CN104637850A - Dynamic wafer centering method - Google Patents

Dynamic wafer centering method Download PDF

Info

Publication number
CN104637850A
CN104637850A CN201310554530.6A CN201310554530A CN104637850A CN 104637850 A CN104637850 A CN 104637850A CN 201310554530 A CN201310554530 A CN 201310554530A CN 104637850 A CN104637850 A CN 104637850A
Authority
CN
China
Prior art keywords
mrow
msub
msubsup
wafer
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201310554530.6A
Other languages
Chinese (zh)
Inventor
王冲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenyang Xinyuan Microelectronics Equipment Co Ltd
Original Assignee
Shenyang Xinyuan Microelectronics Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenyang Xinyuan Microelectronics Equipment Co Ltd filed Critical Shenyang Xinyuan Microelectronics Equipment Co Ltd
Priority to CN201310554530.6A priority Critical patent/CN104637850A/en
Publication of CN104637850A publication Critical patent/CN104637850A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • H01L21/681Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment using optical controlling means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

The invention relates to the LED and IC industry, in particular to a method measuring the wafer center dynamically and assisting a robot in centering during wafer transportation. The method includes adopting two laser sensors to acquire wafer edge signals, reading a robot motor encoder signal, acquiring the wafer moving distance data, determining the wafer center through data computation by a computer, transmitting the data to the robot in real time, allowing the robot to act the corresponded actions to align the wafer center with a theoretical center, and implementing the dynamic centering. The method can be implemented in the wafer moving process, structure is simple, the accuracy is higher as compared with that of mechanical centering, the cost is much lower as compared with that of CCD imaging, the centering station can be reduced, and the robot utilization rate is increased.

Description

Wafer dynamic centering method
Technical Field
The invention relates to the LED and IC industry, in particular to a method for dynamically measuring the center of a wafer and assisting a robot in center alignment in the wafer carrying process.
Background
In the LED and IC industries, it is often necessary to use robots to transport wafers in different processing units, and the conventional methods include two methods, one is a mechanical clamping method, which has low precision and one more station for the robot to operate, thus reducing the use efficiency of the robot, and the other is CCD imaging, which analyzes the pattern by a computer to confirm the center of the wafer, which has high precision but high cost.
Disclosure of Invention
Aiming at the defects in the prior art, the invention aims to provide a wafer dynamic centering method.
The technical scheme adopted by the invention for realizing the purpose is as follows: a wafer dynamic centering method comprises the following steps:
rotating the flat edge of the wafer to the right front of the movement of the manipulator, and arranging a first sensing point and a second sensing point which are formed by two sensors on the path of the movement of the wafer;
when the wafer passes through the first sensing point and the second sensing point, the first sensing point and the second sensing point send out electric signals; when the wafer leaves the first sensing point and the second sensing point, the electric signals sent by the first sensing point and the second sensing point disappear;
and calculating the deviation between the coordinate of the center of the end point and the coordinate of the set center of the circle, returning the deviation to the robot, and revising the set center of the circle stored by the robot.
The coordinate f (x) of the center of the end point1,y1) The calculation method comprises the following steps:
the wafer at the end point first passes the edge point C (x) of the first sensorC,yC) The position coordinate A (x) of the first sensorA,yA) First passing through the edge point D (x) of the second sensorD,yD) Of the second sensorPosition coordinate B (x)B,yB) Calculating the coordinate f (x) of the center of the end point by the coordinates of any three points1,y1):
x 1 = ( u - v ) ( k 1 - k 2 )
<math> <mrow> <msub> <mi>y</mi> <mn>1</mn> </msub> <mo>=</mo> <mfrac> <mrow> <mrow> <mo>(</mo> <mi>u</mi> <mo>-</mo> <mi>v</mi> <mo>)</mo> </mrow> <mo>&times;</mo> <msub> <mi>k</mi> <mn>2</mn> </msub> </mrow> <mrow> <mo>(</mo> <msub> <mi>k</mi> <mn>1</mn> </msub> <mo>-</mo> <msub> <mi>k</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> </mfrac> </mrow> </math>
Wherein, <math> <mrow> <mi>u</mi> <mo>=</mo> <mfrac> <mrow> <mo>(</mo> <mrow> <mo>(</mo> <msubsup> <mi>x</mi> <mi>A</mi> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>x</mi> <mi>B</mi> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <mo>+</mo> <mrow> <mo>(</mo> <msubsup> <mi>y</mi> <mi>A</mi> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>y</mi> <mi>B</mi> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mrow> <mn>2</mn> <mo>&times;</mo> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>A</mi> </msub> <mo>-</mo> <msub> <mi>x</mi> <mi>B</mi> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>,</mo> <mi>v</mi> <mo>=</mo> <mfrac> <mrow> <mo>(</mo> <mrow> <mo>(</mo> <msubsup> <mi>x</mi> <mi>A</mi> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>x</mi> <mi>C</mi> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <mo>+</mo> <mrow> <mo>(</mo> <msubsup> <mi>y</mi> <mi>A</mi> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>y</mi> <mi>C</mi> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mrow> <mn>2</mn> <mo>&times;</mo> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>A</mi> </msub> <mo>-</mo> <msub> <mi>x</mi> <mi>C</mi> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>,</mo> <msub> <mi>k</mi> <mn>1</mn> </msub> <mo>=</mo> <mfrac> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>A</mi> </msub> <mo>-</mo> <msub> <mi>x</mi> <mi>B</mi> </msub> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>A</mi> </msub> <mo>-</mo> <msub> <mi>x</mi> <mi>B</mi> </msub> <mo>)</mo> </mrow> </mfrac> <mo>,</mo> <msub> <mi>k</mi> <mn>2</mn> </msub> <mo>=</mo> <mfrac> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>A</mi> </msub> <mo>-</mo> <msub> <mi>x</mi> <mi>C</mi> </msub> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>A</mi> </msub> <mo>-</mo> <msub> <mi>x</mi> <mi>C</mi> </msub> <mo>)</mo> </mrow> </mfrac> <mo>;</mo> </mrow> </math>
calculating the deviation delta (x) between the set circle center and the end point circle centerΔ,yΔ)=f(x1,y1)-P(x0,y0);
I.e. xΔ=x1-x0,yΔ=y1-y0Wherein, P (x)0,y0) Is the coordinate of the set circle center.
The deviation between the coordinate of the end point circle center 8 and the coordinate of the set circle center needs to be checked:
checking whether the selected 3 points meet the requirements by calculating the diameter of the wafer, and selecting the center coordinate f (x) of the end point1,y1) And one remaining point when calculating the coordinates of the circle center:
<math> <mrow> <mi>d</mi> <mo>=</mo> <mn>2</mn> <mo>&times;</mo> <msqrt> <mrow> <mo>(</mo> <msubsup> <mi>x</mi> <mi>D</mi> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>x</mi> <mn>1</mn> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <mo>+</mo> <mrow> <mo>(</mo> <msubsup> <mi>y</mi> <mi>D</mi> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>y</mi> <mn>1</mn> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> </msqrt> </mrow> </math>
comparing the calculated result with the set wafer size, setting a percentage, and when the calculated size is divided by the set size within the set range, the center coordinate is valid, and if not, re-measuring.
The invention has the following advantages and beneficial effects:
1. the coordinate data of the wafer center can be transmitted to the robot controller in real time, the actual center position of the wafer is changed, and the centering is completed in the wafer movement process.
2. The method has higher precision than mechanical centering and greatly lower cost than CCD imaging.
3. The method can reduce centering stations and improve the service efficiency of the robot.
Drawings
FIG. 1 is a schematic diagram of the method of the present invention.
Wherein, 1, flattening the wafer; 2. starting a circle center; 3. starting a wafer; 4. a first sensing point; 5. an endpoint wafer; 6. setting a wafer; 7. the first length of the cord; 8. the center of the end point circle; 9. setting a circle center; 10. the second is long; 11. a second sensing point.
Detailed Description
The present invention will be described in further detail with reference to the accompanying drawings and examples.
As shown in fig. 1, the method of the present invention is intended to achieve the following objectives: the center of the wafer is coincided with the set circle center 9 after the correction.
The specification is as follows: setting the center 9 coordinate as P (x)0,y0) The coordinate of the first sensing point 4 is A (x)A,yA) The second sensing point 11 has the coordinate B (x)B,yB) The center of the circle of the end point is 8 coordinates of f (x)1,y1) The initial 2 coordinates of the center of the circle are g (x)2,y2) The first length is 7 and the length is S1The second length is 10 and the length is S2
Before work, the wafer flat edge 1 is rotated to the position right in front of the motion of the manipulator, interference of the flat edge is avoided, the first sensing point 4 and the second sensing point 11 are installed on a path where the robot takes out a wafer, when the robot carries the wafer to pass through the sensing points, the first sensing point 4 or the second sensing point 11 sends out signals, when the wafer moves out of the first sensing point 4 or the second sensing point 11, the signals disappear, the upper computer reads data of a robot encoder to obtain the lengths of the first and second lengths 7 and 10, and in order to reduce calculated amount, the robot moves along the y axis of the coordinate axes.
The coordinate of the contact point between the left edge and the sensing point in the end wafer 5 state is defined as C (x)C,yC),D(xD,yD) The 2 point coordinates can be calculated according to the following formula:
C(xC,yC)=A(xA,yA)-S1=C(xA-s1,yA)
D(xD,yD)=B(xB,yB)-S2=D(xB-s2,yB)
in the end point wafer 5 state, four points A, B, C and D are all on the edge of the wafer, and the coordinates of the four points are respectively A (x)A,yA)、B(xB,yB)、C(xA-s1,yA)、D(xB-s2,yB) Setting upThe coordinate of the circle center is P (x)0,y0) Calculating the center coordinates of the end point wafer 5 according to the four coordinates A, B, C and D, and setting the center coordinates of the end point wafer 5 and the center coordinates to be P (x)0,y0) And comparing to obtain a deviation value between the actual center and the set center of the wafer, returning the deviation value to the robot by the computer, and revising the coordinate value before the robot puts the wafer into the next station so as to achieve the aim that the center of the wafer is consistent with the set center when the wafer is put into the station.
The specific calculation process is as follows:
1. calculating the coordinate f (x) of the center (8) of the end point circle1,y1):
Taking coordinates of any three points A, B, C and D, taking three points A, B and C as an example
<math> <mrow> <mi>v</mi> <mo>=</mo> <mfrac> <mrow> <mo>(</mo> <mrow> <mo>(</mo> <msubsup> <mi>x</mi> <mi>A</mi> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>x</mi> <mi>C</mi> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <mo>+</mo> <mrow> <mo>(</mo> <msubsup> <mi>y</mi> <mi>A</mi> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>y</mi> <mi>C</mi> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mrow> <mn>2</mn> <mo>&times;</mo> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>A</mi> </msub> <mo>-</mo> <msub> <mi>x</mi> <mi>C</mi> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </math>
k 2 = ( x A - x C ) ( x A - x C )
x 1 = ( u - v ) ( k 1 - k 2 )
<math> <mrow> <msub> <mi>y</mi> <mn>1</mn> </msub> <mo>=</mo> <mfrac> <mrow> <mrow> <mo>(</mo> <mi>u</mi> <mo>-</mo> <mi>v</mi> <mo>)</mo> </mrow> <mo>&times;</mo> <msub> <mi>k</mi> <mn>2</mn> </msub> </mrow> <mrow> <mo>(</mo> <msub> <mi>k</mi> <mn>1</mn> </msub> <mo>-</mo> <msub> <mi>k</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> </mfrac> </mrow> </math>
2. Calculating the deviation delta (x) between the set circle center (9) and the actual wafer center (i.e. the end point circle center (8))Δ,yΔ):
Δ(xΔ,yΔ)=f(x1,y1)-P(x0,y0)
xΔ=x1-x0
yΔ=y1-y0
Adding the center deviation delta (x) to the original coordinatesΔ,yΔ) And obtaining the coordinates of the robot to be put into the station.
3. Data checking
Checking whether the selected 3 points meet the requirements by calculating the diameter of the wafer, and selecting the coordinate f (x) of the center (8) of the end point circle1,y1) And one point left when calculating the coordinates of the circle center, taking point D as an example:
<math> <mrow> <mi>d</mi> <mo>=</mo> <mn>2</mn> <mo>&times;</mo> <msqrt> <mrow> <mo>(</mo> <msubsup> <mi>x</mi> <mi>D</mi> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>x</mi> <mn>1</mn> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <mo>+</mo> <mrow> <mo>(</mo> <msubsup> <mi>y</mi> <mi>D</mi> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>y</mi> <mn>1</mn> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> </msqrt> </mrow> </math>
comparing the calculated result with the set wafer size, setting a percentage, and when the calculated size is divided by the set size within the set range, the center coordinate is valid, and if not, re-measuring.
The method has simple structure, low cost and quick response, and can be widely applied to IC and LED industries.

Claims (3)

1. A wafer dynamic centering method is characterized by comprising the following steps:
rotating the flat edge (1) of the wafer to the position right ahead of the movement of the manipulator, and arranging a first sensing point (4) and a second sensing point (11) which are formed by two sensors on the movement path of the wafer (3);
when the wafer (3) passes through the first sensing point (4) and the second sensing point (11), the first sensing point (4) and the second sensing point (11) send out electric signals; when the wafer (3) leaves the first sensing point (4) and the second sensing point (11), electric signals sent by the first sensing point (4) and the second sensing point (11) disappear;
and calculating the deviation between the coordinate of the end point circle center (8) and the coordinate of the set circle center (9), returning the deviation to the robot, and revising the set circle center (9) stored by the robot.
2. A method as claimed in claim 1, wherein the coordinate f (x) of the end point center (8) is1,y1) The calculation method comprises the following steps:
the wafer (5) at the end point is first taken to pass the edge point C (x) of the first sensor (4)C,yC) The position coordinate A (x) of the first sensor (4)A,yA) The edge point D (x) passing through the second sensor (11) firstD,yD) A position coordinate B (x) of the second sensor (11)B,yB) The coordinate f (x) of the center (8) of the end point is calculated by the coordinates of any three points1,y1):
x 1 = ( u - v ) ( k 1 - k 2 )
<math> <mrow> <msub> <mi>y</mi> <mn>1</mn> </msub> <mo>=</mo> <mfrac> <mrow> <mrow> <mo>(</mo> <mi>u</mi> <mo>-</mo> <mi>v</mi> <mo>)</mo> </mrow> <mo>&times;</mo> <msub> <mi>k</mi> <mn>2</mn> </msub> </mrow> <mrow> <mo>(</mo> <msub> <mi>k</mi> <mn>1</mn> </msub> <mo>-</mo> <msub> <mi>k</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> </mfrac> </mrow> </math>
Wherein, <math> <mrow> <mi>u</mi> <mo>=</mo> <mfrac> <mrow> <mo>(</mo> <mrow> <mo>(</mo> <msubsup> <mi>x</mi> <mi>A</mi> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>x</mi> <mi>B</mi> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <mo>+</mo> <mrow> <mo>(</mo> <msubsup> <mi>y</mi> <mi>A</mi> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>y</mi> <mi>B</mi> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mrow> <mn>2</mn> <mo>&times;</mo> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>A</mi> </msub> <mo>-</mo> <msub> <mi>x</mi> <mi>B</mi> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>,</mo> <mi>v</mi> <mo>=</mo> <mfrac> <mrow> <mo>(</mo> <mrow> <mo>(</mo> <msubsup> <mi>x</mi> <mi>A</mi> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>x</mi> <mi>C</mi> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <mo>+</mo> <mrow> <mo>(</mo> <msubsup> <mi>y</mi> <mi>A</mi> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>y</mi> <mi>C</mi> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mrow> <mn>2</mn> <mo>&times;</mo> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>A</mi> </msub> <mo>-</mo> <msub> <mi>x</mi> <mi>C</mi> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>,</mo> <msub> <mi>k</mi> <mn>1</mn> </msub> <mo>=</mo> <mfrac> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>A</mi> </msub> <mo>-</mo> <msub> <mi>x</mi> <mi>B</mi> </msub> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>A</mi> </msub> <mo>-</mo> <msub> <mi>x</mi> <mi>B</mi> </msub> <mo>)</mo> </mrow> </mfrac> <mo>,</mo> <msub> <mi>k</mi> <mn>2</mn> </msub> <mo>=</mo> <mfrac> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>A</mi> </msub> <mo>-</mo> <msub> <mi>x</mi> <mi>C</mi> </msub> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>A</mi> </msub> <mo>-</mo> <msub> <mi>x</mi> <mi>C</mi> </msub> <mo>)</mo> </mrow> </mfrac> <mo>;</mo> </mrow> </math>
calculating the deviation delta (x) between the set circle center (9) and the end point circle center (8)Δ,yΔ)=f(x1,y1)-P(x0,y0)
I.e. xΔ=x1-x0,yΔ=y1-y0Wherein, P (x)0,y0) The coordinates of the circle center (9) are set.
3. A method as claimed in claim 2, wherein the deviation of the coordinates of the end point center (8) from the coordinates of the set center (9) requires data checking:
checking whether the selected 3 points meet the requirements by calculating the diameter of the wafer, and selecting the coordinate f (x) of the center (8) of the end point circle1,y1) And one remaining point when calculating the coordinates of the circle center:
<math> <mrow> <mi>d</mi> <mo>=</mo> <mn>2</mn> <mo>&times;</mo> <msqrt> <mrow> <mo>(</mo> <msubsup> <mi>x</mi> <mi>D</mi> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>x</mi> <mn>1</mn> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <mo>+</mo> <mrow> <mo>(</mo> <msubsup> <mi>y</mi> <mi>D</mi> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>y</mi> <mn>1</mn> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> </msqrt> </mrow> </math>
comparing the calculated result with the set wafer size, setting a percentage, and when the calculated size is divided by the set size within the set range, the center coordinate is valid, and if not, re-measuring.
CN201310554530.6A 2013-11-08 2013-11-08 Dynamic wafer centering method Pending CN104637850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310554530.6A CN104637850A (en) 2013-11-08 2013-11-08 Dynamic wafer centering method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310554530.6A CN104637850A (en) 2013-11-08 2013-11-08 Dynamic wafer centering method

Publications (1)

Publication Number Publication Date
CN104637850A true CN104637850A (en) 2015-05-20

Family

ID=53216436

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310554530.6A Pending CN104637850A (en) 2013-11-08 2013-11-08 Dynamic wafer centering method

Country Status (1)

Country Link
CN (1) CN104637850A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106625244A (en) * 2016-09-29 2017-05-10 天津华海清科机电科技有限公司 Real-time locating method and system for copper CMP online measuring point
CN112573206A (en) * 2019-09-29 2021-03-30 上海微电子装备(集团)股份有限公司 Workpiece conveying and positioning system and method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11243131A (en) * 1998-02-26 1999-09-07 Hitachi Techno Eng Co Ltd Wafer positioning method
US20040167743A1 (en) * 2002-12-20 2004-08-26 Martin Hosek System and method for on-the-fly eccentricity recognition
US20060100740A1 (en) * 2002-05-30 2006-05-11 Fumio Sakiya Automatic reference position teaching method, automatic positioning method, and automatic carrying method for disk-like object, automatic reference position teaching device, automatic positioning device, and automatic carring device for disk-like object using these methods, and automatic semiconductor manufacturing equipment
CN103050427A (en) * 2012-12-27 2013-04-17 上海交通大学 Wafer pre-alignment method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11243131A (en) * 1998-02-26 1999-09-07 Hitachi Techno Eng Co Ltd Wafer positioning method
US20060100740A1 (en) * 2002-05-30 2006-05-11 Fumio Sakiya Automatic reference position teaching method, automatic positioning method, and automatic carrying method for disk-like object, automatic reference position teaching device, automatic positioning device, and automatic carring device for disk-like object using these methods, and automatic semiconductor manufacturing equipment
US20040167743A1 (en) * 2002-12-20 2004-08-26 Martin Hosek System and method for on-the-fly eccentricity recognition
CN103050427A (en) * 2012-12-27 2013-04-17 上海交通大学 Wafer pre-alignment method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106625244A (en) * 2016-09-29 2017-05-10 天津华海清科机电科技有限公司 Real-time locating method and system for copper CMP online measuring point
CN112573206A (en) * 2019-09-29 2021-03-30 上海微电子装备(集团)股份有限公司 Workpiece conveying and positioning system and method

Similar Documents

Publication Publication Date Title
CN105091807B (en) The bearing calibration of robot tool coordinate system
CN105834557B (en) The straight bead off-line tracking method of arc welding robot welding
US9205525B2 (en) System and method for offsetting measurement of machine tool
CN104816307A (en) Four-point normal leveling method for precise hole manufacturing of industrial robot
CN108161566A (en) A kind of blank allowance automatic detection device and method based on laser ranging sensing
CN105798432B (en) The curved welding seam off-line tracking method of arc welding robot welding
CN103713579B (en) A kind of industrial robot operation method
CN104526462B (en) Two-time clamping machining workpiece benchmark coincidence method
CN103962889A (en) Machining machine probe measuring system and method
CN109848989B (en) Robot execution tail end automatic calibration and detection method based on ruby probe
CN105180962B (en) A kind of cooperating robot&#39;s basis coordinates system scaling method based on the spot projection of space two
KR101842286B1 (en) Method for Automatic Calibration of Robot
CN102430961A (en) Free-form surface part processing system based on multi-sensor integrated measurement technology
CN104236543A (en) Cable type measurement system and measurement method for industrial robot spatial pose precision and track measurement
CN105228437B (en) A kind of temperature electronic components and parts assembling method based on compound positioning
CN103223628A (en) Method for detecting tooth profile error of big gear wheel on line
CN107869957B (en) Imaging system-based cylindrical section size measuring device and method
CN109839075A (en) A kind of robot automatic measurement system and measurement method
CN108332688A (en) A kind of ball line slideway auxiliary raceway straightness On-line Measuring Method
CN107717988A (en) A kind of industrial machinery arm precision calibration method based on general Ke Lijin
CN105665922A (en) Searching method for feature points of irregular-shape three-dimensional workpiece
CN104637850A (en) Dynamic wafer centering method
CN110624732A (en) Automatic workpiece spraying system
CN102240703B (en) Non-contact dieless processing forming angle measuring method
CN104391481B (en) Machining movement locus space detection method, device and Digit Control Machine Tool

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20150520

WD01 Invention patent application deemed withdrawn after publication