CN104638276A - 一种光电化学池及其制备方法 - Google Patents

一种光电化学池及其制备方法 Download PDF

Info

Publication number
CN104638276A
CN104638276A CN201410740512.1A CN201410740512A CN104638276A CN 104638276 A CN104638276 A CN 104638276A CN 201410740512 A CN201410740512 A CN 201410740512A CN 104638276 A CN104638276 A CN 104638276A
Authority
CN
China
Prior art keywords
battery
layer
anode
water
photoelectrochemistrpool pool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410740512.1A
Other languages
English (en)
Inventor
刘建国
吴程浩
姚颖方
周勇
于涛
邹志刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University
Original Assignee
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University filed Critical Nanjing University
Priority to CN201410740512.1A priority Critical patent/CN104638276A/zh
Publication of CN104638276A publication Critical patent/CN104638276A/zh
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Hybrid Cells (AREA)

Abstract

本发明涉及一种光电化学池,利用电池自偏压结构,能够在氧化分解水的同时外部设备提供电能的装置,包括纳米线阵列TiO2光阳极、MnO2阴极、电解质水溶液、光源、外接电阻。将硫酸钠电解质水溶液通入反应室内,开启光源,水在光阳极表面直接被氧化分解,光阳极产生的光生电子通过外电路传至阴极并与空气中氧气相互结合。本发明直接以水为反应介质,在不消耗任何有机质燃料的情况,能够得到高效、稳定的放电输出,其电池开路电压为1.02V,最大放电功率密度0.38mA/cm2,对应电流密度0.65mA/cm2。且电池无Nafion膜的三明治结构简化了电池的制备过程,更利于未来实际使用。

Description

一种光电化学池及其制备方法
技术领域:本发明涉及光催化燃料电池领域,具体的说是以电解质水为反应介质的光电化学池。
背景技术:
随着人类社会的不断发展,能源消耗迅速增加,能源短缺问题已经越来越突出。因此,发展新型、洁净的可再生能源满足当今社会的发展需求已经成为一个迫切急需解决的问题。地球上的太阳能、风能以及潮汐能为洁净可再生能源,其中的太阳能具有广泛的应用前景。太阳能为可再生能源,来自太阳源源不断的照射,不受地理条件限制,零污染,安全。若能有效地利用这部分能源,将有效地缓解能源短缺与经济发展之间的尖锐矛盾,对太阳能的利用是将光能转换成电能即太阳能光电化学电池。
基于光催化原理构建的光催化燃料电池则代表了一种新型的快速、高效的太阳能光电化学应用。以金属钛基TiO2为光阳极,以Pt/铂黑电极为阴极组成的光催化燃料电池以其优异的性能已经引起了越来越多的关注(Biosens.Bioelectron.2007,23,140;Water Res.2011,45,3991;Chem.Common.2011,47,10314)。半导体TiO2在光照条件下,受光激发生成光生电子和光生空穴,具有强氧化能力的空穴用于氧化分解阳极半电池中的还原物,而光生电子经外电路传递至阴极,在阴极侧与氧气发生反应,由此形成回路,同步实现还原物的氧化分解和发电。与一般染料敏化太阳能电池相比,光催化燃料电池无需浸泡价格高昂的N-719染料,且不用添加有毒有害的乙腈电解质溶剂,极大的降低了太阳能的利用成本。目前光催化燃料电池都以有机物为燃料或以有机物为反应牺牲剂(《一种以光催化燃料电池为电源的光电催化反应器》.中国专利号:CN102701316A;《TiO2基光催化复合电极燃料电池处理有机废水的装置与方法》.中国专利号:CN102403523A),尚无直接以水为反应介质来实现光-电转换的光催化燃料电池的报道,而且以铂贵金属为光催化燃料电池的阴极在成本上也限制了光催化燃料电池的大规模使用。
发明内容:
本发明提供一种直接以水为反应介质,阴极采用非贵金属催化剂,并实现高效、稳定放电输出的光电化学池。
本发明是通过以下技术方案实现的:
本发明的光电化学池,其特征是,由担载纳米线阵列TiO2为光催化剂的导电玻璃与MnO2阴极板构成光电化学池的主体,阴、阳极导线将电池内部产生的电能引出供外部设备使用,电池两端的接口分别为电解质水溶液的流入和流出口。
所描述的光电化学池整体为三明治结构,上下两层分别为阳极层和阴极层,中间层为流道层,设置流道宽度为5mm,长度为20mm,深度为0.2mm。流道的上侧为商用二氧化钛(P25)光催化剂,流道下侧为MnO2氧还原层。层与层之间用环氧树脂胶密封。
所描述的阳极层导电玻璃上开有两个通孔,开空位置对应于流道的两端,分别作为水电解质的流入口和流出口。
所描述的水流入接口、流出接口与导电玻璃连接,连接处用环氧树脂胶密封。
所描述的阳极导线与导电玻璃导电层连接,连接处用碳浆和银浆连接。阴极导线与阴极板上的不锈钢网相连接,连接处用碳浆和银浆连接。
所述的光电化学池以超纯水(18MΩ/cm)为反应介质,使用矿物盐(如硫酸钠)作为电解质。其工作原理如图1所示,主要包括以下几个过程:
(1)当半导体光催化剂受光照激发时,半导体中的电子从价带跃迁至导带,生成光生电子和光生空穴:TiO2+hv→h++e-
(2)利用光生空穴的强氧化性氧化分解水:h++H2O→2H++1/2O2
(3)光生电子经外电路回传至阴极,在阴极催化剂表面发生氧还原反应:e-+1/4O2+1/2H2O→OH-
本发明具有以下优点:
1.直接以电解质水为反应介质,在光照分解水的同时为外部设备提供电能,与有机质为燃料的光催化燃料电池相比,具有同样稳定高效的放电输出。
2.以非贵金属催化剂MnO2取代Pt/铂碳催化剂作为光电化学池的阴极材料,降低了光催化燃料电池的制作成本。
3.采用阳极层,流道层,阴极层复合的三明治结构,除去了Nafion膜的使用,极大的简化了光催化燃料电池的构成。
4.光电催化安全高效,无其他有害物质生成。
附图说明:
图1是光电化学池的结构和工作原理图
图2是本发明的装置示意图
附图中标记为:1、光催化剂负载玻璃;2、流道层;3、MnO2催化剂层;4、金属网;5、气体扩散层;6、溶液进出口;7、阳极导线;8、阴极导线。
图3,4分别是本发明在光照条件下水氧化分解伴随的伏安特性曲线,恒压放电曲线。
具体实施方式:
以下提供本发明光电化学池的具体实施方式。
实施例1
(1)光阳极的制备 
FTO基底清洗:将FTO导电玻璃浸入NaOH的乙醇溶液中,超声清洗30min,取出用去离子水冲洗,然后N2吹干备用。 
晶种层制备:利用电泳沉积的方法,在FTO上沉积钛酸的纳米片作为晶种层。薄膜的厚度通过调节沉积时间控制,之后将片层薄膜在350℃下退火20min,以除去钛酸片层中残留的有机物以及水分子。
TiO2纳米线生长:将带有晶种层的FTO放入水热反应的源溶液(水、盐酸和钛酸正丁酯的体积比为40∶40∶1)中,150℃水热反应8h。待样品自然冷却后,取出用去离子水冲洗,氮气吹干。为了除去样品内残留的有机物,将纳米线电极450℃退火处理20min。
(2)阴极的制备 
本发明的电池阴极是由三层结构复合而成,分别是气体扩散层(防止有机废水渗漏的同时允许氧气扩散至催化剂表面);金属网(收集电流,同时增加电极机械强度);催化剂层(氧被还原场所)。具体制作过程如下:
1.将XC-72碳粉与PTFE(聚四氟乙烯)粉末按2∶3比例均匀混合,加乙醇调稀,于80℃水浴搅拌,直至XC-72碳粉与PTFE粉末混合成凝胶状,将催化剂取出干燥至一定程度,辊压机滚压至300μm厚,即制成气体扩散层。
2.将无定型MnO2催化剂与XC-72碳粉按3∶7比例混合,加10%乙醇水溶液搅拌均匀,再加入60%PTFE分散液,PTFE占总质量的40%,80℃水浴搅拌,制成凝胶状碳载二氧化锰阴极催化剂,将催化剂取出干燥至一定程度,用辊压机滚压至300μm厚度,即制得阴极催化剂层。
3.将气体扩散层,不锈钢丝网(60目),阴极催化剂层按顺序用辊压机滚压至600μm左 右厚度,即制成本发明需要的阴极部分。
(3)光电化学池的组装
按图2将上述制备好的光阳极、阴极按顺序组装并加以固定。
(4)电池操作
将组装好的光电化学池固定在工作台上,将电池的阳极和阴极与电化学工作站相连接,从电池一端接口通入含硫酸钠电解质的水溶液,经过光-电处理的电解质水溶液从另一端接口流出。开启光源照射光阳极,此时水在光阳极附近被氧化分解,光阳极产生的光生电子经外电路传递至阴极,在MnO2催化剂表面与透过气体扩散层的氧气结合,由此同步实现了水的氧化分解和发电。请参阅图3,本发明所述的光电化学池经电化学工作站所测得的开路电压为1.02V,最大放电功率密度为0.38mA/cm2。为了验证本发明电池的稳定性,设计并进行了2h的0.6V恒压放电测试,如图4,电池的放电电流密度稳定在0.6±0.02mA/cm2,说明本发明电池能够满足长时间稳定运行的要求。
以下面两个对照例来说明实施例1的效果。
对照例1
作为对照,在实施例1其他条件不变的情况下,光阳极半导体催化不采用纳米线阵列TiO2,而直接采用商用P25催化剂,测量电池的最大放电功率密度仅为实施例1的1/2。对照例1中P25光阳极制备如下:
1.称取1g商用二氧化钛(P25)粉末溶于100ml的无水乙醇中,磁力搅拌器搅拌10min,将初步混合好的P25/乙醇溶液超声处理30min使其完全分散。按照P25∶松油醇∶5wt%乙基纤维素=1∶3∶5的质量比,添加3g松油醇,5g 5wt%乙基纤维素于溶液中,磁力搅拌器搅拌30min。使用旋转蒸发器旋转蒸发溶液中的无水乙醇,即可得到涂布用P25油性浆料。
2.使用半自动涂布机(刮刀连续可调,能精确控制涂覆厚度至5μm)将P25浆料涂覆在清洗干净的FTO导电玻璃上,所涂布膜厚度为50μm,将涂布完的电极放入马弗炉中进行热处理。热处理采用10℃/min的升温速率,多段式加热,具体升温程序是:室温→260℃(保温5min)→375℃(保温5min)→450℃(保温15min)→500℃(保温15min)。为了增强烧结后的P25多孔膜的机械强度,将样品放入40mmol/L TiCl4水溶液中70℃水浴30min,然后在500℃烧结30min,即可制得P25光阳极。
对照例2
作为对照,在实施例1其他条件不变的情况下,阴极催化剂层3不采用MnO2催化剂,而采用Pt/C催化剂,测量电池的开路电压为1.06V,最大放电功率密度为0.4mA/cm2。表明 该发明采用MnO2为电池阴极催化剂时,仍然能够获得与Pt/C催化剂基本一致的放电性能。对照例2中Pt/C阴极制备如下:
1.按Pt/C(含Pt 60%)∶Nafion溶液(5%)=7∶60的质量比,分别称取0.5gPt/C催化剂与4.28g的Nafion溶液,添加适量异丙醇,在冰浴中超声搅拌30min,制备超声喷涂用的Pt/C的浆料。
2.利用超声喷涂机将Pt/C催化剂浆料均匀喷涂在碳纸(200μm)表面,控制Pt/C催化剂载量为10mg/cm2
3.将担载Pt/C催化剂的碳纸与气体扩散层(实施例1)于80℃、2Mpa下热压5min,即制得Pt/C阴极。
上述详细说明是针对本发明可行实施例的具体说明,该实施例并非用以限制本发明的专利范围,凡未脱离本发明所为的等效实施或变更,均应包含于本发明的保护范围中。

Claims (5)

1.一种光电化学池,包括光阳极、阴极、电解质水溶液、光源和外接电阻构成,其特征在于:所述的光阳极为多孔半导体材料光阳极,所述的阴极为非贵金属催化剂层阴极板,这两者构成光电化学池的主体部分。将电解质水溶液通入反应室内,开启光源,则所述光阳极产生的光生空穴氧化分解水,光阳极产生的光生电子经外电路传至阴极与空气中的氧气相互结合,由此形成回路,同步实现水的氧化分解和发电。
2.如权利要求1所述的光电化学池,其特征在于所述的光电化学池整体为三明治结构,上下两层分别为阳极层和阴极层,中间层为流道层,且层与层之间用环氧树脂胶密封。
3.如权利要求1所述的光电化学池,其特征在于所述的多孔半导体光阳极材料为具有高光电转换效率的半导体材料:纳米线阵列TiO2,TiO2纳米管阵列。
4.如权利要求1所述的光电化学池,其特征在于所述的阴极由非贵金属催化剂层、金属网集流层和气体扩散层滚压形成的复合电极。
5.如权利要求1所述的光电化学池,其特征在于所述的阴极非贵金属催化剂选主要有:MnO2、Co3O4-C、N-G(含氮石墨烯)、N-CNT(含氮碳纳米管)。
CN201410740512.1A 2014-12-03 2014-12-03 一种光电化学池及其制备方法 Pending CN104638276A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410740512.1A CN104638276A (zh) 2014-12-03 2014-12-03 一种光电化学池及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410740512.1A CN104638276A (zh) 2014-12-03 2014-12-03 一种光电化学池及其制备方法

Publications (1)

Publication Number Publication Date
CN104638276A true CN104638276A (zh) 2015-05-20

Family

ID=53216770

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410740512.1A Pending CN104638276A (zh) 2014-12-03 2014-12-03 一种光电化学池及其制备方法

Country Status (1)

Country Link
CN (1) CN104638276A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106058269A (zh) * 2016-07-21 2016-10-26 天津大学 一种用于微生物燃料电池的空气阴极及其制备方法
WO2017192101A1 (en) * 2016-05-06 2017-11-09 National University Of Singapore A photoelectrochemical cell for wastewater treatment and method of fabricating the photoelectrochemical cell

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101629300A (zh) * 2009-05-21 2010-01-20 中国科学院广州能源研究所 一种光催化燃料电池分解水直接分离制氢的方法
CN102306802A (zh) * 2011-07-20 2012-01-04 上海交通大学 可见光响应的纳米管阵列燃料电池
CN102398955A (zh) * 2011-09-15 2012-04-04 上海交通大学 TiO2光催化转盘燃料电池处理有机废水的装置及方法
CN102575361A (zh) * 2009-11-10 2012-07-11 松下电器产业株式会社 光电化学电池以及利用光电化学电池的能量系统
CN102610793A (zh) * 2011-01-25 2012-07-25 海洋王照明科技股份有限公司 一种氮代氧化石墨烯电极及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101629300A (zh) * 2009-05-21 2010-01-20 中国科学院广州能源研究所 一种光催化燃料电池分解水直接分离制氢的方法
CN102575361A (zh) * 2009-11-10 2012-07-11 松下电器产业株式会社 光电化学电池以及利用光电化学电池的能量系统
CN102610793A (zh) * 2011-01-25 2012-07-25 海洋王照明科技股份有限公司 一种氮代氧化石墨烯电极及其制备方法
CN102306802A (zh) * 2011-07-20 2012-01-04 上海交通大学 可见光响应的纳米管阵列燃料电池
CN102398955A (zh) * 2011-09-15 2012-04-04 上海交通大学 TiO2光催化转盘燃料电池处理有机废水的装置及方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017192101A1 (en) * 2016-05-06 2017-11-09 National University Of Singapore A photoelectrochemical cell for wastewater treatment and method of fabricating the photoelectrochemical cell
US10941055B2 (en) 2016-05-06 2021-03-09 National University Of Singapore Photoelectrochemical cell for wastewater treatment and method of fabricating the photoelectrochemical cell
CN106058269A (zh) * 2016-07-21 2016-10-26 天津大学 一种用于微生物燃料电池的空气阴极及其制备方法
CN106058269B (zh) * 2016-07-21 2018-12-25 天津大学 一种用于微生物燃料电池的空气阴极及其制备方法

Similar Documents

Publication Publication Date Title
Antoniadou et al. Production of electricity by photoelectrochemical oxidation of ethanol in a PhotoFuelCell
Wang et al. Boosting hole transfer in the fluorine-doped hematite photoanode by depositing ultrathin amorphous FeOOH/CoOOH cocatalysts
Li et al. Nanotube array-like WO3 photoanode with dual-layer oxygen-evolution cocatalysts for photoelectrocatalytic overall water splitting
Antoniadou et al. An efficient photoelectrochemical cell functioning in the presence of organic wastes
Zeng et al. A low-cost photoelectrochemical tandem cell for highly-stable and efficient solar water splitting
Bai et al. A solar light driven dual photoelectrode photocatalytic fuel cell (PFC) for simultaneous wastewater treatment and electricity generation
Renaud et al. Origin of the black color of NiO used as photocathode in p-type dye-sensitized solar cells
Lee et al. Ag grid induced photocurrent enhancement in WO3 photoanodes and their scale-up performance toward photoelectrochemical H2 generation
He et al. Boosting catalytic activity with ap–n junction: Ni/TiO2 nanotube arrays composite catalyst for methanol oxidation
Li et al. A novel photoelectrochemical cell with self-organized TiO2 nanotubes as photoanodes for hydrogen generation
Liao et al. Respective electrode potential characteristics of photocatalytic fuel cell with visible-light responsive photoanode and air-breathing cathode
He et al. A solar responsive photocatalytic fuel cell with the membrane electrode assembly design for simultaneous wastewater treatment and electricity generation
Du et al. Enhanced photoelectrochemical water oxidation performance on BiVO4 by coupling of CoMoO4 as a hole-transfer and conversion cocatalyst
Chen et al. Visible light-driven H2O2 synthesis by a Cu3BiS3 photocathode via a photoelectrochemical indirect two-electron oxygen reduction reaction
Chen et al. A solar responsive cubic nanosized CuS/Cu2O/Cu photocathode with enhanced photoelectrochemical activity
Wang et al. A study on tandem photoanode and photocathode for photocatalytic formaldehyde fuel cell
Jiao et al. A microfluidic all-vanadium photoelectrochemical cell for solar energy storage
Wang et al. A ternary hybrid CuS/Cu2O/Cu nanowired photocathode for photocatalytic fuel cell
Sun et al. Novel composite functional photocatalytic fuel cell assisted by Fenton-like reactions
Chang et al. Highly efficient hydrogen and electricity production combined with degradation of organics based on a novel solar water-energy nexus system
Qian et al. A highly efficient photocatalytic methanol fuel cell based on non-noble metal photoelectrodes: Study on its energy band engineering via experimental and density functional theory method
Sun et al. Beyond photosynthesis: H2O/H2O2/O2 self-circulation-based biohybrid photoelectrochemical cells for direct and sustainable solar-to-fuel-to-electric power conversion
Liu et al. An effective self-driven PFC-PEC hybrid system for hydrogen generation from organic substance
Balis et al. One-step electrodeposition of polypyrrole applied as oxygen reduction electrocatalyst in Photoactivated Fuel Cells
Wang et al. A micro membrane-less photoelectrochemical cell for hydrogen and electricity generation in the presence of methanol

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20150520