CN104630532A - Preparation method of carbide/rare-earth oxide composite reinforced fine-grain tungsten material - Google Patents
Preparation method of carbide/rare-earth oxide composite reinforced fine-grain tungsten material Download PDFInfo
- Publication number
- CN104630532A CN104630532A CN201510068832.1A CN201510068832A CN104630532A CN 104630532 A CN104630532 A CN 104630532A CN 201510068832 A CN201510068832 A CN 201510068832A CN 104630532 A CN104630532 A CN 104630532A
- Authority
- CN
- China
- Prior art keywords
- carbide
- rare earth
- earth oxide
- tungsten
- preparation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 title claims abstract description 104
- 229910001404 rare earth metal oxide Inorganic materials 0.000 title claims abstract description 90
- 239000010937 tungsten Substances 0.000 title claims abstract description 81
- 229910052721 tungsten Inorganic materials 0.000 title claims abstract description 80
- 239000002131 composite material Substances 0.000 title claims abstract description 59
- 239000000463 material Substances 0.000 title claims abstract description 53
- 238000002360 preparation method Methods 0.000 title claims abstract description 47
- 239000000843 powder Substances 0.000 claims abstract description 70
- 238000005245 sintering Methods 0.000 claims abstract description 30
- 238000000713 high-energy ball milling Methods 0.000 claims abstract description 14
- 239000002245 particle Substances 0.000 claims abstract description 10
- 230000000694 effects Effects 0.000 claims abstract description 5
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 27
- 238000000034 method Methods 0.000 claims description 15
- 239000000243 solution Substances 0.000 claims description 14
- 238000003756 stirring Methods 0.000 claims description 14
- 238000006243 chemical reaction Methods 0.000 claims description 13
- 239000003795 chemical substances by application Substances 0.000 claims description 13
- -1 rare-earth salts Chemical class 0.000 claims description 13
- 239000000725 suspension Substances 0.000 claims description 13
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical group [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 12
- 230000001681 protective effect Effects 0.000 claims description 12
- 229910052786 argon Inorganic materials 0.000 claims description 10
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 9
- 235000021355 Stearic acid Nutrition 0.000 claims description 9
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 claims description 9
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 claims description 9
- 150000002910 rare earth metals Chemical class 0.000 claims description 9
- 239000008117 stearic acid Substances 0.000 claims description 9
- 238000001035 drying Methods 0.000 claims description 8
- 238000003825 pressing Methods 0.000 claims description 8
- 238000004886 process control Methods 0.000 claims description 8
- 239000000084 colloidal system Substances 0.000 claims description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 6
- 239000001257 hydrogen Substances 0.000 claims description 6
- 229910052739 hydrogen Inorganic materials 0.000 claims description 6
- 239000007788 liquid Substances 0.000 claims description 6
- KWYUFKZDYYNOTN-UHFFFAOYSA-M potassium hydroxide Substances [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims description 5
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 4
- 230000032683 aging Effects 0.000 claims description 4
- 238000001354 calcination Methods 0.000 claims description 4
- 239000013078 crystal Substances 0.000 claims description 4
- 238000001694 spray drying Methods 0.000 claims description 4
- 238000000967 suction filtration Methods 0.000 claims description 4
- 239000004202 carbamide Substances 0.000 claims description 3
- 239000003995 emulsifying agent Substances 0.000 claims description 3
- PBYZMCDFOULPGH-UHFFFAOYSA-N tungstate Chemical compound [O-][W]([O-])(=O)=O PBYZMCDFOULPGH-UHFFFAOYSA-N 0.000 claims description 3
- 229910052727 yttrium Inorganic materials 0.000 claims description 3
- 229920001213 Polysorbate 20 Polymers 0.000 claims description 2
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 2
- 239000012188 paraffin wax Substances 0.000 claims description 2
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 claims description 2
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 claims description 2
- 239000002244 precipitate Substances 0.000 claims description 2
- DAJSVUQLFFJUSX-UHFFFAOYSA-M sodium;dodecane-1-sulfonate Chemical compound [Na+].CCCCCCCCCCCCS([O-])(=O)=O DAJSVUQLFFJUSX-UHFFFAOYSA-M 0.000 claims description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims 4
- 239000006185 dispersion Substances 0.000 claims 4
- 150000003839 salts Chemical class 0.000 claims 3
- 229920003171 Poly (ethylene oxide) Polymers 0.000 claims 2
- 239000003637 basic solution Substances 0.000 claims 2
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 claims 2
- 238000002156 mixing Methods 0.000 claims 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims 1
- 229910002651 NO3 Inorganic materials 0.000 claims 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 claims 1
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 claims 1
- 229960000935 dehydrated alcohol Drugs 0.000 claims 1
- 239000007789 gas Substances 0.000 claims 1
- 238000009413 insulation Methods 0.000 claims 1
- 238000010298 pulverizing process Methods 0.000 claims 1
- 238000007873 sieving Methods 0.000 claims 1
- 238000002791 soaking Methods 0.000 claims 1
- 238000005507 spraying Methods 0.000 claims 1
- 238000005728 strengthening Methods 0.000 abstract description 38
- 239000002114 nanocomposite Substances 0.000 abstract description 29
- 229910021193 La 2 O 3 Inorganic materials 0.000 abstract description 7
- 150000001875 compounds Chemical class 0.000 abstract description 4
- 239000007921 spray Substances 0.000 abstract description 2
- 239000012266 salt solution Substances 0.000 description 13
- 239000000203 mixture Substances 0.000 description 12
- 150000001247 metal acetylides Chemical class 0.000 description 8
- 238000007906 compression Methods 0.000 description 6
- 230000006835 compression Effects 0.000 description 6
- 238000007908 dry granulation Methods 0.000 description 6
- 238000000462 isostatic pressing Methods 0.000 description 6
- 239000011259 mixed solution Substances 0.000 description 6
- 238000000465 moulding Methods 0.000 description 6
- 239000002243 precursor Substances 0.000 description 6
- 230000005855 radiation Effects 0.000 description 6
- 238000001513 hot isostatic pressing Methods 0.000 description 5
- 238000000498 ball milling Methods 0.000 description 4
- 238000005551 mechanical alloying Methods 0.000 description 4
- 229920001223 polyethylene glycol Polymers 0.000 description 4
- 238000001953 recrystallisation Methods 0.000 description 4
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 238000007792 addition Methods 0.000 description 3
- 239000002270 dispersing agent Substances 0.000 description 3
- 230000002431 foraging effect Effects 0.000 description 3
- 238000007731 hot pressing Methods 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 230000002787 reinforcement Effects 0.000 description 3
- 230000003014 reinforcing effect Effects 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- 230000003068 static effect Effects 0.000 description 3
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 239000012670 alkaline solution Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000005242 forging Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 229910001175 oxide dispersion-strengthened alloy Inorganic materials 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 238000009770 conventional sintering Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 150000003891 oxalate salts Chemical class 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000002490 spark plasma sintering Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 150000003657 tungsten Chemical class 0.000 description 1
- 229910001930 tungsten oxide Inorganic materials 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
- Ceramic Products (AREA)
Abstract
本发明涉及一种碳化物和稀土氧化物复合强化细晶钨材料的制备方法,由0.1~2.0%碳化物、0.1~2.0%稀土氧化物和钨组成,碳化物为TiC、ZrC中一种或两种,稀土氧化物为La2O3、Y2O3中一种或两种。首先,设计、制备碳化物和稀土氧化物纳米复合强化相粉末;然后,PCA高能球磨或溶胶-喷雾干燥-热还原获得复合强化细晶钨粉末;最后,成形、烧结获得99%以上致密度钨材料。本发明制备的钨材料综合了两种强化相的增强作用,且晶粒度8μm以下,第二相粒子0.05~1.0μm,弥散分布于钨晶粒内与晶界,室温抗拉强度超过580MPa,1200℃下的抗拉强度超过450MPa,适合应用于核能、航空航天等领域。The invention relates to a preparation method of carbide and rare earth oxide compound reinforced fine-grained tungsten material, which is composed of 0.1-2.0% carbide, 0.1-2.0% rare earth oxide and tungsten, and the carbide is one or more of TiC and ZrC. Two kinds, the rare earth oxide is one or both of La 2 O 3 and Y 2 O 3 . First, design and prepare carbide and rare earth oxide nanocomposite strengthening phase powder; then, PCA high-energy ball milling or sol-spray drying-thermal reduction to obtain composite reinforced fine-grained tungsten powder; finally, forming and sintering to obtain more than 99% dense tungsten Material. The tungsten material prepared by the present invention combines the strengthening effects of two strengthening phases, and the grain size is below 8 μm, the second phase particles are 0.05-1.0 μm, and are dispersed in the tungsten grains and grain boundaries, and the tensile strength at room temperature exceeds 580 MPa. The tensile strength at 1200°C exceeds 450MPa, which is suitable for nuclear energy, aerospace and other fields.
Description
技术领域:Technical field:
本发明涉及碳化物和稀土氧化物复合强化细晶钨材料的制备方法,涉及粉末冶金领域。 The invention relates to a preparation method of carbide and rare earth oxide compound reinforced fine-grained tungsten material, and relates to the field of powder metallurgy.
背景技术: Background technology :
W具有高熔点、高硬度,良好的高温强度,优异的导热和导电性能,低的热膨胀系数,与等离子作用时低溅射、不与H发生化学反应、H+滞留低等特性,被认为是面向等离子体偏滤器材料的最理想选择,其在核能和航空航天等领域有着广泛的应用。在已获得应用的钨材料中,纯钨材料是目前应用非常广泛的典型高温材料。目前国内外采用粉末高纯化和材料晶界净化的手段制备烧结纯钨材料,然后经过大变形加工手段强化钨材料,晶粒度在100μm左右,韧脆转变温度(DBTT)300~350℃,再结晶温度1300~1350℃。然而,由于传统粉末烧结轧制方法的局限性,纯钨材料存在组织非常粗大、呈纤维状取向、DBTT高、再结晶温度低、脆性大、性能各向异性等缺陷。添加稀土氧化物或碳化物作为第二相粒子能够细化钨晶粒、提高材料的抗中子辐照能力和抗高热负荷能力,成为当前面向等离子体材料研发的一个重要方向。 W has the characteristics of high melting point, high hardness, good high temperature strength, excellent thermal and electrical conductivity, low thermal expansion coefficient, low sputtering when interacting with plasma, no chemical reaction with H, and low H+ retention. The most ideal choice of plasma divertor material, which has a wide range of applications in the fields of nuclear energy and aerospace. Among the tungsten materials that have been applied, pure tungsten materials are typical high-temperature materials that are widely used at present. At present, sintered pure tungsten materials are prepared by means of high powder purification and material grain boundary purification at home and abroad, and then strengthened by large deformation processing. The grain size is about 100 μm, and the ductile-brittle transition temperature (DBTT) is 300-350 ° C. The crystallization temperature is 1300-1350°C. However, due to the limitations of traditional powder sintering and rolling methods, pure tungsten materials have defects such as very coarse structure, fibrous orientation, high DBTT, low recrystallization temperature, high brittleness, and anisotropy in properties. Adding rare earth oxides or carbides as the second phase particles can refine the tungsten grains, improve the neutron radiation resistance and high thermal load resistance of the material, and has become an important direction for the research and development of plasma-oriented materials.
目前,对钨进行强化主要是添加单一的稀土氧化物或碳化物。在添加单一稀土氧化物强化钨的研究中,国内周张健等人2010年在专利“一种纳米氧化物弥散增强超细晶钨基复合材料的制备方法”(专利号:ZL201010250552.X)中,以钨粉、Y2O3或Y、烧结助剂Ti为原料,采用机械合金化的方法使钨粉与Y2O3或Y、以及Ti固溶形成超细合金化粉末,然后采用放电等离子体法烧结制备了稀土氧化钇弥散强化钨材料,其相对密度为96%~99%,钨晶粒尺寸≤3μm,具有良好的力学性能和抗热冲击性能。国外Kim、Muñoz等人同样采用机械合金化制备钨与稀土氧化物复合粉末,并分别采用电火花等离子烧结(SPS)和热等静压(HIP)方法制备出氧化物弥散强化钨材料,结果表明添加微量稀土氧化物可细化钨晶粒、提高强度和抗高热负荷性能。 At present, the strengthening of tungsten is mainly to add a single rare earth oxide or carbide. In the study of strengthening tungsten by adding a single rare earth oxide, in 2010, Zhou Zhangjian and others in China patented "a preparation method of nano-oxide dispersion-reinforced ultra-fine-grained tungsten-based composite material" (patent number: ZL201010250552.X). Tungsten powder, Y 2 O 3 or Y, and sintering aid Ti are used as raw materials, and the method of mechanical alloying is used to make tungsten powder and Y 2 O 3 or Y, and Ti form a solid solution to form ultrafine alloyed powder, and then use discharge plasma Rare earth yttrium oxide dispersion strengthened tungsten material was prepared by sintering method. Its relative density is 96%-99%, tungsten grain size is ≤3μm, and it has good mechanical properties and thermal shock resistance. Foreign Kim, Muñoz and others also used mechanical alloying to prepare composite powders of tungsten and rare earth oxides, and prepared oxide dispersion strengthened tungsten materials by spark plasma sintering (SPS) and hot isostatic pressing (HIP) respectively. The results showed that Adding traces of rare earth oxides can refine tungsten grains, improve strength and high heat load resistance.
在添加碳化物强化钨的研究中,吴玉程等人2008年在论文“W-1wt%TiC纳米复合材料的组织结构与力学性能”中,采用高能球磨和热压烧结的方法制备了W-1wt%TiC的纳米复合材料,其力学性能得到提高,但材料的致密度仅达到98.4%;日本H.Kurishita等人在2008年论文“Deformability enhancement in ultra-fine grained, Ar-contained W compacts by TiC additions up to 1.1%”中采用机械合金化方法将W粉与0~1.1%的TiC粉末形成合金化的复合粉末,然后经过热等静压制备了W-(0-1.5)wt%TiC的材料,发现其能够增加材料的韧性,增强材料的高温力学性能,提高钨的抗中子辐照能力;本专利申请人在2011年专利“一种超高温钨复合材料及制备方法”(专利号:ZL201110013981.X)中,采用机械合金化混合均匀钨基复合粉末,该材料具有优异的高温力学性能。 In the study of adding carbides to strengthen tungsten, Wu Yucheng et al. prepared W-1wt% The nanocomposite material of TiC has improved mechanical properties, but the density of the material only reaches 98.4%; Japanese H.Kurishita et al. in the 2008 paper "Deformability enhancement in ultra-fine grained, Ar-contained W compacts by TiC additions up to 1.1%" using mechanical alloying method to form an alloyed composite powder of W powder and 0-1.1% TiC powder, and then prepared W-(0-1.5)wt%TiC material by hot isostatic pressing, and found that It can increase the toughness of the material, enhance the high-temperature mechanical properties of the material, and improve the neutron radiation resistance of tungsten; the applicant of this patent patented "an ultra-high temperature tungsten composite material and its preparation method" in 2011 (patent number: ZL201110013981. In X), mechanical alloying is used to mix uniform tungsten-based composite powder, and the material has excellent high-temperature mechanical properties.
以上的研究充分表明了在钨中添加碳化物和稀土氧化物对于细化钨晶粒、提高钨的力学性能及抗中子辐照能力等方面的优势,但是单一的稀土氧化物或碳化物对材料强化效果有限。为此,中国人民大学Y.Chen等人在“Microstructure and mechanical properties of tungsten composites co-strengthened by dispersed TiC and La2O3 particles”中研究了TiC和La2O3协同增强的钨基体,其在强度和断裂韧性等性能都较单一添加稀土氧化物或碳化物得到提高,然而,其相对密度较低,最高仅达到95%左右,在载荷作用下孔隙容易优先形成微裂纹从而成为裂纹源降低钨的韧性和强度。同时采用热等静压或热压的烧结方法不太适合于大尺寸或不规则形状样品的工程化制备。 The above studies have fully demonstrated the advantages of adding carbides and rare earth oxides to tungsten to refine the tungsten grains, improve the mechanical properties of tungsten and the ability to resist neutron radiation, but a single rare earth oxide or carbide has no effect on tungsten. The effect of material strengthening is limited. To this end, Y.Chen et al. of Renmin University of China studied the tungsten matrix synergistically enhanced by TiC and La 2 O 3 in "Microstructure and mechanical properties of tungsten composites co-strengthened by dispersed TiC and La 2 O 3 particles", which in Compared with single addition of rare earth oxides or carbides, properties such as strength and fracture toughness are improved. However, its relative density is low, reaching only about 95%. Under load, pores tend to preferentially form microcracks and become crack sources. Reduce tungsten toughness and strength. At the same time, the sintering method using hot isostatic pressing or hot pressing is not suitable for the engineering preparation of large-sized or irregular-shaped samples.
发明内容:Invention content:
本发明的目的是提供一种用于面向等离子体材料及部件和高温领域钨材料的制备方法,以满足核工业或高温领域对高性能钨的需求。本发明主要是采用“溶胶-非均相沉淀-煅烧”制备碳化物和稀土氧化物纳米复合强化相粉末,然后进PCA高能球磨或溶胶喷雾干燥获得碳化物和稀土氧化物均匀分布的复合粉末,常规成形和烧结获得高99.0%以上致密度细晶钨材料。 The purpose of the present invention is to provide a preparation method for plasma-oriented materials and components and high-temperature field tungsten materials, so as to meet the demand for high-performance tungsten in the nuclear industry or high-temperature field. The present invention mainly uses "sol-heterogeneous precipitation-calcination" to prepare carbide and rare earth oxide nano-composite strengthening phase powder, and then enters PCA high-energy ball milling or sol spray drying to obtain a composite powder with uniform distribution of carbide and rare earth oxide. Conventional forming and sintering can obtain more than 99.0% dense fine-grained tungsten materials.
本发明所提供的一种碳化物和稀土氧化物复合强化细晶钨材料的制备方法,所述细晶钨由0.1~2.0%碳化物、0.1~2.0%稀土氧化物和钨组成,碳化物为TiC、ZrC中的一种或两种,稀土氧化物为La2O3、Y2O3中的一种或两种。其制备过程如下: The preparation method of carbide and rare earth oxide compound reinforced fine-grained tungsten material provided by the present invention, the fine-grained tungsten is composed of 0.1-2.0% carbide, 0.1-2.0% rare-earth oxide and tungsten, and the carbide is One or both of TiC and ZrC, and one or both of La 2 O 3 and Y 2 O 3 for the rare earth oxide. Its preparation process is as follows:
(1)碳化物和稀土氧化物纳米复合强化相粉末制备 (1) Preparation of carbide and rare earth oxide nanocomposite strengthening phase powder
复合强化相粉末制备主要包括如下步骤:①选取一种或两种碳化物,配制成10~30g/L碳化物悬浊液;选取一种或两种稀土盐,配制成0.01~0.5mol/L稀土盐溶液;②将碳化物悬浊液与稀土盐溶液混合,加入反应分散剂并搅拌均匀;③在超声震荡与搅拌的作用下,向稀土盐与碳化物混合溶液中缓慢加入碱性溶液,控制反应溶液的pH值9~13,使稀土盐形成胶体均匀包覆在碳化物表面;④沉淀、静置陈化、抽滤得到碳化物和稀土氧化物纳米复合强化相粉末的前驱体;⑤在氢气气氛下煅烧,制备出碳化物和稀土氧化物纳米复合强化相粉末; The preparation of composite strengthening phase powder mainly includes the following steps: ① Select one or two kinds of carbides and prepare 10-30g/L carbide suspension; select one or two kinds of rare earth salts and prepare 0.01-0.5mol/L Rare earth salt solution; ② Mix carbide suspension with rare earth salt solution, add reaction dispersant and stir evenly; ③ Under the action of ultrasonic vibration and stirring, slowly add alkaline solution to the mixed solution of rare earth salt and carbide, Control the pH value of the reaction solution from 9 to 13, so that the rare earth salt forms a colloid and evenly covers the surface of the carbide; ④ Precipitation, static aging, and suction filtration to obtain the precursor of carbide and rare earth oxide nanocomposite strengthening phase powder; ⑤ Calcined under a hydrogen atmosphere to prepare carbide and rare earth oxide nanocomposite reinforcement phase powder;
(2)碳化物和稀土氧化物复合强化细晶钨粉末制备 (2) Preparation of carbide and rare earth oxide composite reinforced fine-grained tungsten powder
碳化物和稀土氧化物复合强化细晶钨粉末制备采用PCA高能球磨或溶胶-喷雾干燥方法制备:其中PCA高能球磨的方法是采用液态过程控制剂介质,加入保护气氛,将碳化物和稀土氧化物纳米复合强化相粉末和钨粉末混合并高能球磨5~30h;溶胶-喷雾干燥的方法是将碳化物和稀土氧化物纳米复合强化相粉末和钨酸盐制备成溶胶体,并喷雾干燥、热还原; Carbide and rare earth oxide composite strengthened fine-grained tungsten powder is prepared by PCA high-energy ball milling or sol-spray drying method: the method of PCA high-energy ball milling is to use liquid process control agent medium, add protective atmosphere, and mix carbide and rare earth oxide The nanocomposite reinforcing phase powder and tungsten powder are mixed and high-energy ball milled for 5 to 30 hours; the method of sol-spray drying is to prepare carbide and rare earth oxide nanocomposite reinforcing phase powder and tungstate into a sol, which is then spray-dried and thermally reduced ;
(3)干燥制粒 (3) Dry granulation
在真空状态下干燥,干燥温度50~100℃,保温1~5h;采用压制方式将复合粉末制成板状或棒状后进行粉碎、过筛; Dry in a vacuum state, drying temperature is 50-100°C, and keep warm for 1-5 hours; the composite powder is made into a plate or rod by pressing, and then crushed and sieved;
(4)成形 (4) Forming
将复合粉末装入压模模腔内,采用模压或等静压,对复合粉末进行成形; Put the composite powder into the cavity of the compression mold, and use molding or isostatic pressing to shape the composite powder;
(5)高温烧结 (5) High temperature sintering
采用保护性气氛烧结,烧结温度为1700~2100℃,保温时间为1~10h得到碳化物和稀土氧化物复合强化细晶钨材料;其晶粒均匀,晶粒度在8μm以下,碳化物粒子相为0.05~1.0μm,均匀弥散分布于钨晶粒内部与晶界。 Sintering in a protective atmosphere, the sintering temperature is 1700-2100°C, and the holding time is 1-10h to obtain carbide and rare earth oxide composite reinforced fine-grained tungsten material; the grain size is uniform, the grain size is below 8μm, and the carbide particle phase 0.05~1.0μm, evenly dispersed in the interior of tungsten grains and grain boundaries.
所述的稀土盐是包括Y、La的硝酸盐、草酸盐、碳酸盐、氯化物或硫酸盐。 The rare earth salts include nitrates, oxalates, carbonates, chlorides or sulfates of Y and La.
(1)中②所述的反应分散剂为硬脂酸,聚乙二醇,尿素,N、N-二甲基甲酰胺,OP乳化剂,吐温-20或十二烷基磺酸钠,反应分散剂体积分数为稀土盐溶液和碳化物溶液总量的0.2~1.5%。 (1) The reactive dispersant described in ② is stearic acid, polyethylene glycol, urea, N, N-dimethylformamide, OP emulsifier, Tween-20 or sodium dodecylsulfonate, The volume fraction of the reaction dispersant is 0.2-1.5% of the total amount of the rare earth salt solution and the carbide solution.
(1)中③所述的碱性溶液为NaOH、KOH或氨水。 (1) The alkaline solution described in ③ is NaOH, KOH or ammonia water.
(1)中⑤的煅烧温度为450~800℃,并保温1~5h。 (1) The calcination temperature in ⑤ is 450-800°C, and keep it warm for 1-5 hours.
(2)中所述的PCA高能球磨的方法中,液态过程控制剂介质是石蜡、硬脂酸、无水乙醇、聚乙二醇、四氯化碳中的一种或多种,保护气氛为氩气或氢气。 In the PCA high-energy ball milling method described in (2), the liquid process control agent medium is one or more of paraffin, stearic acid, absolute ethanol, polyethylene glycol, and carbon tetrachloride, and the protective atmosphere is argon or hydrogen.
所述的烧结气氛为保护性气氛为H2、Ar、Ar+H2或真空。 The sintering atmosphere is a protective atmosphere of H 2 , Ar, Ar+H 2 or vacuum.
本发明针对目前纯钨的晶粒粗大、性能各向异性,需要靠轧制和锻造提高致密度和性能,设计复合添加碳化物和稀土氧化物进一步细化钨晶粒、提高钨的再结晶温度和高温强韧性、提高抗高热负荷能力和抗中子辐照能力的目的,并克服现有热等静压、热压等制备技术复杂,难以实现工程化制备的瓶颈,采用常规成形、烧结方法制备高性能细晶钨材料。本发明相对于现有方法制备的钨材料,其优点如下: In view of the coarse crystal grains and anisotropy of properties of pure tungsten at present, the density and properties need to be improved by rolling and forging, and the compound addition of carbides and rare earth oxides is designed to further refine the tungsten grains and increase the recrystallization temperature of tungsten and high temperature toughness, improving the ability to resist high heat load and neutron radiation, and to overcome the existing complex preparation technologies such as hot isostatic pressing and hot pressing, which are difficult to realize the bottleneck of engineering preparation, and adopt conventional forming and sintering methods Preparation of high-performance fine-grained tungsten materials. Compared with the tungsten material prepared by the existing method, the present invention has the following advantages:
1、碳化物能够有效增强钨材料的抗中子辐照能力,稀土氧化物能够提高钨材料再结晶温度和高温强韧性、抗高热负荷能力,采用碳化物和稀土氧化物能进一步细化钨晶粒、提高钨的再结晶温度和高温强韧性、提高抗高热负荷能力和抗中子辐照能力;在1700~2100℃下采用常规烧结即可达99.0%以上致密度,室温抗拉强度超过580MPa,1200℃下的抗拉强度超过450MPa,晶粒尺寸为8μm以下,且组织均匀。 1. Carbide can effectively enhance the neutron radiation resistance of tungsten materials. Rare earth oxides can improve the recrystallization temperature, high temperature strength and toughness, and high thermal load resistance of tungsten materials. The use of carbides and rare earth oxides can further refine tungsten crystals. Increase the recrystallization temperature and high temperature toughness of tungsten, improve the ability to resist high heat load and neutron radiation; use conventional sintering at 1700-2100 °C to achieve a density of more than 99.0%, and the tensile strength at room temperature exceeds 580 MPa , The tensile strength at 1200°C exceeds 450MPa, the grain size is below 8μm, and the structure is uniform.
2、采用碳化物和稀土氧化物纳米复合强化相粉末,能够获得碳化物和稀土氧化物弥散分布于基体中的细晶钨材料,碳化物和稀土氧化物对材料起到良好的细晶和弥散强化作用。 2. Using carbide and rare earth oxide nanocomposite strengthening phase powder can obtain fine-grained tungsten materials in which carbides and rare earth oxides are dispersed in the matrix. Carbide and rare earth oxides have a good fine-grained and dispersed effect on the material Reinforcing effect.
3、采用该方法制备碳化物和稀土氧化物复合强化细晶钨材料,较高能球磨+热压或热等静压等方法更易工程化制备大尺寸或不规则形状样品,克服了传统商业化纯钨烧结需要靠轧制和锻造提高致密度和性能的问题,满足高温领域和核能领域对高性能钨的需求。 3. Using this method to prepare carbide and rare earth oxide composite reinforced fine-grained tungsten materials, high-energy ball milling + hot pressing or hot isostatic pressing is easier to engineer large-size or irregular-shaped samples, which overcomes the traditional commercialization. Tungsten sintering needs to rely on rolling and forging to improve the density and performance, so as to meet the demand for high-performance tungsten in the high-temperature field and nuclear energy field.
具体实施方式:Detailed ways:
以下结合实例进一步说明本发明,而非限制本发明。 The following examples further illustrate the present invention, rather than limit the present invention.
实施例1: Example 1:
碳化物和稀土氧化物复合强化细晶钨材料各材料成分按质量百分比计为:ZrC含量为0.1%、Y2O3含量为0.3%,余量为W。 The components of carbide and rare earth oxide composite strengthened fine-grained tungsten material are calculated by mass percentage: ZrC content is 0.1%, Y 2 O 3 content is 0.3%, and the balance is W.
制备工艺如下: The preparation process is as follows:
(1)碳化物和稀土氧化物纳米复合强化相粉末制备 (1) Preparation of carbide and rare earth oxide nanocomposite strengthening phase powder
复合强化相粉末制备主要包括如下步骤:①配制15g/L的ZrC悬浊液;选取Y(NO)3,并配制0.2mol/L的Y(NO)3盐溶液;②将碳化物悬浊液与稀土盐溶液混合,加入硬脂酸并搅拌均匀;③在超声震荡与搅拌的作用下,向稀土盐与碳化物混合溶液中缓慢加入NH4OH溶液,控制反应溶液的pH值9~10,使稀土盐形成胶体均匀包覆在碳化物表面;④沉淀、静置陈化、抽滤得到碳化物和稀土氧化物纳米复合强化相粉末的前驱体;⑤在750℃氢气气氛下煅烧2h,制备出碳化物和稀土氧化物纳米复合强化相粉末; The preparation of composite strengthening phase powder mainly includes the following steps: ① Prepare 15g/L ZrC suspension; select Y(NO) 3 and prepare 0.2mol/L Y(NO) 3 salt solution; Mix with rare earth salt solution, add stearic acid and stir evenly; ③Under the action of ultrasonic vibration and stirring, slowly add NH 4 OH solution to the mixed solution of rare earth salt and carbide, control the pH value of the reaction solution to 9-10, Make the rare earth salt form a colloid and evenly cover the surface of the carbide; ④precipitate, stand for aging, and suction filter to obtain the precursor of the carbide and rare earth oxide nanocomposite strengthening phase powder; Produce carbide and rare earth oxide nanocomposite strengthening phase powder;
(2)碳化物和稀土氧化物复合强化细晶钨粉末制备 (2) Preparation of carbide and rare earth oxide composite reinforced fine-grained tungsten powder
采用无水乙醇和硬脂酸作为过程控制剂,氩气为球磨保护气氛,将碳化物和稀土氧化物纳米复合强化相粉末和钨粉末与进行高能球磨10h,获得碳化物和稀土氧化物复合强化细晶钨粉末; Using absolute ethanol and stearic acid as the process control agent, argon as the ball milling protective atmosphere, the carbide and rare earth oxide nanocomposite strengthening phase powder and tungsten powder were subjected to high-energy ball milling for 10 hours to obtain carbide and rare earth oxide composite strengthening Fine crystalline tungsten powder;
(3)干燥制粒 (3) Dry granulation
在真空状态下干燥,干燥温度70℃,保温2h;采用压制方式将复合粉末制成板状或棒状后进行粉碎、过筛; Dry in a vacuum state at a drying temperature of 70°C and keep warm for 2 hours; use a pressing method to make the composite powder into a plate or rod shape, then crush and sieve;
(4)成形 (4) Forming
将复合粉末装入压模模腔内,采用模压或等静压,对复合粉末进行成形; Put the composite powder into the cavity of the compression mold, and use molding or isostatic pressing to shape the composite powder;
(5)高温烧结 (5) High temperature sintering
采用H2气氛烧结,烧结温度为1920℃,保温时间为5h制备出碳化物和稀土氧化物复合强化细晶钨材料;其晶粒细小且分布均匀,钨晶粒度在8μm以下,碳化物粒子相在0.05~1.0μm之间,均匀弥散分布于钨晶粒与晶界。 Using H2 atmosphere sintering, the sintering temperature is 1920 ℃, and the holding time is 5h to prepare carbide and rare earth oxide composite reinforced fine-grained tungsten material; the grains are fine and evenly distributed, the tungsten grain size is below 8μm, and the carbide particles The phase is between 0.05 and 1.0 μm, uniformly dispersed in the tungsten grains and grain boundaries.
实施例2: Example 2:
碳化物和稀土氧化物复合强化细晶钨材料成分按质量百分比计为:ZrC含量为1.2%、TiC含量为0.7%,Y2O3含量为0.5%,余量为W。 The composition of carbide and rare earth oxide composite strengthened fine-grained tungsten material is calculated by mass percentage: ZrC content is 1.2%, TiC content is 0.7%, Y 2 O 3 content is 0.5%, and the balance is W.
制备工艺如下: The preparation process is as follows:
(1)碳化物和稀土氧化物纳米复合强化相粉末制备 (1) Preparation of carbide and rare earth oxide nanocomposite strengthening phase powder
复合强化相粉末制备主要包括如下步骤:①配制15g/L的ZrC和TiC悬浊液;选取YCl3,并配制0.2mol/L的YCl3盐溶液;②将碳化物悬浊液与稀土盐溶液混合,加入PEG剂并搅拌均匀;③在超声震荡与搅拌的作用下,向稀土盐与碳化物混合溶液中缓慢加入NaOH溶液,控制反应溶液的pH值9~10,使稀土盐形成胶体均匀包覆在碳化物表面;④沉淀、静置陈化、抽滤得到碳化物和稀土氧化物纳米复合强化相粉末的前驱体;⑤在700℃氢气气氛下煅烧2.5h,制备出碳化物和稀土氧化物纳米复合强化相粉末; The preparation of composite strengthening phase powder mainly includes the following steps: ① Prepare 15g/L ZrC and TiC suspension; select YCl 3 and prepare 0.2mol/L YCl 3 salt solution; ② mix carbide suspension with rare earth salt solution Mix, add PEG agent and stir evenly; ③Under the action of ultrasonic vibration and stirring, slowly add NaOH solution to the mixed solution of rare earth salt and carbide, control the pH value of the reaction solution to 9-10, so that the rare earth salt forms a colloid that is evenly coated Cover the surface of carbide; ④ Precipitate, stand for aging, and suction filter to obtain the precursor of carbide and rare earth oxide nanocomposite strengthening phase powder; Nano-composite reinforced phase powder;
(2)碳化物和稀土氧化物复合强化细晶钨粉末制备 (2) Preparation of carbide and rare earth oxide composite reinforced fine-grained tungsten powder
采用无水乙醇和硬脂酸作为过程控制剂,氩气为球磨保护气氛,将碳化物和稀土氧化物纳米复合强化相粉末和钨粉末与进行高能球磨8h,获得碳化物和稀土氧化物复合强化细晶钨粉末; Using absolute ethanol and stearic acid as the process control agent, argon as the ball milling protective atmosphere, the carbide and rare earth oxide nano-composite strengthening phase powder and tungsten powder were subjected to high-energy ball milling for 8 hours to obtain carbide and rare earth oxide composite strengthening Fine crystalline tungsten powder;
(3)干燥制粒 (3) Dry granulation
在真空状态下干燥,干燥温度90℃,保温1h;采用压制方式将复合粉末制成板状或棒状后进行粉碎、过筛; Dry in a vacuum state at a drying temperature of 90°C and keep warm for 1 hour; use a pressing method to make the composite powder into a plate or rod shape, then crush and sieve;
(4)成形 (4) Forming
将复合粉末装入压模模腔内,采用模压或等静压,对复合粉末进行成形; Put the composite powder into the cavity of the compression mold, and use molding or isostatic pressing to shape the composite powder;
(5)高温烧结 (5) High temperature sintering
采用H2气氛烧结,烧结温度为1980℃,保温时间为3.5h制备出碳化物和稀土氧化物复合强化细晶钨材料;其晶粒细小且分布均匀,钨晶粒度在8μm以下,碳化物粒子相在0.05~1.0μm之间,均匀弥散分布于钨晶粒与晶界。 Using H2 atmosphere sintering, the sintering temperature is 1980 ℃, and the holding time is 3.5h to prepare carbide and rare earth oxide composite strengthened fine-grained tungsten material; the grains are fine and evenly distributed, and the tungsten grain size is below 8μm The particle phase is between 0.05 and 1.0 μm, uniformly dispersed in the tungsten grains and grain boundaries.
实施例3: Example 3:
碳化物和稀土氧化物复合强化细晶钨材料成分按质量百分比计为: TiC含量为0.7%,La2O3含量为1.5%,余量为W。 The composition of carbide and rare earth oxide composite strengthened fine-grained tungsten material is calculated by mass percentage: the content of TiC is 0.7%, the content of La 2 O 3 is 1.5%, and the balance is W.
制备工艺如下: The preparation process is as follows:
(1)碳化物和稀土氧化物纳米复合强化相粉末制备 (1) Preparation of carbide and rare earth oxide nanocomposite strengthening phase powder
复合强化相粉末制备主要包括如下步骤:①配制15g/L的TiC悬浊液;选取La(NO)3,并配制0.3mol/L的La (NO)3盐溶液;②将碳化物悬浊液与稀土盐溶液混合,加入OP乳化剂并搅拌均匀;③在超声震荡与搅拌的作用下,向稀土盐与碳化物混合溶液中缓慢加入NH4OH溶液,控制反应溶液的pH值10~11,使稀土盐形成胶体均匀包覆在碳化物表面;④沉淀、静置陈化、抽滤得到碳化物和稀土氧化物纳米复合强化相粉末的前驱体;⑤在700℃氢气气氛下煅烧2.5h,制备出碳化物和稀土氧化物纳米复合强化相粉末; The preparation of the composite strengthening phase powder mainly includes the following steps: ① prepare 15g/L TiC suspension; select La(NO) 3 and prepare 0.3mol/L La (NO) 3 salt solution; ② prepare carbide suspension Mix with rare earth salt solution, add OP emulsifier and stir evenly; ③Under the action of ultrasonic vibration and stirring, slowly add NH 4 OH solution to the mixed solution of rare earth salt and carbide, control the pH value of the reaction solution to 10-11, Make the rare earth salt form a colloid and evenly cover the surface of the carbide; ④precipitate, stand for aging, and suction filter to obtain the precursor of the carbide and rare earth oxide nanocomposite strengthening phase powder; Preparation of carbide and rare earth oxide nanocomposite strengthening phase powder;
(2)碳化物和稀土氧化物复合强化细晶钨粉末制备 (2) Preparation of carbide and rare earth oxide composite reinforced fine-grained tungsten powder
采用无水乙醇和硬脂酸作为过程控制剂,氩气为球磨保护气氛,将碳化物和稀土氧化物纳米复合强化相粉末和钨粉末与进行高能球磨8h,获得碳化物和稀土氧化物复合强化细晶钨粉末; Using absolute ethanol and stearic acid as the process control agent, argon as the ball milling protective atmosphere, the carbide and rare earth oxide nano-composite strengthening phase powder and tungsten powder were subjected to high-energy ball milling for 8 hours to obtain carbide and rare earth oxide composite strengthening Fine crystalline tungsten powder;
(3)干燥制粒 (3) Dry granulation
在真空状态下干燥,干燥温度75℃,保温2h;采用压制方式将复合粉末制成板状或棒状后进行粉碎、过筛; Dry in a vacuum state at a drying temperature of 75°C and keep warm for 2 hours; use a pressing method to make the composite powder into a plate or rod shape, then crush and sieve;
(4)成形 (4) Forming
将复合粉末装入压模模腔内,采用模压或等静压,对复合粉末进行成形; Put the composite powder into the cavity of the compression mold, and use molding or isostatic pressing to shape the composite powder;
(5)高温烧结 (5) High temperature sintering
采用H2气氛烧结,烧结温度为1940℃,保温时间为5h制备出碳化物和稀土氧化物复合强化细晶钨材料;其晶粒细小且分布均匀,钨晶粒度在8μm以下,碳化物粒子相在0.05~1.0μm之间,均匀弥散分布于钨晶粒与晶界。 Using H 2 atmosphere sintering, the sintering temperature is 1940 ℃, and the holding time is 5h to prepare carbide and rare earth oxide composite strengthened fine-grained tungsten material; the grains are fine and evenly distributed, and the tungsten grain size is below 8 μm. The phase is between 0.05 and 1.0 μm, uniformly dispersed in the tungsten grains and grain boundaries.
实施例4: Example 4:
碳化物和稀土氧化物复合强化细晶钨材料成分按质量百分比计为:ZrC含量为0.8%、TiC含量为0.6%,La2O3含量为0.5%,余量为W。 The composition of carbide and rare earth oxide composite strengthened fine-grained tungsten material is calculated by mass percentage: ZrC content is 0.8%, TiC content is 0.6%, La 2 O 3 content is 0.5%, and the balance is W.
制备工艺如下: The preparation process is as follows:
(1)碳化物和稀土氧化物纳米复合强化相粉末制备 (1) Preparation of carbide and rare earth oxide nanocomposite strengthening phase powder
复合强化相粉末制备主要包括如下步骤:①配制15g/L的ZrC和TiC悬浊液;选取La2(SO4)3,并配制0.1mol/L的La2(SO4)3盐溶液;②将碳化物悬浊液与稀土盐溶液混合,加入PEG剂并搅拌均匀;③在超声震荡与搅拌的作用下,向稀土盐与碳化物混合溶液中缓慢加入KOH溶液,控制反应溶液的pH值10~11,使稀土盐形成胶体均匀包覆在碳化物表面;④沉淀、静置陈化、抽滤得到碳化物和稀土氧化物纳米复合强化相粉末的前驱体;⑤在700℃氢气气氛下煅烧2.5h,制备出碳化物和稀土氧化物纳米复合强化相粉末; The preparation of composite strengthening phase powder mainly includes the following steps: ① Prepare 15g/L ZrC and TiC suspension; select La 2 (SO 4 ) 3 , and prepare 0.1mol/L La 2 (SO 4 ) 3 salt solution; ② Mix the carbide suspension with the rare earth salt solution, add PEG agent and stir evenly; ③Under the action of ultrasonic vibration and stirring, slowly add KOH solution to the mixed solution of rare earth salt and carbide to control the pH value of the reaction solution to 10 ~11, so that the rare earth salt forms a colloid and evenly covers the surface of the carbide; ④ Precipitation, static aging, and suction filtration to obtain the precursor of carbide and rare earth oxide nanocomposite reinforcement phase powder; ⑤ Calcination at 700 ° C under a hydrogen atmosphere 2.5h, prepared carbide and rare earth oxide nanocomposite strengthening phase powder;
(2)碳化物和稀土氧化物复合强化细晶钨粉末制备 (2) Preparation of carbide and rare earth oxide composite reinforced fine-grained tungsten powder
采用无水乙醇和硬脂酸作为过程控制剂,氩气为球磨保护气氛,将碳化物和稀土氧化物纳米复合强化相粉末和钨粉末与进行高能球磨8h,获得碳化物和稀土氧化物复合强化细晶钨粉末; Using absolute ethanol and stearic acid as the process control agent, argon as the ball milling protective atmosphere, the carbide and rare earth oxide nano-composite strengthening phase powder and tungsten powder were subjected to high-energy ball milling for 8 hours to obtain carbide and rare earth oxide composite strengthening Fine crystalline tungsten powder;
(3)干燥制粒 (3) Dry granulation
在真空状态下干燥,干燥温度80℃,保温2h;采用压制方式将复合粉末制成板状或棒状后进行粉碎、过筛; Dry in a vacuum state at a drying temperature of 80°C and keep warm for 2 hours; use a pressing method to make the composite powder into a plate or rod shape, then crush and sieve;
(4)成形 (4) Forming
将复合粉末装入压模模腔内,采用模压或等静压,对复合粉末进行成形; Put the composite powder into the cavity of the compression mold, and use molding or isostatic pressing to shape the composite powder;
(5)高温烧结 (5) High temperature sintering
采用H2气氛烧结,烧结温度为1890℃,保温时间为7.5h制备出碳化物和稀土氧化物复合强化细晶钨材料;其晶粒细小且分布均匀,钨晶粒度在8μm以下,碳化物粒子相在0.05~1.0μm之间,均匀弥散分布于钨晶粒与晶界。 Using H2 atmosphere sintering, the sintering temperature is 1890 ℃, and the holding time is 7.5h to prepare carbide and rare earth oxide composite reinforced fine-grained tungsten material; the grains are fine and evenly distributed, and the tungsten grain size is below 8μm The particle phase is between 0.05 and 1.0 μm, uniformly dispersed in the tungsten grains and grain boundaries.
实施例5: Example 5:
碳化物和稀土氧化物复合强化细晶钨材料成分按质量百分比计为: TiC含量为0.8%,La2O3含量为0.5%,Y2O3含量为1.0%,余量为W。 The composition of carbide and rare earth oxide composite strengthened fine-grained tungsten material is calculated by mass percentage: TiC content is 0.8%, La 2 O 3 content is 0.5%, Y 2 O 3 content is 1.0%, and the balance is W.
制备工艺如下: The preparation process is as follows:
(1)碳化物和稀土氧化物纳米复合强化相粉末制备 (1) Preparation of carbide and rare earth oxide nanocomposite strengthening phase powder
复合强化相粉末制备主要包括如下步骤:①配制15g/L的TiC悬浊液;选取La(NO)3、Y(NO)3,并配制0.3mol/L的La (NO)3、Y(NO)3盐溶液;②将碳化物悬浊液与稀土盐溶液混合,加入尿素并搅拌均匀;③在超声震荡与搅拌的作用下,向稀土盐与碳化物混合溶液中缓慢加入NH4OH溶液,控制反应溶液的pH值10~11,使稀土盐形成胶体均匀包覆在碳化物表面;④沉淀、静置陈化、抽滤得到碳化物和稀土氧化物纳米复合强化相粉末的前驱体;⑤在550℃氢气气氛下煅烧3h,制备出碳化物和稀土氧化物纳米复合强化相粉末; The preparation of composite reinforcement phase powder mainly includes the following steps: ① Prepare 15g/L TiC suspension; select La(NO) 3 , Y(NO) 3 , and prepare 0.3mol/L La(NO) 3 , Y(NO ) 3 salt solution; ②mix carbide suspension with rare earth salt solution, add urea and stir evenly; ③under the action of ultrasonic vibration and stirring, slowly add NH 4 OH solution to the mixed solution of rare earth salt and carbide, Control the pH value of the reaction solution to 10-11, so that the rare earth salt forms a colloid and evenly covers the surface of the carbide; ④ Precipitation, static aging, and suction filtration to obtain the precursor of carbide and rare earth oxide nanocomposite strengthening phase powder; ⑤ Calcined at 550°C for 3 hours in a hydrogen atmosphere to prepare carbide and rare earth oxide nanocomposite strengthening phase powder;
(2)碳化物和稀土氧化物复合强化细晶钨粉末制备 (2) Preparation of carbide and rare earth oxide composite reinforced fine-grained tungsten powder
按照成分比例,将碳化物和稀土氧化物纳米复合强化相粉末和钨酸盐制备成溶胶体,并喷雾干燥、热还原制备为碳化物和稀土氧化物复合强化细晶钨粉末; Prepare carbide and rare earth oxide nanocomposite strengthening phase powder and tungstate into a sol according to the composition ratio, and spray dry and thermally reduce to prepare carbide and rare earth oxide composite strengthening fine-grained tungsten powder;
(3)干燥制粒 (3) Dry granulation
在真空状态下干燥,干燥温度75℃,保温2h;采用压制方式将复合粉末制成板状或棒状后进行粉碎、过筛; Dry in a vacuum state at a drying temperature of 75°C and keep warm for 2 hours; use a pressing method to make the composite powder into a plate or rod shape, then crush and sieve;
(4)成形 (4) Forming
将复合粉末装入压模模腔内,采用模压或等静压,对复合粉末进行成形; Put the composite powder into the cavity of the compression mold, and use molding or isostatic pressing to shape the composite powder;
(5)高温烧结 (5) High temperature sintering
采用H2气氛烧结,烧结温度为1980℃,保温时间为3.5h制备出碳化物和稀土氧化物复合强化细晶钨材料;其晶粒细小且分布均匀,钨晶粒度在8μm以下,碳化物粒子相在0.05~1.0μm之间,均匀弥散分布于钨晶粒与晶界。 Using H2 atmosphere sintering, the sintering temperature is 1980 ℃, and the holding time is 3.5h to prepare carbide and rare earth oxide composite strengthened fine-grained tungsten material; the grains are fine and evenly distributed, and the tungsten grain size is below 8μm The particle phase is between 0.05 and 1.0 μm, uniformly dispersed in the tungsten grains and grain boundaries.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510068832.1A CN104630532B (en) | 2015-02-10 | 2015-02-10 | A kind of preparation method of carbide and rare earth oxide complex intensifying carefully brilliant tungsten material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510068832.1A CN104630532B (en) | 2015-02-10 | 2015-02-10 | A kind of preparation method of carbide and rare earth oxide complex intensifying carefully brilliant tungsten material |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104630532A true CN104630532A (en) | 2015-05-20 |
CN104630532B CN104630532B (en) | 2016-12-07 |
Family
ID=53209775
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510068832.1A Expired - Fee Related CN104630532B (en) | 2015-02-10 | 2015-02-10 | A kind of preparation method of carbide and rare earth oxide complex intensifying carefully brilliant tungsten material |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104630532B (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105536834A (en) * | 2015-12-09 | 2016-05-04 | 陕西科技大学 | Method for preparing cerium dioxide/two-dimensional layered titanium carbide composite material through precipitation process |
CN105880585A (en) * | 2016-06-16 | 2016-08-24 | 北京大学 | Preparation method of nanocrystalline tungsten and nanocrystalline tungsten-based powder |
CN105965026A (en) * | 2016-07-18 | 2016-09-28 | 长沙微纳坤宸新材料有限公司 | Method for preparing nanometer MeC-W powder through sol-heterogeneous precipitation-spray drying |
CN106011511A (en) * | 2016-07-18 | 2016-10-12 | 长沙微纳坤宸新材料有限公司 | Preparation method for titanium-carbide-strengthened fine-grain tungsten material |
CN106077693A (en) * | 2016-07-22 | 2016-11-09 | 合肥工业大学 | A kind of high thermal shock resistance W-TiC-Y2O3 composite material and its preparation method |
CN107326240A (en) * | 2017-07-07 | 2017-11-07 | 合肥工业大学 | A kind of Ultra-fine Grained TiC and Y2O3Adulterate W based composites and preparation method thereof |
CN109402541A (en) * | 2017-08-15 | 2019-03-01 | 核工业西南物理研究院 | A kind of dispersed particle-strengthened tungsten block materials preparation method |
CN110270692A (en) * | 2019-06-10 | 2019-09-24 | 北京科技大学 | A kind of tungsten/rare-earth oxide composite hollow spherical shape raw powder's production technology |
CN110722171A (en) * | 2019-09-30 | 2020-01-24 | 北京科技大学 | A method for preparing rare earth oxide doped tungsten and molybdenum spherical powder for 3D printing |
CN113828770A (en) * | 2021-09-17 | 2021-12-24 | 湖南工业大学 | Nickel-reinforced particle composite powder with gradient structure and preparation method thereof |
CN113913665A (en) * | 2021-09-30 | 2022-01-11 | 中国科学院重庆绿色智能技术研究院 | Nano lanthanum oxide reinforced tungsten matrix composite material and preparation method thereof |
CN114752801A (en) * | 2022-05-12 | 2022-07-15 | 崇义章源钨业股份有限公司 | Plate-shaped crystal reinforced net-shaped structure hard alloy and preparation method thereof |
CN114959338A (en) * | 2022-05-16 | 2022-08-30 | 北京科技大学 | Method for preparing high-strength high-plasticity tungsten alloy through mechanical alloying |
CN115305399A (en) * | 2022-08-23 | 2022-11-08 | 自贡硬质合金有限责任公司 | Rare earth tungsten electrode material and preparation method thereof |
CN115679174A (en) * | 2022-11-04 | 2023-02-03 | 中南大学 | Super-strong tungsten filament and preparation method thereof |
CN116275048A (en) * | 2023-03-22 | 2023-06-23 | 中钨稀有金属新材料(湖南)有限公司 | A kind of lanthanum-containing tungsten billet and its preparation method and application |
CN117626084A (en) * | 2023-12-18 | 2024-03-01 | 北京北钨科技有限公司 | Composite tungsten electrode material and preparation method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1565782A (en) * | 2003-06-12 | 2005-01-19 | 中南大学 | Method for preparing nano-grade tungsten-based composite powder by sol-spray drying-thermal reduction |
CN101230427A (en) * | 2008-02-22 | 2008-07-30 | 中南大学 | A kind of preparation method of fine-grained W-Ni-Fe alloy containing rare earth |
-
2015
- 2015-02-10 CN CN201510068832.1A patent/CN104630532B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1565782A (en) * | 2003-06-12 | 2005-01-19 | 中南大学 | Method for preparing nano-grade tungsten-based composite powder by sol-spray drying-thermal reduction |
CN101230427A (en) * | 2008-02-22 | 2008-07-30 | 中南大学 | A kind of preparation method of fine-grained W-Ni-Fe alloy containing rare earth |
Non-Patent Citations (2)
Title |
---|
JINGLIAN FAN ET AL.: "Micro/nano composited tungsten material and its high thermal loading behavior", 《JOURNAL OF NUCLEAR MATERIALS》, vol. 455, 31 December 2014 (2014-12-31), pages 717 - 723, XP 029100383, DOI: doi:10.1016/j.jnucmat.2014.09.037 * |
陈勇等: "La2O3-TiC/W复合材料的制备与力学性能研究", 《兵器材料科学与工程》, vol. 31, no. 1, 31 January 2008 (2008-01-31), pages 47 - 50 * |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105536834A (en) * | 2015-12-09 | 2016-05-04 | 陕西科技大学 | Method for preparing cerium dioxide/two-dimensional layered titanium carbide composite material through precipitation process |
CN105536834B (en) * | 2015-12-09 | 2019-01-11 | 陕西科技大学 | The precipitation method prepare ceria/two-dimensional layer carbonization titanium composite material method |
CN105880585A (en) * | 2016-06-16 | 2016-08-24 | 北京大学 | Preparation method of nanocrystalline tungsten and nanocrystalline tungsten-based powder |
CN105965026A (en) * | 2016-07-18 | 2016-09-28 | 长沙微纳坤宸新材料有限公司 | Method for preparing nanometer MeC-W powder through sol-heterogeneous precipitation-spray drying |
CN106011511A (en) * | 2016-07-18 | 2016-10-12 | 长沙微纳坤宸新材料有限公司 | Preparation method for titanium-carbide-strengthened fine-grain tungsten material |
CN106077693A (en) * | 2016-07-22 | 2016-11-09 | 合肥工业大学 | A kind of high thermal shock resistance W-TiC-Y2O3 composite material and its preparation method |
CN106077693B (en) * | 2016-07-22 | 2018-07-03 | 合肥工业大学 | A kind of high thermal shock W-TiC-Y2O3Composite material and preparation method thereof |
CN107326240A (en) * | 2017-07-07 | 2017-11-07 | 合肥工业大学 | A kind of Ultra-fine Grained TiC and Y2O3Adulterate W based composites and preparation method thereof |
CN109402541A (en) * | 2017-08-15 | 2019-03-01 | 核工业西南物理研究院 | A kind of dispersed particle-strengthened tungsten block materials preparation method |
CN110270692A (en) * | 2019-06-10 | 2019-09-24 | 北京科技大学 | A kind of tungsten/rare-earth oxide composite hollow spherical shape raw powder's production technology |
CN110722171A (en) * | 2019-09-30 | 2020-01-24 | 北京科技大学 | A method for preparing rare earth oxide doped tungsten and molybdenum spherical powder for 3D printing |
CN110722171B (en) * | 2019-09-30 | 2024-05-28 | 北京科技大学 | Method for preparing rare earth oxide doped tungsten and molybdenum spherical powder for 3D printing |
CN113828770A (en) * | 2021-09-17 | 2021-12-24 | 湖南工业大学 | Nickel-reinforced particle composite powder with gradient structure and preparation method thereof |
CN113828770B (en) * | 2021-09-17 | 2023-03-14 | 湖南工业大学 | Nickel-reinforced particle composite powder with gradient structure and preparation method thereof |
CN113913665A (en) * | 2021-09-30 | 2022-01-11 | 中国科学院重庆绿色智能技术研究院 | Nano lanthanum oxide reinforced tungsten matrix composite material and preparation method thereof |
CN114752801A (en) * | 2022-05-12 | 2022-07-15 | 崇义章源钨业股份有限公司 | Plate-shaped crystal reinforced net-shaped structure hard alloy and preparation method thereof |
CN114959338A (en) * | 2022-05-16 | 2022-08-30 | 北京科技大学 | Method for preparing high-strength high-plasticity tungsten alloy through mechanical alloying |
CN115305399A (en) * | 2022-08-23 | 2022-11-08 | 自贡硬质合金有限责任公司 | Rare earth tungsten electrode material and preparation method thereof |
CN115679174A (en) * | 2022-11-04 | 2023-02-03 | 中南大学 | Super-strong tungsten filament and preparation method thereof |
CN115679174B (en) * | 2022-11-04 | 2024-02-06 | 中南大学 | A kind of super strong tungsten wire and its preparation method |
CN116275048A (en) * | 2023-03-22 | 2023-06-23 | 中钨稀有金属新材料(湖南)有限公司 | A kind of lanthanum-containing tungsten billet and its preparation method and application |
CN117626084A (en) * | 2023-12-18 | 2024-03-01 | 北京北钨科技有限公司 | Composite tungsten electrode material and preparation method thereof |
CN117626084B (en) * | 2023-12-18 | 2024-06-18 | 北京北钨科技有限公司 | Composite tungsten electrode material and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN104630532B (en) | 2016-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104630532B (en) | A kind of preparation method of carbide and rare earth oxide complex intensifying carefully brilliant tungsten material | |
CN105518169B (en) | A kind of preparation method of rare earth oxide dispersion-strengtherning fine grain tungsten material | |
CN103911566B (en) | The method for preparing powder metallurgy of a kind of carbon nano tube reinforced aluminum alloy composite material | |
CN103173641B (en) | Preparation method of nano yttrium oxide dispersion strengthening tungsten alloy | |
CN102644000B (en) | Preparation method of high-toughness metal-based nanometer composite material | |
CN102703756B (en) | Preparation method of double-scale crystalline grain Ti-6Al-4V material | |
CN100582267C (en) | Method for preparing grain-refining W-Ni-Fe alloy containing rare earth | |
CN110560700A (en) | Method for preparing high-density ultrafine-grained rare earth oxide doped tungsten alloy | |
CN104451226B (en) | A kind of preparation method of the compound fine grain tungsten material of micro-nano | |
CN100558923C (en) | A kind of high specific gravity tungsten alloy material and its preparation method of nano crystal block | |
CN103331449B (en) | Ultra-fine Grained/micron crystal block body iron material of the two size distribution of a kind of super-high-plasticity and preparation method thereof | |
CN106623960B (en) | A kind of preparation method of zirconium boride dispersion-strengtherning tungsten powder | |
CN110093548A (en) | A kind of tough high-entropy alloy of Ultra-fine Grained height and preparation method thereof containing rare-earth Gd | |
CN103710581A (en) | A kind of preparation method of nano Al2O3 particle reinforced aluminum matrix composite material | |
CN113106281B (en) | Preparation method of yttrium oxide-doped tungsten-based nanocomposite powder and alloy thereof | |
CN101698919A (en) | Particle-reinforced molybdenum-base composite material and preparation method thereof | |
CN104328301A (en) | Preparation method of particular-reinforced molybdenum-based composite material | |
CN100446899C (en) | A kind of preparation method of ultrafine tungsten-copper composite powder | |
CN111705252A (en) | A kind of Al2O3 nanoparticle reinforced CrCoNi medium entropy alloy matrix composite material and preparation method | |
CN108772569A (en) | A kind of hydrothermal preparation method of ultrafine nano tungsten powder | |
CN101786163A (en) | Preparation method of high-performance room-temperature magnetic refrigeration nano bulk material | |
CN102531606B (en) | Low-temperature manufacturing method of high-strength and toughness silicon carbide ceramics | |
CN108356287B (en) | A method for preparing tungsten dispersion strengthened copper matrix composite material by catalytic gel | |
CN103693962B (en) | A kind of SiO2 doping modified La2Zr2O7 ceramics and preparation method thereof | |
CN105132727A (en) | Plasma sintering preparation method for fine-grain tungsten copper alloy with tungsten-coated copper phenomenon |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20161207 Termination date: 20170210 |
|
CF01 | Termination of patent right due to non-payment of annual fee |