CN104630899B - The method of separation of the diamond layer - Google Patents

The method of separation of the diamond layer Download PDF

Info

Publication number
CN104630899B
CN104630899B CN201510023495.4A CN201510023495A CN104630899B CN 104630899 B CN104630899 B CN 104630899B CN 201510023495 A CN201510023495 A CN 201510023495A CN 104630899 B CN104630899 B CN 104630899B
Authority
CN
China
Prior art keywords
diamond
diamond layer
non
method
layer
Prior art date
Application number
CN201510023495.4A
Other languages
Chinese (zh)
Other versions
CN104630899A (en
Inventor
王宏兴
颜建平
王菲
陈烽
符娇
张景文
卜忍安
侯洵
Original Assignee
王宏兴
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 王宏兴 filed Critical 王宏兴
Priority to CN201510023495.4A priority Critical patent/CN104630899B/en
Publication of CN104630899A publication Critical patent/CN104630899A/en
Application granted granted Critical
Publication of CN104630899B publication Critical patent/CN104630899B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL-GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/04Diamond
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL-GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/04After-treatment of single crystals or homogeneous polycrystalline material with defined structure using electric or magnetic fields or particle radiation

Abstract

本发明公开了一种金刚石层的分离方法,该方法包括以下步骤:采用激光对待处理的金刚石内部进行二维扫描,在待处理的金刚石表面以下一定深度形成非金刚石层;去除该非金刚石层,以实现对上述金刚石的上下分离。 The present invention discloses a method for the separation of the diamond layer, the method comprising the steps of: using a laser to treat internal diamond two-dimensional scanning process, a predetermined depth forming a non-diamond layer on the diamond surface to be treated; removing the non-diamond layer, in order to achieve the above-described separation of the vertically diamond. 采用该方法不会破坏金刚石衬底表面,与激光切割技术相比,降低了金刚石切割中的损耗;与离子注入分离技术相比,节约了成本、缩短了加工时间。 With this method does not damage the substrate surface of the diamond, as compared with laser cutting, diamond cutting loss is reduced in; as compared with the ion implantation separation techniques, cost savings, reducing the processing time.

Description

金刚石层的分离方法 The method of separation of the diamond layer

技术领域 FIELD

[0001]本发明属于半导体技术领域,具体涉及金刚石层的分离方法。 [0001] The present invention belongs to the technical field of semiconductors, particularly relates to a method for the separation of the diamond layer.

背景技术 Background technique

[0002]金刚石作为超硬工具,电子器件的衬底,在工业中的应用十分广泛。 [0002] As superhard diamond tool, the substrate is an electronic device, application in industry is very extensive. 在所有的应用中,都希望使用大尺寸金刚石作为原材料。 In all applications, both want to use the large size of the diamond as a raw material. 对于多晶金刚石而言,大于2英寸的多晶衬底己经能够合成,并用作光学窗口,超硬工具等领域。 For polycrystalline diamond, polycrystalline larger than 2 inches can be synthesized substrate has, and the field as an optical window, carbide tools and the like. 另一方面,单晶金刚石衬底是通过对天然或者合成金刚石利用激光切割、解理等方法切割成片而形成的。 On the other hand, single crystal diamond substrate is a natural or synthetic diamond by the use of laser cutting, cleaving or the like formed by dicing. 根据需要,对相应的表面进行抛光处理。 If necessary, it is polished to the respective surface. f而,我们知道,天然金刚石非常稀有,大尺寸天然金刚石价格又非常昂贵。 f And we know that natural diamond is very rare, large-size natural diamond prices and very expensive. 进一步讲,高温高压合成金刚石虽然被广泛应用在各个工业领域,但是这种方法又存在着一定的限制,如合成速率慢,随着尺寸增大,产量会急剧下降。 Further, although HPHT synthetic diamond is widely used in various industrial fields, but this method still has certain limitations, such as synthetic rate is slow, as the size increases, the yield will drop dramatically. 因此,1 X 1 cm2的单晶几乎己经成为极限。 Thus, the single crystal 1 X 1 cm2 had become almost the limit. 商业上使用的高温高压合成金刚石,常见的尺寸一般是5X5mm2。 HPHT synthetic diamond used commercially, common sizes are generally 5X5mm2.

[0003]使用化学气相沉积(CVD)的方法高速合成单晶金刚石目前己有报道,在生长中加入少量氮气,调整生长工艺,可以使得金刚石的生长速度超过150wn/h [1]。 [0003] using chemical vapor deposition (CVD) method has a high-speed current synthetic single crystal diamond have been reported, was added a small amount of nitrogen in the growth, adjusting the growth process, the growth rate of diamond can be made over 150wn / h [1]. 采用这种办法, 可以使得合成的晶体厚度超过1〇11[2]。 With this approach, it is possible that the lens thickness exceeds 1〇11 synthesis [2]. 另外利用〇〇)方法合成单晶金刚石的技术能够在(^) 腔体构造扩大的情况下更容易增大合成金刚石的面积。 Further thousand and use) synthesized single crystal diamond in the art can more easily be increased in the area of ​​synthetic diamond (^) in the case of expansion of the cavity structure. 通过控制工艺,调整导入的少量杂质气体,可以大面积高速度地进行外延生长。 , A large area at high speed by controlling the epitaxial growth process, a small amount of impurity gas is introduced to adjust. 微波等离子体化学气相沉积(MPCVD)是目前大面积单晶金刚石生长中最常见的技术,结合在高温高压衬底上进行金刚石的三维生长和拼接技术,目前大面积生长技术得到的单晶金刚石尺寸已经到达了2英寸[3]。 Microwave plasma chemical vapor deposition (of MPCVD) is a large area single crystal diamond growth of the most common technology, combined with three-dimensional growth technology and splicing high temperature and pressure on a diamond substrate, the single crystal diamond growth techniques the size of the current large area obtained has reached two inches [3].

[0004]因此,在高温高压金刚石晶体上通过大面积生长技术可以进一步得到大面积单晶金刚石衬底。 [0004] Thus, the high temperature and pressure in the diamond crystal growth techniques a large area can be further large-area single crystal diamond substrate. 这样,再将大面积单晶金刚石衬底作为种晶,通过剥离的方法将外延生长的单晶金刚石层从种晶上分离,从而得到工业和研究上使用的商业化衬底。 In this way, then a large area single crystal diamond substrate as a seed crystal, the epitaxially grown single crystal diamond layer is separated from seed crystal by the method of peeling, thereby obtaining a substrate used on commercial and industrial research.

[0005] 如上所述,在由化学气相沉积技术合成的单晶金刚石晶体上,切割我们所需要的金刚石衬底,通常使用的方法是激光切割,金刚石锯切割等。 [0005] As described above, in the single-crystal diamond crystals by a chemical vapor deposition synthesis of diamond cutting the substrate we need, a method commonly used laser cutting, a diamond saw cutting. 使用这些办法切割时,切割区域的损伤厚度在数十到数百微米左右,这样的厚度已经与半导体衬底厚度相当,大大降低了种晶的利用效率。 When cutting using these methods, the thickness of the damage at the cutting area of ​​several tens to hundreds of microns, such a thickness has a thickness comparable to the semiconductor substrate, greatly reducing the efficiency of seed crystals. 因此有必要寻找新的切割办法,尽量降低切割过程中造成的损失。 So it is necessary to find new ways to cut, to minimize the loss caused by the cutting process.

[0006] Fairchild和Mokuno等团队己经报道了使用高能碳离子或者氦离子注入到金刚石衬底中,在衬底表层以下一定深度形成非金刚石层,再在高温中退火后,然后使用电化学腐蚀的方法腐蚀掉非金刚石层,使得金刚石表层从原有金刚石衬底上分离[4,5]。 [0006] Fairchild and other groups have reported Mokuno electrochemical corrosion using high energy carbon ions or helium ions implanted into the diamond substrate, forming a non-diamond layer a certain depth below the surface of the substrate, and then after high temperature annealing, then the non-diamond layer is etched away, so that the diamond surface separation [4,5] from the original diamond substrate. 但是,所需能量约为3MeV级的高能离子注入机非常昂贵,离子注入时间也很长,这样使用离子注入的方法分离金刚石在工业应用和科学研究上受到了限制。 However, the required level of energy of about 3MeV very expensive high-energy ion implanter, the ion implantation time is very long, so that an ion implantation separation method is limited in diamond industrial application and scientific research.

[0007] 参考文献 [0007] Reference

[0008] [1] “High optical quality multicarat single crystal diamond produced by chemical vapor deposition?,Yu-fei Meng氺,Chih-shiue Yan,Szczesny Krasnicki Phys.Status Solidi A 209,No.1,101-104 (2012) [0008] [1] "High optical quality multicarat single crystal diamond produced by chemical vapor deposition?, Yu-fei Meng Shui, Chih-shiue Yan, Szczesny Krasnicki Phys.Status Solidi A 209, No.1,101-104 (2012)

[0009] [2] “Synthesizing single—crystal diamond by repetition of high rate Homoepitaxial growth by microwave plasma CVD^Y.Mokuno*,A.Chayahara,Y.Soda, Y.Horino,N.Fujimori.Diamond&Related Materials 14(2005)1743-1746 [0009] [2] "Synthesizing single-crystal diamond by repetition of high rate Homoepitaxial growth by microwave plasma CVD ^ Y.Mokuno *, A.Chayahara, Y.Soda, Y.Horino, N.Fujimori.Diamond & amp; Related Materials 14 (2005) 1743-1746

[0010] [3] “A 2-in .mosaic wafer made of a single-crystal diamond”H. Yamada, A.Chayahara,Y.Mokuno,Y.Kato,and S.Shikata.Applied Physics Letters 104,102110 (2014) [0010] [3] "A 2-in .mosaic wafer made of a single-crystal diamond" H. Yamada, A.Chayahara, Y.Mokuno, Y.Kato, and S.Shikata.Applied Physics Letters 104,102110 ( 2014)

[0011] [4] “Fabrication of Ultrathin Single-Crystal Diamond Membranes**” Barbara A.Fairchild,*Paolo Olivero,Sergey Rubanov.Adv.Mater.2008,20,4793-4798. [0011] [4] "Fabrication of Ultrathin Single-Crystal Diamond Membranes **" Barbara A.Fairchild, * Paolo Olivero, Sergey Rubanov.Adv.Mater.2008,20,4793-4798.

[0012] [5] "Synthesis of large single crystal diamond plate by high rate homoepitaxial growth using microwave plasma CVD and lift-off process" Y.Mokuno,A.Chayahara,H.Yamada.Diamond&Related Materials 17(2008)415-418. [0012] [5] "Synthesis of large single crystal diamond plate by high rate homoepitaxial growth using microwave plasma CVD and lift-off process" Y.Mokuno, A.Chayahara, H.Yamada.Diamond & amp; Related Materials 17 (2008) 415 -418.

发明内容 SUMMARY

[0013] 本发明所要解决的技术问题在于针对上述现有技术的不足,提供一种金刚石层的分离方法,采用该方法不会破坏金刚石表面,与激光切割技术相比,降低了金刚石切割中的损耗;与离子注入分离技术相比,节约了成本、缩短了加工时间。 [0013] The present invention solves the technical problem that the deficiency of the prior art described above, there is provided a method for the separation of the diamond layer, this method does not damage the surface of the diamond, as compared with laser cutting, the diamond cutting is reduced loss; compared to the ion implantation separation techniques, cost savings, reducing the processing time.

[0014] 为解决上述技术问题,本发明采用的技术方案是,金刚石层的分离方法,该方法包括以下步骤: [0014] To solve the above technical problem, the technical solution adopted by the invention is the separation method of the diamond layer, the method comprising the steps of:

[0015] 采用激光对待处理的金刚石内部进行二维扫描,破坏扫描处的金刚石结构,在待处理的金刚石表面以下一定深度形成非金刚石层;去除该非金刚石层,以实现对上述金刚石的上下分离。 [0015] The laser processing are treated within the two-dimensional scanning of diamond, diamond structural damage at the scan, a predetermined depth forming a non-diamond layer on the diamond surface to be treated; removing the non-diamond layer, in order to achieve the above-described separation of the upper and lower diamond .

[0016] 进一步地,采用电化学腐蚀的方法腐蚀去除该非金刚石层。 [0016] Further, electrochemical etching method for etching a non-diamond layer removed.

[0017] 进一步地,在去除该非金刚石层之前,对待处理金刚石在多800°C真空中退火,使得非金刚石层石墨化。 [0017] Further, prior to removing the non-diamond layer, be treated in a multi-diamond 800 ° C annealing in vacuum, so that the non-graphitizing diamond layer.

[0018] 进一步地,所使用激光的能量密度为:待处理金刚石的击穿阈值-1.2J/CH12。 [0018] Further, by using a laser energy density: Pending diamond breakdown threshold -1.2J / CH12.

[0019] 进一步地,所述形成的非金刚石层的深度为表层下lwn-lOwn,厚度为lOOnm-lOwn。 [0019] Further, the depth of the non-diamond layer is formed subsurface lwn-lOwn, a thickness of lOOnm-lOwn.

[0020] 进一步地,所述非金刚石层的表面积小于或等于金刚石的表面积。 [0020] Further, the surface area of ​​the non-diamond layer is less than or equal to the surface area of ​​the diamond.

[0021] 进一步地,所述金刚石为多晶结构或者单晶结构,同时可以为绝缘的天然金刚石或者绝缘的人造金刚石。 [0021] Furthermore, the diamond crystal structure or a polycrystalline structure, while natural diamond may be an insulating or insulating synthetic diamond.

[0022] 进一步地,所述激光为飞秒激光或者宽脉冲激光。 [0022] Furthermore, the width of the laser is a femtosecond laser or a pulsed laser.

[0023] 本发明还提供了金刚石层的分离方法的应用,用于剥离金刚石衬底表层。 [0023] The present invention also provides the use of the separation method of the diamond layer, the diamond substrate for surface release.

[0024] 本发明还提供了金刚石层的分离方法的另一种应用,用于剥离金刚石衬底上的外延生长金刚石层,具体是:采用激光对待处理的金刚石衬底内部进行二维扫描,破坏扫描处的金刚石结构,在待处理的金刚石衬底表面以下一定深度形成非金刚石层;在金刚石衬底表面外延生长一定厚度的金刚石层;去除该非金刚石层,以实现对上述金刚石的上下分离, 得到非金刚石层以上的金刚石衬底和外延生长金刚石层、以及非金刚石层以下的金刚石衬底。 [0024] The present invention also provides another method of application of the separation of the diamond layer, a diamond layer epitaxially grown on a diamond substrate release, in particular: a laser treated diamond substrate inside the two-dimensional scanning process, damage scanning at a diamond structure, a certain depth is formed at the diamond surface to be treated of the substrate following non-diamond layer; diamond epitaxial growth on the substrate surface a certain thickness of the diamond layer; removing the non-diamond layer, in order to achieve the above-described separation of the vertically diamond, obtained above non-diamond substrate and the epitaxial diamond layer grown diamond layer, the diamond layer and a non-diamond substrate.

[0025] 本发明一种用于剥离金刚石的方法,具有如下优点:1.短时间内可以在超过3mmX 3mm以上的金刚石上剥离金刚石薄层(即金刚石衬底表层)或者金刚石衬底上的外延生长金刚石层,进而形成大面积单晶金刚石批量生产的能力。 An epitaxial diamond may be peeled in a short time thin layer on the diamond more than 3mmX 3mm (i.e. diamond substrate surface) or on the diamond substrate: [0025] The present invention is a method for peeling diamond, it has the following advantages. grown diamond layer, thereby forming ability of large-area single crystal diamond mass. 2 •不受金刚石晶体结构的影响。 2 • unaffected by the diamond crystal structure. 3.与现有激光切割技术相比,大大降低金刚石切割中的损耗。 3. Compared with the prior art laser cutting, greatly reducing the loss of diamond cutting. 与离子注入分离技术相比,节约了成本,缩短了加工时间。 Compared with the ion implantation separation technology, cost savings, reducing the processing time. 4•由于能够方便的剥离金刚石层,工业上实现了可以多次重复使用金刚石或外延层,不会造成浪费。 4 • it is possible to easily release the diamond layer, the industry can be repeatedly achieved using a diamond or epitaxial layer, no waste. 5 •所优选的飞秒激光利用的是雪崩电离或者多光子电离等非线性效应,其加工过程不会出现熔化过程,可以进行微米甚至是纳米尺度精细加工。 5 • the preferred femtosecond laser using a nonlinear effect multiphoton ionization avalanche ionization or the like, which will not melt during the process, may be micrometer or even nanometer scale fine processing.

附图说明 BRIEF DESCRIPTION

[0026]图1是本发明中在金刚石内形成非金刚石所选用的激光系统的示意图; [0026] FIG. 1 is a schematic diagram of the present invention is formed of non-diamond laser system of choice within the diamond;

[0027]图2是本发明中电化学腐蚀系统; [0027] FIG. 2 is a system according to the present invention, the electrochemical corrosion;

[0028]图3是本发明实施例所得的金刚石内部的非金刚石层的金相图。 [0028] FIG. 3 is a phase diagram of the embodiment of the non-diamond layer resulting diamond internal embodiment of the present invention.

[0029]其中:1.衰减器;2•分光镜;3•功率计;4.聚焦透镜;5.位移平台;6.电动驱动器;7. 控制装置;8 •激光器;9 •再生放大器;10.反射镜,11 •容器,12 •电极;13扫描后金刚石样品; 14电源;15.非金刚石层,16金刚石。 [0029] wherein: an attenuator; 2 • spectroscope; 3 • power meter; 4 focusing lens; 5 displacement internet; 6 motorized drive; 7 control means; 8 • a laser; 9 • regenerative amplifier; 10.... the mirror, 11 • container, 12 • electrode; diamond sample after scanning 13; the power supply 14; 15 non-diamond layer 16 of diamond.

具体实施方式 Detailed ways

[0030]本发明金刚石层的分离方法,该方法包括以下步骤:采用激光对待处理的金刚石内部进行二维扫描,破坏扫描处的金刚石结构,在待处理的金刚石表面以下一定深度形成非金刚石层;去除该非金刚石层,以实现对上述金刚石的上下分离。 [0030] The separation method of the present invention, diamond layer, the method comprising the steps of: using a laser to treat the interior of two-dimensional scanning process of diamond, diamond structure destruction scan at, a predetermined depth forming a non-diamond layer on the diamond surface to be treated; removing the non-diamond layer, in order to achieve the above-described separation of the upper and lower diamond. 其中,可以采用电化学腐蚀的方法腐蚀去除该非金刚石层。 Wherein, electrochemical etching may be removed by etching using the non-diamond layer. 在去除该非金刚石层之前,对待处理金刚石在多80(TC 真S中退火,使得非金刚石层石墨化。 Before removing the non-diamond layer, be treated in a multi-diamond 80 (TC S true annealing, so that the non-graphitizing diamond layer.

[0031]本发明还提供了金刚石层的分离方法的应用,用于剥离金刚石衬底表层。 [0031] The present invention also provides the use of the separation method of the diamond layer, the diamond substrate for surface release. 还可用于剥离金刚石衬底上的外延生长金刚石层,具体是:采用激光对待处理的金刚石衬底内部进行二维扫描,破坏扫描处的金刚石结构,在待处理的金刚石衬底表面以下一定深度形成非金刚石层;采用化学气相沉积法等方法在金刚石衬底表面外延生长一定厚度的金刚石层;去除该非金刚石层,以实现对上述金刚石的上下分离,得到非金刚石层以上的金刚石衬底和外延生长金刚石层、以及非金刚石层以下的金刚石衬底。 May also be used for the epitaxial growth on the diamond layer peeled diamond substrate, in particular: internal laser treated diamond substrate processing is performed two-dimensional scanning, scanning at a diamond structure destruction, a certain depth is formed at the diamond surface to be treated of the substrate or less non-diamond layer; chemical vapor deposition method and the like the surface of the diamond substrate is epitaxially grown diamond layer in a thickness; removing the non-diamond layer, in order to achieve the above-described separation of the diamond down to obtain the above non-diamond substrate and the epitaxial diamond layer grown diamond layer, the diamond layer and a non-diamond substrate. 上述两种应用只是增加了外延生产金刚石层的步骤,其余步骤均相同,同时,本发明同样适用其他工业中需要剥离金刚石层时的应用。 Both applications are only increased the production of diamond layer epitaxy step, the remaining steps are the same, while the present invention is equally applicable in other industrial applications require release when the diamond layer.

[0032] 本方明金刚石层的分离方法中: [0032] The separation method of the diamond layer side out:

[0033] 1.金刚石的选择 [0033] 1. Selection of diamond

[0034] 金刚石可以是绝缘的天然金刚石,也可以是绝缘的人造金刚石,可以是单晶金刚石也可以是多晶金刚石。 [0034] insulating diamond may be natural diamond, or may be an insulating synthetic diamond may be single crystal diamond may be polycrystalline diamond. 在单晶金刚石中,有不同的晶面(100) (111),在晶面处还可以存在倾斜角,本发明都可以适用。 In single crystal diamond, different crystal planes (100) (111), may also be present in the crystal plane is inclined at an angle, the present invention can be applied.

[0035] 2.非金刚石层的形成 [0035] 2. The non-diamond layer is formed

[0036]利用激光二维扫描金刚石,通过多光子吸收过程形成大量自由电子,在强光场的条件下,发生光击穿,使得金刚石中SP3键向SP2键转变。 [0036] The two-dimensional scanning using a laser diamond, a large number of free electrons is formed by multiphoton absorption process, under the conditions of the laser field, optical breakdown occurs, such that diamond SP2 bonds to the SP3 bonds converted.

[0037]如图i所示为一种在金刚石内形成非金刚石所选用的激光系统,包括激光器8、再生放大器9、衰减器1和聚焦透镜4,所述激光器8用于发射激光,所述激光光路上依次设置有再生放大器9、反射镜10和衰减器1,所述衰减器1的出射光侧设置有分光镜2,所述出射光照射在分光镜2上分为两路,其中一路激光透射进入功率计3,另一路激光反射进入聚焦透镜4,聚焦透镜4的出光侧设置有用于放置待处理金刚石的位移平台5,该路激光经聚焦透镜4 聚焦于待处理金刚石内部,位移平台5还与电动驱动器6相连接;激光器8还与控制装置7相连接。 [0037] As shown in FIG i is formed as a non-diamond laser system of choice within the diamond, comprising a laser 8, 9 regenerative amplifier, an attenuator and a focusing lens 4, the laser 8 for emitting laser light, the order optical path of the laser is provided with a reproducing amplifier 9, a mirror 10 and an attenuator 1, the outgoing light side of the attenuator is provided with a beam splitter 2 is 1, the exit light is irradiated on the beam splitter into two branches 2, wherein all the way laser light transmitted into the power meter 3, and the other path of the laser reflector enters the focusing lens 4, a focusing lens light 4 side is provided for placing be displaced internet 5 treated diamond, the path of the laser via the focusing lens 4 focus to be treated inside the diamond, the displacement of the platform 5 is also connected to the motor driver 6; 7 further laser 8 is connected to the control device. 需要说明的是,本发明中并不局限于某一种激光系统,也可以选用其他满足条件的激光系统。 Incidentally, the present invention is not confined to a particular laser system, may be chosen to meet the conditions of the other laser systems.

[0038] 具体如下:掺欽蓝宝石(Ti : sapphire,以下简称钛宝石)激光器产生的激光在再生放大器放大作用下,单脉冲能量达3 • 7mJ,脉冲宽度50fs,通过选择衰减片,使激光能量达到金刚石的击穿阈值或者以上(天然金刚石光击穿阈值:〇• 4 J/cm2,CVD金刚石光击穿阈值: 0.3J/cm2),再通过聚焦透镜4和高精度三维位移平台5将激光聚焦到金刚石表面以下一定深度内,并进行二维扫描。 [0038] as follows: doped Chin sapphire (Ti: sapphire, hereinafter referred to as Ti-sapphire) laser beam produced by the laser in the reproduction amplifier under the action of pulse energy of 3 • 7mJ, pulse width 50 fs, by selecting the attenuator, so that the laser energy diamond reach breakdown threshold or more (natural diamond optical breakdown threshold: square • 4 J / cm2, CVD diamond optical breakdown threshold: 0.3J / cm2), and then through a focusing lens 4 and the three-dimensional displacement with high precision laser platform 5 focused onto the diamond surface within a certain depth, and two-dimensional scanning.

[0039] 在此过程中,选择合适的激光脉冲能量扫描金刚石是关键,能量低于阈值,激光不足以导致光击穿,能量太高,则会损伤金刚石表面。 [0039] In this process, select the appropriate scanning laser pulse energy is the key diamond, energy is below the threshold, the laser light is insufficient to cause a breakdown, the energy is too high, damage to the diamond surface. 一般选择激光能量密度从阈值到1.2J/ cm2范围内。 Usually the laser energy density value selected from the threshold to 1.2J / cm2 range.

[0040] 激光聚焦深度由聚焦透镜4和位移平台5决定,为了实现工业中金刚石多次的重复使用,聚焦深度选取在金刚石表层以下lwn-lOwn范围。 [0040] The laser focus displacement determined by the depth and internet focusing lens 45, in order to achieve industrial diamond reused many times, the depth of focus in the selected range lwn-lOwn below the surface of diamond. 非金刚石层的厚度由能量密度和扫描速度共同决定,非金刚石层的厚度在扫描速度一定时与能量密度成正比;在能量密度一定时与扫描速度成反比。 The thickness of non-diamond layer is determined by the energy density and the scan speed, the thickness of the diamond layer is non-constant when the energy density is proportional to the scanning speed; inversely proportional to the scan velocity is constant energy density. 扫描速度根据实验需要,可以选择在lOwi/s-lOOMi/s。 Depending on the experiment scanning speed may be selected in lOwi / s-lOOMi / s. 非金刚石层的厚度越薄,对待处理的金刚石的损耗越小,但是由于工艺条件的限制,非金刚石层的厚度可以控制在l〇〇nm_l〇wn范围。 The thinner layer of non-diamond, diamond be treated smaller losses, but due to the limitation of the process conditions, the thickness of non-diamond layer can be controlled in the range l〇〇nm_l〇wn.

[0041] 在对金刚石聚焦并进行二维扫描后,金刚石中的焦平面处金刚石结构由于光击穿而被破坏,形成非金刚石结构,这样可以利用电化学腐蚀等方法去除金刚石中的非金刚石层。 [0041] After the two-dimensional scanning and focusing diamond, diamond structure since the diamond at the focal plane optical breakdown is destroyed, the non-diamond form structure, which can be removed by electrochemical etching or the like non-diamond layer of diamond .

[0042] 在激光加工金刚石形成非金刚石层后,将待处理金刚石整体在彡80(TC真空中退火后,使得非金刚石层石墨化,从而加快电化学腐蚀速率。 After [0042] forming a non-diamond layer in the laser processing of diamond, the diamond to be processed entirety San 80 (TC after annealing in vacuum, so that the non-graphitizing diamond layer, thus accelerating the rate of electrochemical corrosion.

[0043] 3.外延生长 [0043] 3. The epitaxial growth

[0044] 当金刚石被激光扫描加工后,在该金刚石上用微波等离子体化学气相沉积技术(MPCVD)外延生长单晶金刚石膜。 [0044] When the laser scanning diamond being processed, on which the diamond film is epitaxially grown single-crystal diamond by microwave plasma chemical vapor deposition (MPCVD). 这里虽然提到微波等离子体外延生长技术,但是这里并不局限于该技术,比如利用热丝CVD、直流CVD等。 Although it referred to herein microwave plasma epitaxial growth techniques, but this is not limited to this technique, such as hot-filament CVD, CVD or the like DC. 作为特例,利用微波等离子体CVD来外延生长,在特定的生长条件下,可以外延生长高质量高纯度金刚石单晶薄膜。 As a special case, the use of a microwave plasma CVD epitaxially grown, under specific growth conditions, high quality and high purity can be epitaxially grown diamond single crystal thin film. 作为生长气体,可以使用例如氢气和甲烷的混合气体。 As a growth gas, a mixed gas of hydrogen and methane, for example, may be used. 更进一步来讲,加入适量的氮气,可以大幅度提高生长速率,而且也可以拟制异常成核和异常生长,特别是在单晶金刚石的情况下,可以在短时间内使得单晶生长达到所需的厚度。 Further speaking, adding an appropriate amount of nitrogen gas, the growth rate can be greatly improved, but also the dummy abnormality nucleation and abnormal growth, especially in the case of single crystal diamond, single crystal growth in a short time so as to achieve desired thickness. 气体的比例一般为:CH4/H2为l%_2〇%;N2/CH4为OH Gas ratio is generally: CH4 / H2 to l% _2〇%; N2 / CH4 is OH

[0045] 这里说明上面提到的特定生长条件,使用的微波等离子体CVD的频率,一般情况下为2 • 45GHz或者915MHz等,对于功率,这里不作特殊的限定,一般情况下为0 • 5KW-30KW。 [0045] The specific growth conditions described herein above mentioned, the microwave plasma CVD using a frequency of, generally 2 • 45GHz to 915MHz or the like, for power, here is not particularly limited, it is generally 0 • 5KW- 30KW. 在此情况下,根据CVD的结构调整功率,使得温度达到900°C_1250°C。 In this case, the power adjustment according to the structure of CVD, such that the temperature reaches 900 ° C_1250 ° C. 维持金刚石在此温度下,可以促进激光加工的非金刚石层石墨化。 Diamond is maintained at this temperature, the laser processing may facilitate non-graphitizing diamond layer.

[0046] 4.电化学腐蚀非金刚石层 [0046] 4. The non-diamond layer electrochemical corrosion

[0047] 按照上述方法,金刚石衬底在激光作用后,将在表面以下一定深度下形成非金刚石层。 [0047] According to the above method, diamond substrate after the laser action, the non-diamond layer is formed at a certain depth below the surface. 将该衬底放入盛有电解液的容器中进行电化学腐蚀。 The substrate was filled with the electrolytic solution for the electrochemical corrosion of the container. 具体过程如下: Specific process is as follows:

[0048] 如图2所示,电化学腐蚀系统中包括交流或直流电源14,石墨或者铀金电极12、容器11及电解液,扫描后金刚石样品13竖直放置于电极中间,加入的电解液为高电阻(〜18 Q • cm)溶液,加入量要淹没金刚石样13。 [0048] As shown, the system comprises electrochemical corrosion AC or DC power 14, graphite electrode 12 of gold or uranium, and the electrolyte container 11, after scanning the diamond sample 13 is placed vertically in the intermediate electrode 2, an electrolyte solution was added high resistance (~18 Q • cm) was added in an amount 13 to drown diamond-like. 电极12上所加电压由电源14控制,一般要使得两电极间的电场达到一定值。 The upper electrode 12 applied by the voltage controlled power supply 14, generally the electric field between the electrodes reaches a certain value. 电场越大,腐蚀速率越快。 The larger the field, the faster the rate of corrosion. 但是电压太高,可能会导致电极间放电,容易对金刚石表面造成损伤。 Voltage is too high, however, may cause a discharge between the electrodes, easy to damage the diamond surface. 在电化学腐蚀的过程中,随着时间的推移,电解液吸收空气中的C02,使得电解液电阻下降,通过电解液的电流上升,溶液中气泡增多,气泡会包裹样品,从而无法达到腐蚀的作用。 Electrochemical etching process, over time, the electrolytic solution absorption of C02 in the air, so that the electrolyte resistance decreases, the rise of the current through the electrolytic solution, the solution increases air bubbles tend to coat the sample, so that corrosion can not be achieved effect. 与此同时增大的电流会产生很大热量,使得电解液被加热至沸腾。 At the same time a large increase in current will generate heat, so that the electrolyte is heated to boiling. 所以在腐蚀过程中要及时更换电解液,使得电流维持在0〜1A范围内。 Therefore, in the etching process must be promptly replaced the electrolytic solution, so that the current is maintained within a range 0~1A.

[0049] 实验举例: [0049] Experimental Example:

[0050] 本实施例中,具体选用一尺寸为3 X 3 X 0.3mm3商业化单面抛光单晶金刚石衬底, 首先将其进行酸煮处理,清理抛光面。 [0050] In this embodiment, selection of a specific size of 3 X 3 X 0.3mm3 commercial single-side polishing a single crystal diamond substrate, the acid is first subjected to boiling treatment, cleaning and polishing surfaces. 然后对金刚石衬底用酒精、丙酮、去离子水超声清洗。 Then the diamond substrate with alcohol, acetone, ultrasonic cleaning in deionized water. 然后,使用飞秒激光加工系统将激光聚焦在金刚石表面下一定深度内,并进行二维扫描。 Then, laser processing using a femtosecond laser system focused within a certain depth below the surface of the diamond, and two-dimensional scanning. 焦点处激光光斑直径约8wn,焦点在表面下10um处,样品表面处激光平均功率约9mW,扫描速度40wn/s,扫描间距为7wn。 Of the laser focal spot diameter of about 8wn, 10um focus at the surface, the sample surface at about 9mW average laser power, scanning speed 40wn / s, scanning pitch is 7wn. 扫描后金刚石的颜色由浅黄变成黑色,用电子扫描显微镜对其截面进行观察,在焦平面处发现了明显的界面层,如图3,这说明了在金刚石16中发生了光击穿,形成了非金刚石层15。 After scanning the diamond color from light yellow to black were observed by a scanning electron microscope cross section thereof, found obvious interface layer at the focal plane, as shown in FIG 3, which illustrates the optical breakdown occurs in diamond 16, is formed a non-diamond layer 15.

[0051] 经过飞秒激光加工后的金刚石放入微波等离子体CVD腔中进行外延生长。 [0051] After the femtosecond laser machining diamond epitaxial growth into a microwave plasma CVD chamber. 生长前, 在氢等离子体氛围中,将衬底表面温度调整到1000°C进行五分钟退火,一方面清洁金刚石衬底表面,另一方面促使非金刚石层的石墨化,然后进行外延生长。 Before growth, in a hydrogen plasma atmosphere, the substrate surface temperature was adjusted to 1000 ° C for five minutes annealing, cleaning the substrate surface of the diamond on the one hand, on the other hand to promote non-graphitizing diamond layer, followed by epitaxial growth. 微波功率在5kW左右,腔体压强设定为150torr,氢气流量为50〇SCCm,甲烷为5〇SCCtn,为了加快生长速度,在生长中人为的加入一定量的氮气,这里加入量为l.Osccm,生长温度控制在1200°C左右。 About 5kW microwave power, the pressure chamber is set to 150 Torr, flow rate of hydrogen 50〇SCCm, 5〇SCCtn methane, in order to accelerate the growth rate, growth in a certain amount of artificial nitrogen, was added here in an amount of l.Osccm , the growth temperature is controlled at about 1200 ° C. 生长12h 后,夕卜延生长厚度达到0.58mm。 After growth 12h, Boyan Sheng long evening thickness of 0.58mm.

[OO52]然后,将外延生长后的金刚石样品放入电化学腐蚀系统中。 [OO52] Then, the diamond sample was placed in an epitaxial growth system of electrochemical corrosion. 使用铂金作为电极,样品与铂金电极垂直,电极的间距在lcm左右。 Platinum as an electrode, perpendicular to the sample platinum electrode, and the electrode spacing is about lcm. 用去离子水作为电解液,加入的量要淹没金刚石样品。 Deionized water as the electrolyte, an amount of diamond added to drown sample. 在电极上接上1000V的交流电源,进行腐蚀。 1000V AC power supply connected to the electrodes, etching. 在腐蚀中要定时更换去离子水。 Etching to be replaced at regular intervals in deionized water. 在腐蚀5h后,样品中黑色退去,外延金刚石层与金刚石衬底分离。 After etching 5h, sample receded black, diamond epitaxial diamond layer separated from the substrate.

Claims (8)

1.金刚石层的分离方法,其特征在于,该方法包括以下步骤: 采用激光对待处理的金刚石内部进行二维扫描,破坏扫描处的金刚石结构,在待处理的金刚石表面以下一定深度形成非金刚石层; 去除该非金刚石层,以实现对上述金刚石的上下分离; 采用电化学腐蚀的方法腐蚀去除该非金刚石层; 在去除该非金刚石层之前,对待处理金刚石在多800°C真空中退火,使得非金刚石层石墨化。 A method for the separation of the diamond layer, characterized in that the method comprises the steps of: using a laser to treat the interior of two-dimensional scanning process of diamond, diamond structural damage at the scan, a predetermined depth forming a non-diamond layer on the diamond surface to be treated ; removing the non-diamond layer, in order to achieve the above-described diamond is vertically separated; electrochemical etching process etching removing the non-diamond layer; prior to removing the non-diamond layer, be treated diamond annealed at 800 ° C in vacuum multiple, such non-diamond layer of graphite.
2. 按照权利要求1所述的金刚石层的分离方法,其特征在于,所使用激光的能量密度为:待处理金刚石的击穿阈值〜1 • 2 J/cm2。 2. A method for separating a diamond layer according to claim 1, characterized in that, by using a laser energy density: pending breakdown threshold of diamond ~1 • 2 J / cm2.
3. 按照权利要求1所述的金刚石层的分离方法,其特征在于,所述形成的非金刚石层的深度为表层下1 wn-1 Own,厚度为1 OOnm-1 Oum。 3. The method for separating a diamond layer according to claim 1, characterized in that the depth of the non-diamond layer is formed subsurface 1 wn-1 Own, a thickness of 1 OOnm-1 Oum.
4. 按照权利要求1所述的金刚石层的分离方法,其特征在于,所述非金刚石层的表面积小于或等于金刚石的表面积。 4. The method for separating a diamond layer according to claim 1, characterized in that the surface area of ​​the non-diamond layer is less than or equal to diamond.
5. 按照权利要求1所述的金刚石层的分离方法,其特征在于,所述金刚石为多晶结构或者单晶结构,同时可以为绝缘的天然金刚石或者绝缘的人造金刚石。 The separation method of the diamond layer according to claim, wherein said diamond is a polycrystalline structure or single-crystal structure, and may be a natural diamond or an insulating insulating synthetic diamond.
6. 按照权利要求1所述的金刚石层的分离方法,其特征在于,所述激光为飞秒激光或者宽脉冲激光。 6. The method for separating a diamond layer according to claim 1, characterized in that the width of the laser is a femtosecond laser or a pulsed laser.
7. 如权利要求1至6任一所述的金刚石层的分离方法的应用,其特征在于,用于剥离金刚石衬底表层。 7. The use of the method of separation of a diamond layer according to any one of claims 1 to 6, characterized in that the diamond substrate for surface release.
8. 如权利要求1至6任一所述的金刚石层的分离方法的应用,其特征在于,用于剥离金刚石衬底上的外延生长金刚石层,具体是: 采用激光对待处理的金刚石衬底内部进行二维扫描,破坏扫描处的金刚石结构,在待处理的金刚石衬底表面以下一定深度形成非金刚石层; 在金刚石衬底表面外延生长一定厚度的金刚石层; 去除该非金刚石层,以实现对上述金刚石的上下分离,得到非金刚石层以上的金刚石衬底和外延生长金刚石层、以及非金刚石层以下的金刚石衬底。 8. The use of the method of separation of a diamond layer according to any one of claims 1 to 6, characterized in that the diamond layer for epitaxial growth of diamond on a release substrate, in particular: internal laser treatment of the diamond substrate processing two-dimensional scanning, scanning at a diamond structure destruction, a predetermined depth forming a non-diamond layer on the diamond surface to be treated of the substrate or less; the surface of the diamond substrate epitaxially grown diamond layer of a certain thickness; removing the non-diamond layer, in order to achieve separated vertically above the diamond, to obtain the above non-diamond substrate and the epitaxial diamond layer grown diamond layer, the diamond layer and a non-diamond substrate.
CN201510023495.4A 2015-01-17 2015-01-17 The method of separation of the diamond layer CN104630899B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510023495.4A CN104630899B (en) 2015-01-17 2015-01-17 The method of separation of the diamond layer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510023495.4A CN104630899B (en) 2015-01-17 2015-01-17 The method of separation of the diamond layer
PCT/CN2015/077120 WO2016112596A1 (en) 2015-01-17 2015-04-21 Separation method for diamond layer

Publications (2)

Publication Number Publication Date
CN104630899A CN104630899A (en) 2015-05-20
CN104630899B true CN104630899B (en) 2017-09-22

Family

ID=53210130

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510023495.4A CN104630899B (en) 2015-01-17 2015-01-17 The method of separation of the diamond layer

Country Status (2)

Country Link
CN (1) CN104630899B (en)
WO (1) WO2016112596A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4693377A (en) * 1983-05-24 1987-09-15 The British Petroleum Company P.L.C. Diamond separation using raman scattering
CN1291349A (en) * 1998-02-17 2001-04-11 纽约市哥伦比亚大学托管会 Crystal ion-slicing of single crystal films
CN101663125A (en) * 2007-04-05 2010-03-03 彩覇阳光株式会社;査目工程股份有限公司 Laser machining method, laser cutting method, and method for dividing structure having multilayer board
CN102470484A (en) * 2009-08-11 2012-05-23 浜松光子学株式会社 Laser machining device and laser machining method
CN102753737A (en) * 2010-03-05 2012-10-24 并木精密宝石株式会社 Internal reforming substrate for epitaxial growth, internal reforming substrate with multilayer film, semiconductor device, bulk semiconductor substrate, and production methods therefor
CN102947493A (en) * 2010-06-22 2013-02-27 欧司朗光电半导体有限公司 Method for slicing a substrate wafer
CN103551736A (en) * 2000-09-13 2014-02-05 浜松光子学株式会社 Cutting method for optically transparent material
CN103710748A (en) * 2013-12-12 2014-04-09 王宏兴 Growth method of high-quality high-speed monocrystal diamond film

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4742800B2 (en) * 2005-10-18 2011-08-10 住友電気工業株式会社 Processing method of the diamond
JP5142282B2 (en) * 2008-09-09 2013-02-13 独立行政法人産業技術総合研究所 Surface processing method of the diamond
RU2469433C1 (en) * 2011-07-13 2012-12-10 Юрий Георгиевич Шретер Method for laser separation of epitaxial film or layer of epitaxial film from growth substrate of epitaxial semiconductor structure (versions)

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4693377A (en) * 1983-05-24 1987-09-15 The British Petroleum Company P.L.C. Diamond separation using raman scattering
CN1291349A (en) * 1998-02-17 2001-04-11 纽约市哥伦比亚大学托管会 Crystal ion-slicing of single crystal films
CN103551736A (en) * 2000-09-13 2014-02-05 浜松光子学株式会社 Cutting method for optically transparent material
CN101663125A (en) * 2007-04-05 2010-03-03 彩覇阳光株式会社;査目工程股份有限公司 Laser machining method, laser cutting method, and method for dividing structure having multilayer board
CN102470484A (en) * 2009-08-11 2012-05-23 浜松光子学株式会社 Laser machining device and laser machining method
CN102753737A (en) * 2010-03-05 2012-10-24 并木精密宝石株式会社 Internal reforming substrate for epitaxial growth, internal reforming substrate with multilayer film, semiconductor device, bulk semiconductor substrate, and production methods therefor
CN102947493A (en) * 2010-06-22 2013-02-27 欧司朗光电半导体有限公司 Method for slicing a substrate wafer
CN103710748A (en) * 2013-12-12 2014-04-09 王宏兴 Growth method of high-quality high-speed monocrystal diamond film

Also Published As

Publication number Publication date
WO2016112596A1 (en) 2016-07-21
CN104630899A (en) 2015-05-20

Similar Documents

Publication Publication Date Title
US5082359A (en) Diamond films and method of growing diamond films on nondiamond substrates
US6692568B2 (en) Method and apparatus for producing MIIIN columns and MIIIN materials grown thereon
JP2973407B2 (en) Method and apparatus for generating a material layer from a laser ion sources
US9564320B2 (en) Large area nitride crystal and method for making it
CN1030674C (en) Method of preparing silicon carbide for crystal growth
US6858080B2 (en) Tunable CVD diamond structures
EP0573943A1 (en) Method for the manufacture of large single crystals
JP3150024B2 (en) Method of manufacturing a synthetic diamond film
Sato et al. Diamond-like carbon films prepared by pulsed-laser evaporation
JP5363977B2 (en) It produced using the radiation anneal the semiconductor-on-insulator structure
JP2955231B2 (en) Manufacturing method and a manufacturing method of the same according to the single crystal of the crystal growth seed plate
US6805808B2 (en) Method for separating chips from diamond wafer
US5483920A (en) Method of forming cubic boron nitride films
US8591856B2 (en) Single crystal diamond electrochemical electrode
JP4032482B2 (en) The method for manufacturing a single-crystal diamond
EP2402984B1 (en) Method of manufacturing a semiconductor element, and corresponding semicondutor element
US6033974A (en) Method for controlled cleaving process
US6605518B1 (en) Method of separating composite member and process for producing thin film
US20120077289A1 (en) Apparatus and method of temperature control during cleaving processes of thick materials
US5607723A (en) Method for making continuous thin diamond film
US4187126A (en) Growth-orientation of crystals by raster scanning electron beam
US20040050483A1 (en) Method of fabricating substrates, in partictular for optics, electronics or optoelectronics
CN101490824B (en) Method and system for continuous large-area scanning implantation process
EP0612868A1 (en) Single crystal diamond and process for producing the same
US8093138B2 (en) Method of fabricating an epitaxially grown layer

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
GR01