发送第一广播信道, 所述第一广播信道承载第二指示信息, 所述第二指 示信息用于指示所述第一物理下行信道的物理资源块。
结合第六方面的第四种可能的实现方式, 在第五种可能的实现方式中, 所述基站还包括:
存储器, 用于存储预设的下行传输带宽;
所述第二指示信息的比特数是所述发送器根据所述存储器存储的预设的 下行传输带宽确定的。
结合第六方面的第五种可能的实现方式, 在第六种可能的实现方式中, 所述存储器存储的所述预设的下行传输带宽为 25个物理资源块对。
结合第六方面的第四种可能的实现方式, 在第七种可能的实现方式中, 所述基站还包括:
存储器, 用于存储预先定义的所述第一物理下行信道的物理资源块。 结合第六方面或第六方面的任一种可能的实现方式, 在第八种可能的实 现方式中, 所述发送器还用于: 发送第三物理下行信道, 所述第三物理下行 信道承载第五指示信息, 所述第五指示信息用于指示传输所述物理下行控制 信道的物理资源大小。
结合第六方面的第八种可能的实现方式, 在第九种可能的实现方式中, 所述发送器发送的所述第三物理下行信道的物理资源块与物理广播信道 PBCH或增强的物理广播信道 EPBCH的物理资源块相同
结合第四方面或第四方面的任一种可能的实现方式, 在第十种可能的实 现方式中, 所述第一物理下行信道为物理下行共享信道 PDSCH, 所述物理下 行控制信道为增强的物理下行控制信道 EPDCCH, 所述物理下行控制信道的 物理资源块为 EPDCCH公共搜索空间对应的物理资源块。本发明各实施例提 供的物理下行信道的物理资源的指示方法及装置, 通过第一物理下行信道来 承载物理下行控制信道的配置信息, 并通过配置信息进一步获得物理下行控 制信道的物理资源块, 根据物理资源块便可以接收物理下行控制信道, 以此 为物理下行控制信道的传输机制提供了解决方案。 附图说明
图 1为本发明物理下行信道的物理资源的指示方法实施例流程图; 图 2为本发明物理下行信道的物理资源的指示方法再 实施例的流程图 图 3为本发明物理下行信道的物理资源的指示方法又 实施例的流程图 图 4为本发明物理下行信道的物理资源的指示方法再 实施例的流程图 图 5为本发明物理下行信道的物理资源的指示方法再 实施例的流程图 图 6为本发明物理下行信道的物理资源的指示方法再 ;施例的流程图; 图 7为本发明物理下行信道的物理资源的指示方法再 实施例的流程图 图 8为本发明物理下行信道的物理资源的指示方法再 实施例的流程图 图 9为本发明物理下行信道的物理资源的指示方法再 实施例的流程图 图 10为本发明用户设备一实施例组成示意图;
图 11为本发明基站一实施例的组成示意图;
图 12为本发明用户设备另一实施例的组成示意图;
图 13为本发明基站另一实施例的组成示意图。 具体实施方式 为使本发明实施例的目的、 技术方案和优点更加清¾ 下面将结合本; 明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于 本发明中的实施例, 本领域普通技术人员在没有作出创造性劳动前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
图 1为本发明物理下行信道的物理资源的指示方法实施例流程图, 该方 法适用于 LTE制式网络的物理下行控制信道的物理资源的指示,尤其是 LTE 版本 12及以后的版本中对物理下行控制信道公共搜索空间物理资源的指示, 本发明实施例所述的物理下行控制信道以 EPDCCH为例进行说明。该方法可 以由 UE执行, 如图 1所示, 该方法可以按照如下流程进行:
5101、 用户设备 UE确定第一物理下行信道的物理资源块, 其中, 所述 第一物理下行信道承载第二物理下行信道的配置信息, 所述第二物理下行信 道为物理下行控制信道;
其中, 根据物理下行控制信道的配置信息可以确定传输物理下行控制信 道的物理资源块 (Physical Resource Block, 简称: PRB) , 具体可以为确定 传输物理下行控制信道的物理资源块对 (Physical Resource Block pair, 简称: PRB pair) 的个数及传输物理下行控制信道的 PRB pair在频域上的位置。 该 配置信息可以包括确定物理下行控制信道的 PRB的指示信息, 即下文所述的 第一指示信息。
更进一步, 该配置信息还可以包括物理上行控制信道 (Physical Uplink Control Channel,简称: PUCCH)资源起始偏移信息及解调导频(Demodulation reference signal, 简称: DMRS ) 加扰序列初始化参数指示信息等。 进一步, 若物理下行控制信道的 PRB是按照预定义规则设定的, 则该配置信息可以不 包括指示该物理下行控制信道的 PRB的指示信息。 其中, 预定义规则可以为 LTE的网络协议。
5102、 所述 UE从所述第一物理下行信道的物理资源块上接收所述第一 物理下行信道;
5103、 所述 UE从所述第一物理下行信道上获取所述配置信息; 在 UE确定了第一物理下行信道的 PRB后, 便可以从第一物理下行信道 的 PRB上接收第一物理下行信道, 以获得第二物理下行信道的配置信息。
优选地, 在 S103之前还可以包括: 所述 UE根据载波的传输带宽, 确定 所述第一物理下行信道的传输块大小。 其中, 所述载波为承载所述物理下行 控制信道的载波。 相应地, 步骤 S103具体可以包括: 所述 UE根据所述第一 物理下行信道的传输块大小, 从第一物理下行信道上获取配置信息。 进一步地, 在 UE根据载波的传输带宽确定第一物理下行信道的传输块 之前, 还可以包括: UE接收第二广播信道, 该第二广播信道承载第三指示信 息, 该第三指示信息用于指示该载波传输带宽。相应地, UE根据载波的传输 带宽,确定第一物理下行信道的传输块大小具体包括: UE根据所述第三指示 信息指示的所述载波的传输带宽确定所述第一物理下行信道的传输块大小。
所述的传输块大小可以指第一物理下行信道承载的配置信息的信息比特 数, 其中, 在配置信息中, 第一指示信息的比特数是随着载波的传输带宽的 不同而变化的, 而 PUCCH资源起始偏移信息、 DMRS加扰序列初始化参数 指示信息等, 其信息域的比特数是预先定义好的, 与传输带宽无关。
例如, 若该配置信息包括有第一指示信息, 且物理下行控制信道的集合 个数为一个, 则传输块大小可以指该配置信息的总信息比特数, 以物理下行 控制信道 EPDCCH 为例, 传输块大小可以根据表 1 来确定 (表 1 为一个 EPDCCH PRB集合 PRB指示信息比特数与传输带宽的对应关系) 。 若该配 置信息中还包括 PUCCH资源起始偏移信息、 DMRS加扰序列初始化参数指 示信息等时, 则该传输块大小可以指该配置信息的部分信息比特数。
1
在确定了第一物理下行信道的 PRB和该第一物理下行信道的传输块大小 后, UE可以基于卷积码原理对该第一物理下行信道进行译码来获取该配置信 息, 且该第一物理下行信道对应的调制方式可以固定为正交移相键控 (Quadrature Phase Shift Keying, 简称 QPSK) 。
S104、 所述 UE根据所述配置信息确定所述物理下行控制信道的物理资 源块。
如上述, 配置信息可以包括用于指示物理下行控制信道的物理资源块的 第一指示信息, 相应地, 步骤 S104具体可以包括: UE根据配置信息中的第 一指示信息确定物理下行控制信道的 PRB。
其中, 该物理下行控制信道的 PRB可以指该物理下行控制信道的公共搜 索空间对应的 PRB, 或可以指物理下行控制信道的公共搜索空间对应的 PRB pair, 或可以指可承载该物理下行控制信道的 PRB。 同时需要说明的是, 该 PRB上可承载多个物理下行控制信道信令。
在本实施例中, 该第一物理下行信道可以为物理下行共享信道(Physical Downlink Shared Channel,简称: PDSCH),该物理下行控制信道为 EPDCCH, 该物理下行控制信道的 PRB可以特指 EPDCCH公共搜索空间对应的 PRB。
本发明实施例提供的物理下行信道的物理资源的指示方法, 通过第一物 理下行信道来承载物理下行控制信道的配置信息, 并通过配置信息进一步获 得物理下行控制信道的物理资源块, 根据物理资源块便可以接收物理下行控 制信道, 以此为物理下行控制信道的传输机制提供了有效的解决方案。
同时, EPDCCH公共搜索空间的配置信息可以通过 EPBCH进行指示。 但是由于指示 EPDCCH公共搜索空间配置信息所需比特数较大, 如 100PRB 时需要约 80比特, 会大大增加 EPBCH的传输块大小, 从而降低 EPBCH的 传输性能。 因此, 相对于这种方式, 本发明可以在不影响 EPBCH传输性能 的同时使 UE准确确定物理下行控制信道的 PRB信息。
以下将通过其他实施例来进一步介绍本发明所提供的方法的实现方式, 同时以下实施例均以第一物理下行信道为 PDSCH, 物理下行控制信道为 EPDCCH为例进行说明。
图 2 为本发明物理下行信道的物理资源的指示方法再一实施例的流程 图, 如图 2所示, 在上述实施例的基础上, UE确定第一物理下行信道的物 理资源块的方法包括:
S201、 UE接收第一广播信道, 所述第一广播信道承载第二指示信息, 所 述第二指示信息用于指示第一物理下行信道的物理资源块;
其中, 该第二指示信息是包括在第一广播信道承载的广播消息中的。 UE 接收第一广播信道具体包括: UE根据预设的下行传输带宽确定第二指示信息的 比特数, 然后根据第二指示信息的比特数接收第一广播信道。
S202、 UE根据第二指示信息确定第一物理下行信道的物理资源块。
其中, 由于该第二指示信息的比特数是按照预定的下行传输带宽来确定 的, 该预定的下行传输带宽可能与承载该 PDSCH 的载波的系统传输带宽不 一样。 若该预定的下行传输带宽小于载波的系统传输带宽, 则该第二指示信 息指示的物理下行信道对应的 PRB分布于载波的一部分传输带宽上, 例如可 以是该载波的中心 W (预定的下行传输带宽大小)个 PRB内, 或可以是载波 的所有 PRB对中从 PRB编号 0到 PRB编号 W— 1的 PRB内。若该预定的下 行传输带宽大于载波的系统传输带宽, 则该第二指示信息指示的 PDSCH对 应的 PRB可以为该载波的任何一个 PRB, 但 UE确定具体分配的 PRB时需 按照虚拟传输带宽来对应, 该虚拟传输带宽的大小等于预定的下行传输带宽 的大小, 该载波的 PRB位于该虚拟传输带宽的中心。
优选地, 该第二指示信息的比特数还可以根据预设的下行传输带宽和资 源分配类型来确定。 具体地, 采用第二指示信息指示 PDSCH 的资源分配, 可采用类型 0资源分配方式、 类型 1资源分配方式和类型 2资源分配方式中 的一种, 若采用类型 0或类型 1, 则可以使得该 PDSCH对应的 PRB 离散分 布, 从而使得该 PDSCH能获得一定的频率分集增益, 从而提高该 PDSCH的 传输性能, 但这两种资源分配方式相对与类型 2资源分配来说, 所需的信令 开销更大, 即第二指示信息的信息比特数更多。 例如, 当该预定的下行传输 带宽是 25个 PRB pair时,若采用类型 0或类型 1资源分配方式,第二指示信 息的信息比特数为 13比特, 若采用类型 2, 则第二指示信息的信息比特数为 9 比特。 本发明优选采用类型 2资源分配类型, 一方面其能使得第一广播信 道中仍然有部分预留比特用于以后待用, 另一方面 UE译码时也可以采用固 定预留的比特先验信息提高广播信道的传输性能。
可选地, 若第二指示信息的比特数是预先设定好的, 则 S202可以包括: 该 UE根据预设的下行传输带宽对该第二指示信息进行解析, 以确定该第一 物理下行信道的物理资源块, 即 UE需要根据对应的预设下行传输带宽对第 二指示信息进行解析, 以确定 PDSCH的 PRB。 对该预设的下行传输带宽和 资源分配类型的描述如步骤 S201所示, 此处不再赘述。
本发明实施例, 第一物理下行信道的 PRB由广播信道进行指示, 使得可 以在一小段时间内调整第一物理下行信道的资源位置, 增加了资源使用的灵 活性, 同时可以将第一物理下行信道承载于信道较好的 PRB上, 提高第一物 理下行信道的传输性能。
可选地, UE确定第一物理下行信道的 PRB, 也可以通过静态的方式确 定, 即第一物理下行信道的物理资源块是预先定义的。 例如, 该 PDSCH对 应的 PRB可以预先定义好, 例如可以固定为中心 6个 PRB, 该 PDSCH可在 中心 6个 PRB中没有分配给广播信道和导频信号的资源单元上传输, 又如, 该 PDSCH对应的 PRB 可以为 1个或 2个固定的 PRB上。 通过静态的方式 确定与第一物理下行信道的 PRB, 与根据第二指示信息确定 PDSCH所对应 的 PRB相比, 由于采用静态方式指定的 PRB, 该 PDSCH对应的 PRB为固定 位置, 不同小区都在相同位置发送该 PDSCH而带来小区间干扰的问题。 为 了消除此干扰, 该 PDSCH对应的 PRB还可以根据小区标识进行确定。
图 3 为本发明物理下行信道的物理资源的指示方法又一实施例的流程 图, 如图 3所示, 本实施例介绍在上述实施例的基础上, UE根据载波的传输 带宽确定第一物理下行信道的传输块大小的方法包括:
S301、 UE接收第三广播信道, 所述第三广播信道承载第四指示信息, 所 述第四指示信息用于指示所述物理下行控制信道的集合的个数;
该步骤中的物理下行控制信道的集合的个数, 可以指物理下行控制信道 对应的集合的个数, 还可以指该物理下行控制信道集合的个数, 还可以指该 配置信息对应的 EPDCCH PRB pair集合的个数或根据该配置信息对应的
EPDCCH集合的个数。
S302、 UE根据所述载波的传输带宽和所述集合的个数,确定所述第一物 理下行信道的传输块大小。
在本实施例中, 若配置信息对应一个 EPDCCH集合 (或称为 EPDCCH
PRB pair 集合或 EPDCCH PRB 集合) 时所需的信息比特数与对应两个
EPDCCH 集合时所需的信息比特数是不一样的, 如果系统最大可以为 EPDCCH 配置两个 EPDCCH 集合, 则 UE 还需根据该配置信息对应的
EPDCCH PRB pair集合的个数或根据配置信息对应的 EPDCCH集合的个数来 确定 PDSCH的传输块大小。
需要说明的是, 该第三广播信道、 第一广播信道和第二广播信道可以为 同一个广播信道。
图 4 为本发明物理下行信道的物理资源的指示方法再一实施例的流程 图, 在上述实施例中, 传输物理下行控制信道的 PRB可以应用于所有传输该 物理下行控制信道的子帧, 但由于配置信息不能在每个传输该物理下行控制 信道的子帧都进行传输, 因此该配置信息配置的物理资源通常按照最大需求 进行配置, 从而在某些子帧会出现资源浪费, 为解决该缺陷本发明实施例在 上述实施例的基础上, 如图 4所示, UE根据该配置信息确定物理下行控制信 道的物理资源块, 可以包括:
S401、 UE接收第三物理下行信道,所述第三物理下行信道承载第五指示 信息, 所述第五指示信息用于指示传输所述物理下行控制信道的物理资源大 小;
S402、UE根据所述配置信息和所述物理资源大小确定所述物理下行控制 信道的物理资源块。
具体地, UE基于配置信息和第三物理下行信道承载的第五指示信息确定 传输 EPDCCH的 PRB,第三物理下行信道承载的第五指示信息可以用于指示 传输物理下行控制信道的物理资源大小, 该第三物理下行信道可以仅传输在 物理广播信道 (Physical Broadcast Channel, 简称 PBCH), 或 EPBCH传输的子 帧, 此时第三物理下行信道对应的 PRB与 PBCH或 EPBCH的 PRB相同。
举例而言, 该配置信息配置了一个对应 8个 PRB pair的 EPDCCH set, 且指示了该 8个 PRB pair中每个 PRB pair的频域位置; 该第三物理下行信道 中包含的第五指示信息可以动态指示实际的 EPDCCH物理资源为 2个 PRB 对、 4个 PRB对和 8个 PRB对中的一个。 当指示的 EPDCCH物理资源为 2 个 PRB对或 4个 PRB对时, 该 EPDCCH在当前子帧使用的 PRB pair从该配 置信息配置的 8个 PRB对中均匀抽取。
再例如, 该配置信息配置了多个 EPDCCH set, 第五指示信息用于指示当 前子帧使用多个 EPDCCH set 中的哪一个。 例如该配置信息配置了 3 个 EPDCCH set, EPDCCH set 1对应 2个 PRB对, EPDCCH set 2对应 4个 PRB 对, 一 EPDCCH set 3对应 8个 PRB对, UE再根据该第五指示信息动态决定 传输 EPDCCH的子帧对应的物理资源是该 3个 EPDCCH set中的哪一个。 例 如若第五指示信息的信息比特为 00, 则对应 EPDCCH set 1 ; 若为 01则对应 EPDCCH set 2, 若为 10则对应 EPDCCH set 3。
第三物理下行信道可以为增强物理控制格式指示信道(Enhanced Physical
Control Format Indicator Channel, 简称 EPCFICH) 。 该第三物理下行信道承 载的信息中除包括第五指示信息外,还可以包括 EPDCCH公共搜索空间是否 存在的指示信息、 同步信道是否存在的指示信息、 当前子帧的子帧类型的指 示信息 (如指示当前子帧是否有物理多播信道 (Physical Multicast Channel, 简称 PMCH) 传输、 当前子帧是否需要检测 PDCCH不检测 EPDCCH等) 、 当前子帧该载波的载波类型的指示信息 (载波类型包括后向兼容载波和新载 波类型) 、 当前子帧是否回退子帧的指示信息 (回退子帧指该子帧用于调度 处于回退模式的 UE) 、 更新的系统消息、 PDSCH速率匹配信息 (是否采用 回退的 PDSCH速率匹配假设) 、 当前子帧有无 CRS传输的指示信息、 当前 子帧有无 NCTCRS (New carrier type common reference signal) 传输的指不信 息、 当前子帧有无 RCRS (Reduced CRS ) 传输的指示信息、 当前子帧 CRS 传输指示信息和无线资源管理 (Radio Resource Management, 简称 R M)信 息 (当前子帧是否适合 RRM测量) 等任意组合。 其中, 当前子帧可指传输 该第二物理下行信道的下行子帧。当前子帧 CRS传输指示信息至少包括当前 子帧有无 CRS传输的指示信息、 当前子帧传输的 CRS的天线口数、 当前子 帧传输 CRS的物理资源块对和当前子帧传输的 CRS的频率移位中的一个。
本发明实施例通过第三物理下行信道对物理下行控制信道的 PRB进行实 时调整, 实现了每个传输该物理下行控制信道的子帧都根据实际需求进行调 整, 避免了资源浪费, 提高了频谱应用效率。
图 5 为本发明物理下行信道的物理资源的指示方法再一实施例的流程 图, 如图 5所示, 与上一个实施例不同的是, 该物理下行控制信道的 PRB是 根据预定义规则确定的, 该方法可以按照如下流程进行:
5501、 UE确定预留的物理下行控制信道的物理资源块。
本步骤中, UE根据预定义的规则, 确定预留的 EPDCCH的 PRB。 该预 留的 EPDCCH的 PRB还可以结合物理小区标识(Physical Cell Identity, 简称 PCI)确定。例如可以按照该预定义的规则预留一个 8个 PRB对的 EPDCCH set 作为 EPDCCH传输。
5502、 UE基于预留的物理下行控制信道的物理资源块和第三物理下行信 道承载的第五指示信息确定传输物理下行控制信道的物理资源块。
本步骤中, 该第三物理下行信道承载的第五指示信息用于确定传输实时
EPDCCH的 PRB, 该第三物理下行信道可以仅传输在无 PBCH或 EPBCH传 输的子帧, 此时该第三物理下行信道对应的 PRB为 PBCH或该 EPBCH对应 的 PRB。 本发明实施例对第五指示信息和第三物理下行信道的其他描述如实 施例四, 此处不再赘述。
本实施例与上述实施例不同的是: 上述实施例是先通过第一物理下行信 道确定物理下行控制信道的 PRB, 再通过第三物理下行信道动态调整传输物 理下行控制信道的子帧实际占用的 PRB; 本实施例是先预定以物理下行控制 信道对应的 PRB, 再通过第三物理下行信道动态调整传输物理下行控制信道 的子帧实际占用的 PRB。
本实施例, 通过第三物理下行信道动态调整预留的物理下行控制信道的
PRB, 一方面由于不需要确定物理下行控制信道的 PRB, 因而节省了信令开 销; 另一方面, 通过第三物理下行信道动态调整 EPDCCH的 PRB, 从而提高 了频谱使用效率。
图 6 为本发明物理下行信道的物理资源的指示方法再一实施例的流程 图, 该方法适用于 LTE制式网络的物理下行控制信道物理资源的指示, 尤其 是 LTE版本 12及以后的版本中对物理下行控制信道公共搜索空间物理资源 的指示。 其中, 第一物理下行信道可以为 PDSCH, 物理下行控制信道可以为 EPDCCH, 该物理下行控制信道的 PRB可以为 EPDCCH公共搜索空间对应 的 PRB, 此处所指的物理下行控制信道主要是指 EPDCCH。 该方法可以由基 站执行, 如图 6所示, 该方法可以包括:
5601、 基站确定第二物理下行信道的物理资源块, 并确定所述第二物理 下行信道的配置信息, 所述配置信息用于向用户设备 UE指示所述第二物理 下行信道的物理资源块; 所述第二物理下行信道为物理下行控制信道;
本步骤中, 基站确定分配哪些 PRB pair给 EPDCCH, 此 EPDCCH可以 为公共搜索空间对应的 EPDCCH。
该配置信息可以包括指示该物理下行控制信道的 PRB的指示信息, 即第 一指示信息。 更进一步, 该配置信息还可以包括 PUCCH资源起始偏移信息 及 DMRS加扰序列初始化参数指示信息等。 同时, 在确定该物理下行控制信 道的配置信息时, 若物理下行控制信道的 PRB是按照预定义规则设定的, 则 该配置信息可以不包括指示该物理下行控制信道的 PRB的指示信息。
5602、 基站在第一物理下行信道上发送所述配置信息。
本步骤中, 基站可以对该配置信息采用卷据码进行信道编码, 可以采用 QPSK进行调制, 然后映射到分配给 PDSCH的物理资源块上发送给 UE。
其中, 基站可以根据实际情况灵活选择分配给该 PDSCH的 PRB, 并将 选择的 PRB 指示给用户设备。 基站也可以按照预定义规则确定 PDSCH 的 PRB, 该方式下, 基站只需按照预定义的规则确定该 PDSCH对应的 PRB即 可, 无需通知 UE, UE会按照该预定义的规则确定该 PDSCH对应的 PRB。
本实施例, 通过将物理下行控制信道的配置信息承载于第一物理下行信 道中, 以实现在不影响 EPBCH传输性能的同时, 能够使 UE确定物理下行控 制信道的 PRB信息。
可选地, 该配置信息包括第一指示信息时, 该第一指示信息用于指示物 理下行控制信道的物理资源块, 由于第一指示信息的比特数是随着承载该 EPDCCH的载波的传输带宽变化而变化的, 则该基站还可以通过第二广播信 道向 UE发送承载该 EPDCCH的载波的传输带宽的第三指示信息, 以使 UE 可以根据该第三指示信息确定承载该 EPDCCH的载波的传输带宽,进而确定 该配置信息的比特数。 SP, 该基站向 UE发送第二广播信道, 该第二广播信 道承载第三指示信息, 该第三指示信息用于指示载波的传输带宽, 其中, 该 载波为承载该物理下行控制信道的载波。
可选地, 该配置信息对应一个 EPDCCH集合(或称为 EPDCCH PRB pair 集合或 EPDCCH PRB集合) 时所需的信息比特数与对应两个 EPDCCH集合 时所需的信息比特数是不一样的, 如果系统最大可以为 EPDCCH配置两个 EPDCCH集合, 则 UE还需根据该配置信息对应的 EPDCCH PRB pair集合的 个数来确定该 PDSCH的传输块大小, 此时, 基站需要向 UE发送指示该配置 信息对应的 EPDCCH PRB pair集合的个数的信息或基站需要向 UE发送指示 该配置信息对应的 EPDCCH集合的个数的信息,即该基站发送第三广播信道, 该第三广播信道承载第四指示信息, 所述第四指示信息用于指示所述物理下 行控制信道的集合的个数。 所述的物理下行控制信道的集合的个数, 还可以 指配置信息对应的 EPDCCH PRB pair集合的个数或根据该配置信息对应的 EPDCCH集合的个数。
图 7 为本发明物理下行信道的物理资源的指示方法再一实施例的流程 图, 本实施例在上述实施例的基础上, 进一步提供了动态通知 UE第一物理 下行信道的 PRB的方法, 如图 7所示, 该方法包括:
S70 基站确定物理下行控制信道的物理资源块, 并确定该物理下行控 制信道的配置信息, 该配置信息用于向 UE指示该物理下行控制信道的物理 资源块。 5702、 基站发送第一广播信道, 该第一广播信道承载第二指示信息, 该 第二指示信息用于指示该第一物理下行信道的物理资源块。
本步骤中, 采用第二指示信息指示第一物理下行信道的资源分配, 可采 用类型 0资源分配方式、 类型 1资源分配方式和类型 2资源分配方式中的一 种, 对每种资源分配方式此处不再赘述。
本步骤中, 该第二指示信息的比特数可以按照预定的下行传输带宽来确 定, 或可以根据预设的资源分配方式和预定的下行传输带宽对该第一物理下 行信道的物理资源块进行指示,即基站可以根据该第一物理下行信道的 PRB、 该预定的下行传输带宽和该预设的资源分配方式确定该第二指示信息的比特 数。 该预定的下行传输带宽可能与承载该 PDSCH 的载波的系统传输带宽不 一样。 若该预定的下行传输带宽小于载波的系统传输带宽, 则该第二指示信 息指示的第一物理下行信道对应的 PRB分布于载波的一部分传输带宽上, 例 如可以是该载波的中心 W (预定的下行传输带宽大小)个 PRB内, 或可以是 载波的所有 PRB对中从 PRB编号 0到 PRB编号 W— 1的 PRB内。若该预定 的下行传输带宽大于载波的系统传输带宽,则该第二指示信息指示的 PDSCH 对应的 PRB可以为该载波的任何一个 PRB, 但 UE确定具体分配的 PRB时 需按照虚拟传输带宽来对应, 该虚拟传输带宽的大小等于预定的下行传输带 宽的大小, 该载波的 PRB位于该虚拟传输带宽的中心。 优选地, 该预设的下 行传输带宽可以为 25PRB pair。
需要说明的是, 步骤 S701与 S702的时序关系并没有严格的先后时序关 系, 本实施例仅为举例说明。
5703、 基站在第一物理下行信道上发送该配置信息。
本实施例, 通过第一物理下行信道的 PRB由广播信道进行指示, 使得可 以在一小段时间内调整该第一物理下行信道的资源位置, 增加了资源使用的 灵活性, 同时可以将该第一物理下行信道承载于信道较好的 PRB上, 提高了 该第一物理下行信道的传输性能。
图 8 为本发明物理下行信道的物理资源的指示方法再一实施例的流程 图, 本实施例在上述实施例的基础上, 本实施例进一步提供了实时调整物理 下行控制信道的 PRB的方法, 如图 8所示, 该方法包括:
S80 基站确定物理下行控制信道的物理资源块, 并确定该物理下行控 制信道的配置信息, 该配置信息用于向 UE指示该物理下行控制信道的物理 资源块。
5802、 基站在第一物理下行信道上发送该配置信息。
5803、 基站发送第三物理下行信道, 该第三物理下行信道承载第五指示 信息, 所述第五指示信息用于指示传输物理下行控制信道的物理资源大小。
本步骤中, 该 UE可以根据配置信息和物理资源大小来确定物理下行控 制信道的物理资源块。
具体地,传输 EPDCCH的 PRB可以应用于所有传输该 EPDCCH的子帧, 但由于该配置信息不能在每个传输该 EPDCCH的子帧都进行传输, 因此该配 置信息配置的物理资源通常按照最大需求进行配置, 从而在某些子帧会出现 资源浪费, 为解决该缺陷, 基站可以向 UE发送一个用于指示实时 EPDCCH 的 PRB的信息, 即第五指示信息, 以使 UE可以根据该第五指示信息和该配 置信息实时确实该 EPDCCH的 PRB。
其中, 该第三物理下行信道在 PBCH或 EPBCH的子帧上传输, 且该第 三物理下行信道对应的 PRB为该 PBCH或该 EPBCH对应的 PRB, 即第三物 理下行信道对应的 PRB与 PBCH或 EPBCH的 PRB相同。
本实施例, 通过第三物理下行信道对物理下行控制信道的 PRB进行实时 调整,实现了每个传输该物理下行控制信道的子帧都根据实际需求进行调整, 避免了资源浪费, 提高了频谱应用效率。
可选地, 在上述实施例的基础上, 上述广播信道还可以包括指示系统帧 号的信息, 用于指示系统帧号 ( System FrameNumber, 简称: SFN) 。
图 9 为本发明物理下行信道的物理资源的指示方法再一实施例的流程 图, 本实施例与上述实施例不同的是: 该物理下行控制信道的 PRB是根据预 定义规则确定的。 如图 9所示, 该方法可以按照如下流程进行:
S90 基站确定预留的物理下行控制信道的物理资源块。
S902、 基站发送第三物理下行信道, 该第三物理下行信道承载第五指示 信息, 该第五指示信息用于指示传输物理下行控制信道的物理资源大小。
本步骤中, 基站发送第三物理下行信道, 该第三物理下行信道的信息包 含指示传输 EPDCCH的物理资源大小的第五指示信息, 以使得 UE基于预留 的 EPDCCH 的物理资源和第三物理下行信道承载的第五指示信息确定传输 EPDCCH的物理资源。
本实施例, 通过第三物理下行信道动态调整预留的物理下行控制信道的 物理资源,一方面, 由于不需要指示 EPDCCH的物理资源,节省了信令开销; 另一方面, 通过第三物理下行信道动态调整物理下行控制信道的物理资源, 从而提高了频谱使用效率。
图 10为本发明用户设备一实施例组成示意图, 如图 10所示, 该 UE包 括第一确定模块 101和获取模块 102, 其中, 第一确定模块 101用于确定第 一物理下行信道的物理资源块, 其中, 所述第一物理下行信道承载第二物理 下行信道的配置信息, 所述第二物理下行信道为物理下行控制信道; 以及, 用于根据获取模块 102获得的所述配置信息确定所述物理下行控制信道的物 理资源块; 获取模块 102用于根据第一确定模块 101获得的所述第一物理下 行信道的物理资源块上接收所述第一物理下行信道, 并从所述第一物理下行 信道上获取所述配置信息。
进一步地, 第一确定模块 101还用于根据载波的传输带宽, 确定所述第 一物理下行信道的传输块大小, 其中, 所述载波为承载所述物理下行控制信 道的载波。 相应地, 获取模块 102从所述第一物理下行信道上获取所述配置 信息具体包括: 获取模块 102根据所述第一物理下行信道的传输块大小, 从 所述第一物理下行信道上获取所述配置信息。
进一步地, UE还包括接收模块, 用于接收第二广播信道, 所述第二广播 信道承载第三指示信息, 所述第三指示信息用于指示所述载波的传输带宽。 相应地, 第一确定模块根据载波的传输带宽, 确定所述第一物理下行信道的 传输块大小具体包括: 第一确定模块根据所述第三指示信息指示的所述载波 的传输带宽确定所述第一物理下行信道的传输块大小。
接收模块还用于接收第三广播信道, 所述第三广播信道承载第四指示信 息, 所述第四指示信息用于指示所述物理下行控制信道的集合的个数。 相应 地, 第一确定模块根据载波的传输带宽, 确定所述第一物理下行信道的传输 块大小具体包括:第一确定模块根据所述载波的传输带宽和所述集合的个数, 确定所述第一物理下行信道的传输块大小。
在上述实施例中, 所述配置信息包括第一指示信息, 所述第一指示信息 用于指示所述物理下行控制信道的物理资源块。 相应地, 第一确定模块根据 获取模块获得的所述配置信息确定所述物理下行控制信道的物理资源块具体 包括: 第一确定模块根据所述配置信息中的所述第一指示信息确定所述物理 下行控制信道的物理资源块。
上述的接收模块还可以用于接收第一广播信道, 所述第一广播信道承载 第二指示信息, 所述第二指示信息用于指示所述第一物理下行信道的物理资 源块。 相应地, 所述第一确定模块确定第一物理下行信道的物理资源块具体 包括: 所述第一确定模块根据所述第二指示信息确定所述第一物理下行信道 的物理资源块。
在上述各实施中, UE还便可以包括第一存储模块用于存储预设的下行传 输带宽, 具体地预设的下行传输带宽可以为 25个物理资源块对。 相应地, 接 收模块接收第一广播信道具体包括: 所述接收模块根据预设的下行传输带宽 确定所述第二指示信息的比特数, 并根据所述第二指示信息的比特数接收所 述第一广播信道。 或者, 相应地, 第一确定模块根据所述第二指示信息确定 所述第一物理下行信道的物理资源块具体包括: 所述第一确定模块根据预设 的下行传输带宽对所述第二指示信息进行解析, 确定所述第一物理下行信道 的物理资源块。
在上述各实施中, UE还便可以包括第二存储模块用于存储预先定义的所 述第一物理下行信道的物理资源块。
在上述各实施中, 所述接收模块还用于接收第三物理下行信道, 所述第 三物理下行信道承载第五指示信息, 所述第五指示信息用于指示传输所述物 理下行控制信道的物理资源大小。 相应地, 所述第一确定模块用于根据获取 模块获得的所述配置信息确定所述物理下行控制信道的物理资源块具体包 括: 所述第一确定模块根据所述配置信息和所述物理资源大小确定所述物理 下行控制信道的物理资源块。
在上述各实施中, 所述接收模块接收的所述第三物理下行信道的物理资 源块与物理广播信道 PBCH或增强的物理广播信道 EPBCH的物理资源块相 同。 进一步地, 所述获取模块接收的所述第一物理下行信道为物理下行共享 信道 PDSCH, 所述物理下行控制信道为增强的物理下行控制信道 EPDCCH, 所述物理下行控制信道的物理资源块为 EPDCCH公共搜索空间对应的物理资 源块。 本发明实施例提供的用户设备, 具体可以用来执行上述方法实施例中以
UE作为执行主体的方法, 具体流程此处不再赘述。
本发明实施例提供的用户设备, 通过第一物理下行信道来承载物理下行 控制信道的配置信息, 并通过配置信息进一步获得物理下行控制信道的物理 资源块, 根据物理资源块便可以接收物理下行控制信道, 以此为物理下行控 制信道的传输机制提供了有效的解决方案。
图 11为本发明基站一实施例的组成示意图, 如图 11所示, 该基站包括 第二确定模块 111和发送模块 112, 其中, 第二确定模块 111用于确定第二 物理下行信道的物理资源块, 并确定所述第二物理下行信道的配置信息, 所 述配置信息用于向用户设备 UE指示所述第二物理下行信道的物理资源块, 其中, 所述第二物理下行信道为物理下行控制信道; 发送模块 112用于在第 一物理下行信道上发送所述第二确定模块确定的所述配置信息。
进一步地, 发送模块 112还可以用于发送第二广播信道, 所述第二广播 信道承载第三指示信息, 所述第三指示信息用于指示载波的传输带宽; 其中, 所述载波为承载所述物理下行控制信道的载波。
发送模块 112还可以用于发送第三广播信道, 所述第三广播信道承载第 四指示信息, 所述第四指示信息用于指示所述物理下行控制信道的集合的个 数。
上述各实施例中, 所述的配置信息包括第一指示信息, 所述第一指示信 息用于指示所述物理下行控制信道的物理资源块。
上述各实施例中, 发送模块 112还可以用于发送第一广播信道, 所述第 一广播信道承载第二指示信息, 所述第二指示信息用于指示所述第一物理下 行信道的物理资源块。
上述各实施例中, 基站还可以包括第三存储模块用于存储预设的下行传 输带宽, 例如预设的下行传输带宽可以为 25个物理资源块对。 相应地, 所述 第二指示信息的比特数是所述基站根据预设的下行传输带宽确定的。
上述各实施例中, 基站还可以包括第四存储模块用于存储预先定义的所 述第一物理下行信道的物理资源块。
上述各实施例中, 发送模块 112还可以用于发送第三物理下行信道, 所 述第三物理下行信道承载第五指示信息, 所述第五指示信息用于指示传输所 述物理下行控制信道的物理资源大小。 发送模块发送的所述第三物理下行信 道的物理资源块与物理广播信道 PBCH或增强的物理广播信道 EPBCH的物 理资源块相同。 进一步地, 所述第一物理下行信道为物理下行共享信道 PDSCH, 所述物理下行控制信道为增强的物理下行控制信道 EPDCCH, 所述 物理下行控制信道的物理资源块为 EPDCCH 公共搜索空间对应的物理资源 块。
本发明实施例提供的基站, 具体可以用来执行上述方法实施例中以基站 作为执行主体的方法, 具体流程此处不再赘述。
本发明实施例提供的基站, 通过第一物理下行信道来承载物理下行控制 信道的配置信息, 并通过配置信息进一步获得物理下行控制信道的物理资源 块, 根据物理资源块便可以接收物理下行控制信道, 以此为物理下行控制信 道的传输机制提供了有效的解决方案。
图 12为本发明用户设备另一实施例的组成示意图, 如图 12所示, 该 UE 包括处理器 121和接收器 122, 其中, 处理器 121用于确定第一物理下行信 道的物理资源块, 其中, 所述第一物理下行信道承载第二物理下行信道的配 置信息, 所述第二物理下行信道为物理下行控制信道; 以及, 用于根据接收 器 122获得的所述配置信息确定所述物理下行控制信道的物理资源块; 接收 器 122用于根据所述处理器获得的所述第一物理下行信道的物理资源块上接 收所述第一物理下行信道,并从所述第一物理下行信道上获取所述配置信息。
在上述实施例中, 处理器 122还用于根据载波的传输带宽, 确定所述第 一物理下行信道的传输块大小, 其中, 所述载波为承载所述物理下行控制信 道的载波; 相应地, 接收器 122从所述第一物理下行信道上获取所述配置信 息具体包括: 接收器 122根据所述第一物理下行信道的传输块大小, 从所述 第一物理下行信道上获取所述配置信息。
在上述实施例中, 接收器 122还用于接收第二广播信道, 所述第二广播 信道承载第三指示信息, 所述第三指示信息用于指示所述载波的传输带宽; 相应地, 处理器 121根据载波的传输带宽, 确定所述第一物理下行信道的传 输块大小具体包括: 处理器 121根据所述第三指示信息指示的所述载波的传 输带宽确定所述第一物理下行信道的传输块大小。
在上述实施例中, 接收器 122还用于接收第三广播信道, 所述第三广播 信道承载第四指示信息, 所述第四指示信息用于指示所述物理下行控制信道 的集合的个数; 相应地, 处理器 121根据载波的传输带宽, 确定所述第一物 理下行信道的传输块大小具体包括: 处理器 121根据所述载波的传输带宽和 所述集合的个数, 确定所述第一物理下行信道的传输块大小。
在上述实施例中, 所述配置信息包括第一指示信息, 所述第一指示信息 用于指示所述物理下行控制信道的物理资源块。 处理器 121根据接收器 122 获得的所述配置信息确定所述物理下行控制信道的物理资源块具体包括: 处 理器 121根据所述配置信息中的所述第一指示信息确定所述物理下行控制信 道的物理资源块。
在上述实施例中, 接收器 122还用于接收第一广播信道, 所述第一广播 信道承载第二指示信息, 所述第二指示信息用于指示所述第一物理下行信道 的物理资源块; 相应地, 处理器 122确定第一物理下行信道的物理资源块具 体包括: 处理器 122根据所述第二指示信息确定所述第一物理下行信道的物 理资源块。
在上述实施例中, UE还可以包括存储器 123用于存储预设的下行传输带 宽。 相应地, 接收器 122接收第一广播信道具体包括: 接收器 122根据预设 的下行传输带宽确定所述第二指示信息的比特数, 并根据所述第二指示信息 的比特数接收所述第一广播信道。 或者相应地, 处理器 121根据所述第二指 示信息确定所述第一物理下行信道的物理资源块具体包括: 处理器 121根据 预设的下行传输带宽对所述第二指示信息进行解析, 确定所述第一物理下行 信道的物理资源块。
在上述实施例中, 所述预设的下行传输带宽为 25个物理资源块对。
在上述实施例中, UE还包括存储器 123用于存储预先定义的所述第一物 理下行信道的物理资源块。
在上述实施例中, 接收器 122还用于接收第三物理下行信道, 所述第三 物理下行信道承载第五指示信息, 所述第五指示信息用于指示传输所述物理 下行控制信道的物理资源大小; 相应地, 处理器 121用于根据接收器 122获 得的所述配置信息确定所述物理下行控制信道的物理资源块具体包括: 处理 器 121根据所述配置信息和所述物理资源大小确定所述物理下行控制信道的 物理资源块。 在上述实施例中, 接收器 122接收的所述第三物理下行信道的物理资源 块与物理广播信道 PBCH或增强的物理广播信道 EPBCH的物理资源块相同。 进一步地, 接收器 122 接收的所述第一物理下行信道为物理下行共享信道 PDSCH, 所述物理下行控制信道为增强的物理下行控制信道 EPDCCH, 所述 物理下行控制信道的物理资源块为 EPDCCH 公共搜索空间对应的物理资源 块。
本发明实施例提供的用户设备, 具体可以用来执行上述方法实施例中以 UE作为执行主体的方法, 具体流程此处不再赘述。
本发明实施例提供的用户设备, 通过第一物理下行信道来承载物理下行 控制信道的配置信息, 并通过配置信息进一步获得物理下行控制信道的物理 资源块, 根据物理资源块便可以接收物理下行控制信道, 以此为物理下行控 制信道的传输机制提供了有效的解决方案。
图 13为本发明基站另一实施例的组成示意图, 如图 13所示, 该基站包 括处理器 131和发送器 132, 其中, 处理器 131用于确定第二物理下行信道 的物理资源块, 并确定所述第二物理下行信道的配置信息, 所述配置信息用 于向用户设备 UE指示所述第二物理下行信道的物理资源块, 其中, 所述第 二物理下行信道为物理下行控制信道; 发送器 132用于在第一物理下行信道 上发送所述第二确定模块确定的所述配置信息。
在上述实施例中, 发送器 132还可以用于发送第二广播信道, 所述第二 广播信道承载第三指示信息, 所述第三指示信息用于指示载波的传输带宽; 其中, 所述载波为承载所述物理下行控制信道的载波。
在上述实施例中, 发送器 132还可以用于发送第三广播信道, 所述第三 广播信道承载第四指示信息, 所述第四指示信息用于指示所述物理下行控制 信道的集合的个数。
在上述实施例中, 所述的配置信息包括第一指示信息, 所述第一指示信 息用于指示所述物理下行控制信道的物理资源块。
在上述实施例中, 发送器 132还可以用于发送第一广播信道, 所述第一 广播信道承载第二指示信息, 所述第二指示信息用于指示所述第一物理下行 信道的物理资源块。
在上述实施例中, 基站还可以包括存储器 133用于存储预设的下行传输 带宽。 所述第二指示信息的比特数可以是基站根据预设的下行传输带宽确定 的。 进一步地, 所述预设的下行传输带宽为 25个物理资源块对。
在上述实施例中, 基站还可以包括存储器 133, 用于存储预先定义的所 述第一物理下行信道的物理资源块。
在上述实施例中, 发送器 132还可以用于发送第三物理下行信道, 所述 第三物理下行信道承载第五指示信息, 所述第五指示信息用于指示传输所述 物理下行控制信道的物理资源大小。
在上述实施例中, 发送器 132发送的所述第三物理下行信道的物理资源 块与物理广播信道 PBCH或增强的物理广播信道 EPBCH的物理资源块相同。 进一步地, 所述第一物理下行信道为物理下行共享信道 PDSCH, 所述物理下 行控制信道为增强的物理下行控制信道 EPDCCH, 所述物理下行控制信道的 物理资源块为 EPDCCH公共搜索空间对应的物理资源块。
本发明实施例提供的基站, 具体可以用来执行上述方法实施例中以基站 作为执行主体的方法, 具体流程此处不再赘述。
本发明实施例提供的基站, 通过第一物理下行信道来承载物理下行控制 信道的配置信息, 并通过配置信息进一步获得物理下行控制信道的物理资源 块, 根据物理资源块便可以接收物理下行控制信道, 以此为物理下行控制信 道的传输机制提供了有效的解决方案。
在本发明所提供的几个实施例中, 应该理解到, 所揭露的装置和方法, 可以通过其它的方式实现。例如, 以上所描述的装置实施例仅仅是示意性的, 例如, 所述单元的划分, 仅仅为一种逻辑功能划分, 实际实现时可以有另外 的划分方式, 例如多个单元或组件可以结合或者可以集成到另一个系统, 或 一些特征可以忽略, 或不执行。 另一点, 所显示或讨论的相互之间的耦合或 直接耦合或通信连接可以是通过一些接口, 装置或单元的间接耦合或通信连 接, 可以是电性, 机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的, 作 为单元显示的部件可以是或者也可以不是物理单元, 即可以位于一个地方, 或者也可以分布到多个网络单元上。 可以根据实际的需要选择其中的部分或 者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中, 也可以是各个单元单独物理存在, 也可以两个或两个以上单元集成在一个单 元中。 上述集成的单元既可以采用硬件的形式实现, 也可以采用硬件加软件 功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元, 可以存储在一个计算机 可读取存储介质中。 上述软件功能单元存储在一个存储介质中, 包括若干指 令用以使得一台计算机设备(可以是个人计算机, 服务器, 或者网络设备等) 或处理器 (processor) 执行本发明各个实施例所述方法的部分步骤。 而前述 的存储介质包括: U盘、移动硬盘、只读存储器(Read-Only Memory, ROM)、 随机存取存储器(Random Access Memory, RAM) 、 磁碟或者光盘等各种可 以存储程序代码的介质。
本领域技术人员可以清楚地了解到, 为描述的方便和简洁, 仅以上述各 功能模块的划分进行举例说明, 实际应用中, 可以根据需要而将上述功能分 配由不同的功能模块完成, 即将装置的内部结构划分成不同的功能模块, 以 完成以上描述的全部或者部分功能。 上述描述的装置的具体工作过程, 可以 参考前述方法实施例中的对应过程, 在此不再赘述。
最后应说明的是: 以上各实施例仅用以说明本发明的技术方案, 而非对 其限制; 尽管参照前述各实施例对本发明进行了详细的说明, 本领域的普通 技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改, 或者对其中部分或者全部技术特征进行等同替换; 而这些修改或者替换, 并 不使相应技术方案的本质脱离本发明各实施例技术方案的范围。
最后应说明的是: 以上各实施例仅用以说明本发明的技术方案, 而非对 其限制; 尽管参照前述各实施例对本发明进行了详细的说明, 本领域的普通 技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改, 或者对其中部分或者全部技术特征进行等同替换; 而这些修改或者替换, 并 不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (1)

  1. 权 利 要 求 书
    1、 一种物理下行信道的物理资源的指示方法, 其特征在于, 包括: 用户设备 UE确定第一物理下行信道的物理资源块, 其中, 所述第一物 理下行信道承载第二物理下行信道的配置信息, 所述第二物理下行信道为物 理下行控制信道;
    所述 UE从所述第一物理下行信道的物理资源块上接收所述第一物理下 行信道;
    所述 UE从所述第一物理下行信道上获取所述配置信息; 以及
    所述 UE根据所述配置信息确定所述物理下行控制信道的物理资源块。 2、 根据权利要求 1所述的方法, 其特征在于, 还包括:
    所述 UE根据载波的传输带宽, 确定所述第一物理下行信道的传输块大 小, 其中, 所述载波为承载所述物理下行控制信道的载波;
    所述 UE从所述第一物理下行信道上获取所述配置信息, 包括: 所述 UE根据所述第一物理下行信道的传输块大小, 从所述第一物理下 行信道上获取所述配置信息。
    3、 根据权利要求 2所述的方法, 其特征在于, 所述 UE根据载波的传输 带宽, 确定所述第一物理下行信道的传输块大小之前, 还包括:
    所述 UE接收第二广播信道, 所述第二广播信道承载第三指示信息, 所 述第三指示信息用于指示所述载波的传输带宽;
    所述 UE根据载波的传输带宽, 确定所述第一物理下行信道的传输块大 小, 包括: 所述 UE根据所述第三指示信息指示的所述载波的传输带宽确定 所述第一物理下行信道的传输块大小。
    4、 根据权利要求 2或 3所述的方法, 其特征在于, 所述 UE根据载波的 传输带宽, 确定所述第一物理下行信道的传输块大小, 包括:
    所述 UE接收第三广播信道, 所述第三广播信道承载第四指示信息, 所 述第四指示信息用于指示所述物理下行控制信道的集合的个数; 以及
    所述 UE根据所述载波的传输带宽和所述集合的个数, 确定所述第一物 理下行信道的传输块大小。
    5、 根据权利要求 1至 4中任一项所述的方法, 其特征在于, 所述配置信 息包括第一指示信息, 所述第一指示信息用于指示所述物理下行控制信道的 物理资源块;
    所述 UE根据所述配置信息确定物理下行控制信道的物理资源块, 包括: 所述 UE根据所述配置信息中的所述第一指示信息确定所述物理下行控 制信道的物理资源块。
    6、 根据权利要求 1〜5中任一项所述的方法, 其特征在于, 所述 UE确定 第一物理下行信道的物理资源块, 包括:
    所述 UE接收第一广播信道, 所述第一广播信道承载第二指示信息, 所 述第二指示信息用于指示所述第一物理下行信道的物理资源块; 以及
    所述 UE根据所述第二指示信息确定所述第一物理下行信道的物理资源 块。
    7、 根据权利要求 6所述的方法, 其特征在于, 所述 UE接收第一广播信 道, 包括:
    所述 UE根据预设的下行传输带宽确定所述第二指示信息的比特数; 以 及
    所述 UE根据所述第二指示信息的比特数接收所述第一广播信道。
    8、 根据权利要求 6所述的方法, 其特征在于, 所述 UE根据所述第二指 示信息确定所述第一物理下行信道的物理资源块, 包括:
    所述 UE根据预设的下行传输带宽对所述第二指示信息进行解析, 确定 所述第一物理下行信道的物理资源块。
    9、 根据权利要求 7或 8所述的方法, 其特征在于, 所述预设的下行传输 带宽为 25个物理资源块对。
    10、 根据权利要求 1或 2或 5或 8所述的方法, 其特征在于, 所述第一 物理下行信道的物理资源块是预先定义的。
    11、 根据权利要求 1〜10中任一项所述的方法, 其特征在于, 所述 UE根 据所述配置信息确定下行控制信道的物理资源块, 包括:
    所述 UE接收第三物理下行信道, 所述第三物理下行信道承载第五指示 信息, 所述第五指示信息用于指示传输所述物理下行控制信道的物理资源大 小; 以及
    所述 UE根据所述配置信息和所述物理资源大小确定所述物理下行控制 信道的物理资源块。 12、 根据权利要求 11所述的方法, 其特征在于,
    所述第三物理下行信道的物理资源块与物理广播信道 PBCH或增强的物 理广播信道 EPBCH的物理资源块相同。
    13、 根据权利要求 1〜12任一项所述的方法, 其特征在于, 所述第一物理 下行信道为物理下行共享信道 PDSCH,所述物理下行控制信道为增强的物理 下行控制信道 EPDCCH,所述物理下行控制信道的物理资源块为 EPDCCH公 共搜索空间对应的物理资源块。
    14、 一种物理下行信道的物理资源的指示方法, 其特征在于, 包括: 基站确定第二物理下行信道的物理资源块, 并确定所述第二物理下行信 道的配置信息, 所述配置信息用于向用户设备 UE指示所述第二物理下行信 道的物理资源块; 所述第二物理下行信道为物理下行控制信道;
    所述基站在第一物理下行信道上发送所述配置信息。
    15、 根据权利要求 14所述的方法, 其特征在于, 还包括:
    所述基站发送第二广播信道, 所述第二广播信道承载第三指示信息, 所 述第三指示信息用于指示载波的传输带宽; 其中, 所述载波为承载所述物理 下行控制信道的载波。
    16、 根据权利要求 14所述的方法, 其特征在于, 还包括:
    所述基站发送第三广播信道, 所述第三广播信道承载第四指示信息, 所 述第四指示信息用于指示所述物理下行控制信道的集合的个数。
    17、 根据权利要求 14-16 中任一所述的方法, 其特征在于, 所述配置信 息包括第一指示信息, 所述第一指示信息用于指示所述物理下行控制信道的 物理资源块。
    18、 根据权利要 14-17中任一所述的方法, 其特征在于, 还包括: 所述基站发送第一广播信道, 所述第一广播信道承载第二指示信息, 所 述第二指示信息用于指示所述第一物理下行信道的物理资源块。
    19、 根据权利要求 18所述的方法, 其特征在于, 所述第二指示信息的比 特数是所述基站根据预设的下行传输带宽确定的。
    20、 根据权利要求 19所述的方法, 其特征在于, 所述预设的下行传输带 宽为 25个物理资源块对。
    21、 根据权利要求 18所述的方法, 其特征在于, 所述第一物理下行信道 的物理资源块是预先定义的。
    22、 根据权利要求 14至 21中任一项所述的方法, 其特征在于, 还包括: 所述基站发送第三物理下行信道,所述第三物理下行信道承载第五指示信 息, 所述第五指示信息用于指示传输所述物理下行控制信道的物理资源大小。
    23、 根据权利要求 22所述的方法, 其特征在于,
    所述第三物理下行信道的物理资源块与物理广播信道 PBCH或增强的物 理广播信道 EPBCH的物理资源块相同。
    24、 根据权利要求 14-23任一所述的方法, 其特征在于, 所述第一物理 下行信道为物理下行共享信道 PDSCH,所述物理下行控制信道为增强的物理 下行控制信道 EPDCCH,所述物理下行控制信道的物理资源块为 EPDCCH公 共搜索空间对应的物理资源块。
    25、 一种用户设备, 其特征在于, 包括:
    第一确定模块, 用于确定第一物理下行信道的物理资源块, 其中, 所述 第一物理下行信道承载第二物理下行信道的配置信息, 所述第二物理下行信 道为物理下行控制信道; 以及, 用于根据获取模块获得的所述配置信息确定 所述物理下行控制信道的物理资源块;
    所述获取模块, 用于根据所述第一确定模块获得的所述第一物理下行信 道的物理资源块上接收所述第一物理下行信道, 并从所述第一物理下行信道 上获取所述配置信息。
    26、 根据权利要求 25所述的用户设备, 其特征在于, 所述第一确定模块 还用于: 根据载波的传输带宽, 确定所述第一物理下行信道的传输块大小, 其中, 所述载波为承载所述物理下行控制信道的载波;
    所述获取模块从所述第一物理下行信道上获取所述配置信息具体包括: 所述获取模块根据所述第一物理下行信道的传输块大小, 从所述第一物理下 行信道上获取所述配置信息。
    27、 根据权利要求 26所述的用户设备, 其特征在于, 还包括:
    接收模块, 用于接收第二广播信道, 所述第二广播信道承载第三指示信 息, 所述第三指示信息用于指示所述载波的传输带宽;
    所述第一确定模块根据载波的传输带宽, 确定所述第一物理下行信道的 传输块大小具体包括: 所述第一确定模块根据所述接收模块接收的所述第三 指示信息所指示的所述载波的传输带宽, 确定所述第一物理下行信道的传输 块大小。
    28、 根据权利要求 27所述的用户设备, 其特征在于, 所述接收模块还用 于: 接收第三广播信道, 所述第三广播信道承载第四指示信息, 所述第四指 示信息用于指示所述物理下行控制信道的集合的个数;
    所述第一确定模块根据载波的传输带宽, 确定所述第一物理下行信道的 传输块大小具体包括: 所述第一确定模块根据所述载波的传输带宽和所述集 合的个数, 确定所述第一物理下行信道的传输块大小。
    29、 根据权利要求 26-28 中任一所述的用户设备, 其特征在于, 第一确 定模块确定的所述配置信息包括第一指示信息, 所述第一指示信息用于指示 所述物理下行控制信道的物理资源块;
    所述第一确定模块根据获取模块获得的所述配置信息确定所述物理下行 控制信道的物理资源块具体包括:
    所述第一确定模块根据所述配置信息中的所述第一指示信息确定所述物 理下行控制信道的物理资源块。
    30、 根据权利要求 27或 28所述的用户设备, 其特征在于, 所述接收模 块还用于: 接收第一广播信道, 所述第一广播信道承载第二指示信息, 所述 第二指示信息用于指示所述第一物理下行信道的物理资源块;
    所述第一确定模块确定第一物理下行信道的物理资源块具体包括:所述第 一确定模块根据所述第二指示信息确定所述第一物理下行信道的物理资源块。
    31、 根据权利要求 30所述的用户设备, 其特征在于, 还包括: 第一存储模块, 用于存储预设的下行传输带宽;
    所述接收模块接收第一广播信道具体包括: 所述接收模块根据所述第一 存储模块存储的所述预设的下行传输带宽确定所述第二指示信息的比特数, 并根据所述第二指示信息的比特数接收所述第一广播信道。
    32、 根据权利要求 30所述的用户设备, 其特征在于, 还包括: 第一存储模块, 用于存储预设的下行传输带宽;
    所述第一确定模块根据所述第二指示信息确定所述第一物理下行信道的 物理资源块具体包括: 所述第一确定模块根据所述第一存储模块存储的预设 的下行传输带宽对所述第二指示信息进行解析, 确定所述第一物理下行信道 的物理资源块。
    33、 根据权利要求 31或 32所述的用户设备, 其特征在于, 所述第一存 储模块存储的所述预设的下行传输带宽为 25个物理资源块对。
    34、 根据权利要求 29或 32所述的用户设备, 其特征在于, 还包括: 第二存储模块,用于存储预先定义的所述第一物理下行信道的物理资源块。
    35、 根据权利要求 27、 28、 30至 33中任一所述的用户设备, 其特征在 于, 所述接收模块还用于接收第三物理下行信道, 所述第三物理下行信道承 载第五指示信息, 所述第五指示信息用于指示传输所述物理下行控制信道的 物理资源大小;
    所述第一确定模块用于根据获取模块获得的所述配置信息确定所述物理 下行控制信道的物理资源块具体包括:
    所述第一确定模块根据所述配置信息和所述物理资源大小确定所述物理 下行控制信道的物理资源块。
    36、 根据权利要求 35所述的用户设备, 其特征在于,
    所述接收模块接收的所述第三物理下行信道的物理资源块与物理广播信 道 PBCH或增强的物理广播信道 EPBCH的物理资源块相同。
    37、 根据权利要求 25-36 中任一所述的用户设备, 其特征在于, 所述获 取模块接收的所述第一物理下行信道为物理下行共享信道 PDSCH,所述物理 下行控制信道为增强的物理下行控制信道 EPDCCH, 所述物理下行控制信道 的物理资源块为 EPDCCH公共搜索空间对应的物理资源块。
    38、 一种基站, 其特征在于, 包括:
    第二确定模块, 用于确定第二物理下行信道的物理资源块, 并确定所述 第二物理下行信道的配置信息, 所述配置信息用于向用户设备 UE指示所述 第二物理下行信道的物理资源块, 其中, 所述第二物理下行信道为物理下行 控制信道;
    发送模块, 用于在第一物理下行信道上发送所述第二确定模块确定的所 述配置信息。
    39、 根据权利要求 38所述的基站, 其特征在于, 所述发送模块还用于: 发送第二广播信道, 所述第二广播信道承载第三指示信息, 所述第三指示信 息用于指示载波的传输带宽; 其中, 所述载波为承载所述物理下行控制信道 的载波。
    40、 根据权利要求 38所述的基站, 其特征在于, 所述发送模块还用于: 发送第三广播信道, 所述第三广播信道承载第四指示信息, 所述第四指示信 息用于指示所述物理下行控制信道的集合的个数。
    41、 根据权利要求 38-40 中任一所述的基站, 其特征在于, 所述配置信 息包括第一指示信息, 所述第一指示信息用于指示所述物理下行控制信道的 物理资源块。
    42、 根据权利要求 38-41 中任一所述的基站, 其特征在于, 所述发送模 块还用于:
    发送第一广播信道, 所述第一广播信道承载第二指示信息, 所述第二指 示信息用于指示所述第一物理下行信道的物理资源块。
    43、 根据权利要求 42所述的基站, 其特征在于, 还包括:
    第三存储模块, 用于存储预设的下行传输带宽;
    所述第二指示信息的比特数是所述发送模块根据所述第三存储模块存储 的所述预设的下行传输带宽确定的。
    44、 根据权利要求 43所述的基站, 其特征在于, 所述第三存储模块存储 的所述预设的下行传输带宽为 25个物理资源块对。
    45、 根据权利要求 42所述的基站, 其特征在于, 还包括:
    第四存储模块, 用于存储预先定义的所述第一物理下行信道的物理资源 块。
    46、 根据权利要求 38所述的基站, 其特征在于, 所述发送模块还用于: 发送第三物理下行信道, 所述第三物理下行信道承载第五指示信息, 所述第 五指示信息用于指示传输所述物理下行控制信道的物理资源大小。
    47、 根据权利要求 46所述的基站, 其特征在于,
    所述发送模块发送的所述第三物理下行信道的物理资源块与物理广播信 道 PBCH或增强的物理广播信道 EPBCH的物理资源块相同。
    48、 根据权利要求 38-47 中任一所述的基站, 其特征在于, 所述第一物 理下行信道为物理下行共享信道 PDSCH,所述物理下行控制信道为增强的物 理下行控制信道 EPDCCH, 所述物理下行控制信道的物理资源块为 EPDCCH 公共搜索空间对应的物理资源块。
CN201380035066.8A 2013-09-13 2013-09-13 物理下行信道的物理资源的指示方法及装置 Pending CN104641707A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/083482 WO2015035614A1 (zh) 2013-09-13 2013-09-13 物理下行信道的物理资源的指示方法及装置

Publications (1)

Publication Number Publication Date
CN104641707A true CN104641707A (zh) 2015-05-20

Family

ID=52664962

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380035066.8A Pending CN104641707A (zh) 2013-09-13 2013-09-13 物理下行信道的物理资源的指示方法及装置

Country Status (2)

Country Link
CN (1) CN104641707A (zh)
WO (1) WO2015035614A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11258556B2 (en) 2017-05-05 2022-02-22 Huawei Technologies Co., Ltd. Method and apparatus for determining reference signal sequence, computer program product, and computer readable storage medium
WO2023185521A1 (zh) * 2022-03-28 2023-10-05 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103037511A (zh) * 2011-09-30 2013-04-10 中国移动通信集团公司 一种增强下行控制信道资源的指示方法、系统和设备
CN103037510A (zh) * 2011-09-30 2013-04-10 中国移动通信集团公司 一种增强下行控制信道资源的指示方法、系统和设备
CN103095396A (zh) * 2011-11-04 2013-05-08 中国移动通信集团公司 对增强物理下行控制信道进行传输和盲检测的方法和装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103037511A (zh) * 2011-09-30 2013-04-10 中国移动通信集团公司 一种增强下行控制信道资源的指示方法、系统和设备
CN103037510A (zh) * 2011-09-30 2013-04-10 中国移动通信集团公司 一种增强下行控制信道资源的指示方法、系统和设备
CN103095396A (zh) * 2011-11-04 2013-05-08 中国移动通信集团公司 对增强物理下行控制信道进行传输和盲检测的方法和装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11258556B2 (en) 2017-05-05 2022-02-22 Huawei Technologies Co., Ltd. Method and apparatus for determining reference signal sequence, computer program product, and computer readable storage medium
US11843492B2 (en) 2017-05-05 2023-12-12 Huawei Technologies Co., Ltd. Method and apparatus for determining reference signal sequence, computer program product, and computer readable storage medium
WO2023185521A1 (zh) * 2022-03-28 2023-10-05 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Also Published As

Publication number Publication date
WO2015035614A1 (zh) 2015-03-19

Similar Documents

Publication Publication Date Title
US20200296705A1 (en) System and method for delay scheduling
CN110572830B (zh) 一种使用无线接口技术的方法以及装置和通信系统
US11606775B2 (en) System message transmission method and device
EP3537784B1 (en) Method for detecting synchronization signal block, and method, apparatus and system for transmitting synchronization signal block
RU2604639C1 (ru) Способ обработки улучшенного физического канала управления нисходящей линии связи, устройство на стороне сети и пользовательское оборудование
CN112737759B (zh) 信息发送、接收方法及设备
CN115412216B (zh) 数据传输方法及装置
EP3560228A1 (en) Support for frequency-overlapping carriers
CN111294190B (zh) 控制信息的传输方法、用户设备和基站
CN106464646B (zh) 一种信号传输方法及装置
CN104303569A (zh) 公共控制信道的检测方法、传输方法及装置
CN107211276B (zh) 一种传输业务数据的方法和装置
CN112637784B (zh) 时域资源确定方法、装置、设备及存储介质
CN104704897A (zh) 载波配置方法及基站、用户设备
CN105264985A (zh) 传输信息的方法、用户设备和基站
US20220021474A1 (en) Tbs determining method and apparatus
CN114600473A (zh) 一种业务同步调度方法及装置、通信设备
EP3606209B1 (en) Information sending method and apparatus, terminal, access network device and system
CN104322081A (zh) 一种广播信息发送、接收方法、设备及系统
CN106961735B (zh) 资源的使用方法及装置
CN104641707A (zh) 物理下行信道的物理资源的指示方法及装置
CN105634667A (zh) 一种物理下行信道的处理方法及装置
CN116134894A (zh) 一种资源信息指示方法及装置
CN103975618A (zh) 传输信息的方法和装置
CN109792585B (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20150520

RJ01 Rejection of invention patent application after publication