CN104616257A - Recovery evidence obtaining method for blurred degraded digital images in administration of justice - Google Patents
Recovery evidence obtaining method for blurred degraded digital images in administration of justice Download PDFInfo
- Publication number
- CN104616257A CN104616257A CN201510037693.6A CN201510037693A CN104616257A CN 104616257 A CN104616257 A CN 104616257A CN 201510037693 A CN201510037693 A CN 201510037693A CN 104616257 A CN104616257 A CN 104616257A
- Authority
- CN
- China
- Prior art keywords
- image
- motion
- blurred
- blur
- resolution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 45
- 238000011084 recovery Methods 0.000 title description 3
- 239000000654 additive Substances 0.000 claims description 10
- 230000000996 additive effect Effects 0.000 claims description 10
- 238000001914 filtration Methods 0.000 claims description 9
- GNFTZDOKVXKIBK-UHFFFAOYSA-N 3-(2-methoxyethoxy)benzohydrazide Chemical compound COCCOC1=CC=CC(C(=O)NN)=C1 GNFTZDOKVXKIBK-UHFFFAOYSA-N 0.000 claims description 6
- 230000015556 catabolic process Effects 0.000 claims description 5
- 238000006731 degradation reaction Methods 0.000 claims description 5
- FGUUSXIOTUKUDN-IBGZPJMESA-N C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 Chemical compound C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 FGUUSXIOTUKUDN-IBGZPJMESA-N 0.000 claims description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
Landscapes
- Image Processing (AREA)
Abstract
本发明的模糊退化数字图像在司法中的复原取证方法,包括:a).运动或离焦模糊的判断;b).采用公式 进行清晰化处理;c).判断是否存在拍摄条件所限的模糊;d).模糊图像的清晰化处理;e).分辨率低下模糊的判断;f).采用去模糊、降噪的超分辨率图像重建方法,获取模糊图像的超分辨率图像;执行步骤g);g).图形处理完毕,获取的图像为原始模糊图像科学、合理的复原图像。本发明的模糊退化数字图像在司法中的复原取证方法,可将存在运动或离焦模糊、拍摄条件恶劣所造成的图像模糊、分辨率低下所造成的图像模糊消除,科学、合理地实现了原始模糊图像的逼真还原,不存在图像篡改行为,为图像作为司法依据提供了强有力的保障。
The restoration and evidence collection method of fuzzy and degraded digital images in judicial practice of the present invention includes: a). Judgment of motion or defocus blur; b). Using the formula Carry out sharpening processing; c). Judgment whether there is blurring limited by shooting conditions; d). Sharpening processing of blurred images; e). Judgment of low-resolution blurring; f). Super-resolution using deblurring and noise reduction The high-rate image reconstruction method obtains the super-resolution image of the blurred image; executes steps g); g). After the graphics processing is completed, the acquired image is a scientifically and reasonably restored image of the original blurred image. The restoration and evidence collection method of fuzzy and degraded digital images in judicial practice of the present invention can eliminate image blur caused by motion or defocus blur, poor shooting conditions, and image blur caused by low resolution, scientifically and reasonably realizing the original The realistic restoration of blurred images without image tampering provides a strong guarantee for images to be used as judicial basis.
Description
技术领域 technical field
本发明涉及一种模糊退化数字图像在司法中的复原取证方法,更具体的说,尤其涉及一种可有效消除图像由于运动、拍摄环境恶劣和分辨率低所导致的图形模糊的模糊退化数字图像在司法中的复原取证方法。 The present invention relates to a method for recovering and obtaining evidence of fuzzy and degraded digital images in judicial practice, and more specifically, to a kind of fuzzy and degraded digital images that can effectively eliminate image blur caused by movement, poor shooting environment and low resolution. Restorative Evidence Methods in Justice.
背景技术 Background technique
数字图像内容取证技术主要是通过对数字图像的统计特性的分析来判断图像内容的准确性、完整性和原始性。各种图像都有可能是经过一种或者多种篡改以后的图像,虽然他们不能被人的视觉直接感知,但是各种篡改不可避免地会改变图像的某些数据特性。运用科学、合理的图像处理手段来检测出这种人为篡改所造成的数据特性的改变,是数字图像取证的关键。 Digital image content forensics technology mainly judges the accuracy, integrity and originality of image content by analyzing the statistical characteristics of digital images. All kinds of images may be images after one or more kinds of tampering. Although they cannot be directly perceived by human vision, various tampering will inevitably change some data characteristics of the image. It is the key to digital image forensics to use scientific and reasonable image processing methods to detect the change of data characteristics caused by human tampering.
在司法审查中,经常遇到这样的情况,所提供的数字图像模糊不清,不足以对所佐证的内容提供充实的证据,此时,就需要对模糊退化的图像进行还原处理,使之成为司法过程中的有效证据。概括来说,造成图像模糊退化的原因主要有三类:(1)一是由于拍摄环境恶劣(如大雨、大雾、大雪或者雾霾)所造成的图像模糊不清;(2)二是由于图像采集设备分辨率低所造成的图像精细度不够;(3)三是由于图像采集设备与采集对象之间的相对运动所造成的图像模糊不清。 In judicial review, it is often encountered that the provided digital images are blurred and not enough to provide sufficient evidence for the content of the corroboration. At this time, it is necessary to restore the blurred and degraded images to make them become Valid evidence in the judicial process. In a nutshell, there are three main reasons for image blur and degradation: (1) one is that the image is blurred due to the bad shooting environment (such as heavy rain, heavy fog, heavy snow or haze); (2) the other is that the image is blurred. The image fineness caused by the low resolution of the acquisition equipment is not enough; (3) The third is that the image is blurred due to the relative motion between the image acquisition equipment and the acquisition object.
对于第一类情形,如果图像中的关键目标模糊不清,则不能观察清楚图像的细节,无法提供令人信服的有用信息,造成图像的证明力度不够。对于第二类情形,分辨率低下的数字图像所能显示的感兴趣目标的细节有限,如不能将图像中关键物体通过科学的手段清晰地显示出来,则可能造成了本来囊括了有效证明内容的图像而失去应用的作用。在有些情况下,对方为了使本来清晰可辨的图像失去作为证据的作用,可能会人为地降低图像的分辨率,以使违法或犯罪证据无法获取,这种情况下,对于分辨率低下的数字图像的清晰还原也十分重要。对于第三类情形,由于在数字图像采集的瞬间,物体或图像采集设备发生突然的抖动或快速运动,则就造成了运动模糊或离焦模糊的数字图像,将运动模糊或离焦模糊的图像清晰化,也是数字图像取证的关键。 For the first type of situation, if the key target in the image is blurred, the details of the image cannot be observed clearly, and convincing and useful information cannot be provided, resulting in insufficient proof of the image. For the second type of situation, the details of the target of interest that can be displayed by the digital image with low resolution are limited. If the key objects in the image cannot be clearly displayed by scientific means, it may cause the original content of effective proof. The image loses its application effect. In some cases, in order to make the clear and recognizable images lose their role as evidence, the other party may artificially reduce the resolution of the images so that illegal or criminal evidence cannot be obtained. The clear restoration of the image is also very important. For the third type of situation, due to the sudden shaking or fast movement of the object or image acquisition equipment at the moment of digital image acquisition, a digital image with motion blur or defocus blur is caused, and the image with motion blur or defocus blur Clarity is also the key to digital image forensics.
发明内容 Contents of the invention
本发明为了克服上述技术问题的缺点,提供了一种模糊退化数字图像在司法中的复原取证方法。 In order to overcome the disadvantages of the above-mentioned technical problems, the present invention provides a restoration and evidence collection method of fuzzy and degraded digital images in judicial practice.
本发明的模糊退化数字图像在司法中的复原取证方法,其特别之处在于,通过以下步骤来实现:a).运动或离焦模糊的判断,对于待清晰化的模糊退化数字图像,首先人为地判断其是否存在运动模糊或离焦模糊,如果存在,则执行步骤b);如果不存在,则执行步骤c);b).运动或离焦模糊的清晰化,对于待清晰化的数字图像,采用公式(1)对其进行清晰化处理: The fuzzy degraded digital image recovery and evidence collection method in the judiciary of the present invention is special in that it is realized through the following steps: a). For the judgment of motion or defocus blur, for the fuzzy degraded digital image to be cleared, first artificially Determine whether there is motion blur or defocus blur, if there is, then perform step b); if not, then perform step c); b). Clearing of motion or defocus blur, for the digital image to be cleared , using formula (1) to clarify it:
(1) (1)
为对原始图像的一个估计,为图像的退化函数,为图像的加性噪声;和获取的越准确,就越接近;由模糊运动方向和运动长度确定;利用获取的模糊运动方向和长度对图像进行清晰化处理,并将模糊图像的加性噪声去除,以获取清晰图像;执行步骤c);c).判断是否存在拍摄条件所限的模糊,判断待清晰化的图像是否存在由于拍摄条件恶劣所造成的图像模糊,如果存在,则执行步骤d);如果不存在,则执行步骤e);d).模糊图像的清晰化处理,设待处理图像中像素点的R、G、B值分别为、、,图像中所有像素点的R、G、B值的取值范围分别为、、,0≤≤255,0≤≤255,0≤≤255,利用公式(2)对其进行清晰化处理: for the original image an estimate of is the degradation function of the image, is the additive noise of the image; and The more accurate you can get, the closer ; Determined by the blurred motion direction and motion length; use the obtained blurred motion direction and length to perform clear processing on the image, and remove the additive noise of the blurred image to obtain a clear image; perform step c); c). Determine whether there is Blur limited by shooting conditions, judge whether the image to be cleared has image blur caused by bad shooting conditions, if it exists, then perform step d); if it does not exist, then perform step e); d). Clear processing, set the pixel points in the image to be processed The R, G, and B values of , , , the value ranges of R, G, and B values of all pixels in the image are , , , 0≤ ≤255, 0≤ ≤255, 0≤ ≤255, use the formula (2) to clarify it:
(2) (2)
利用求取的、、值来替换像素点的R、G、B值,即可实现对图形的清晰化处理;其中,,,;执行步骤e);e).分辨率低下模糊的判断,人为判断是否存在由于图像分辨率较低所导致的图像模糊不清的情形,如果没有,则执行步骤g);如果存在,则执行步骤f);f).低分辨率图像的清晰化处理,通过以下步骤来实现:f-1).多幅低分辨率图像的获取,如果待清晰化的图像为视频帧图像,通过对视频帧的处理,获取多幅画面一致的低分辨率图像;如果待清晰化的图像为单幅数字图像,则采用插值法获取多幅画面一致的低分辨率图像;设获取的低分辨率图像的数量为N个;f-2).图像的超分辨率重建,依据步骤f-1)中所获取的N个低分辨率图像,采用去模糊、降噪的超分辨率图像重建方法,获取模糊图像的超分辨率图像;执行步骤g);g).图形处理完毕,模糊退化数字图形的复原处理完毕,对于存在运动或离焦模糊、拍摄条件恶劣所造成的图像模糊、分辨率低下所造成的图像模糊均可消除,最后获取的图像为原始模糊图像科学、合理的复原图像,其显示的细节内容可作为证据使用。 Take advantage of , , value to replace the pixel The R, G, B values of R, G, and B can realize the clear processing of the graphics; among them, , , ; Execute step e); e). Judgment of low resolution and blur, whether there is artificially judging whether there is a blurred image caused by low image resolution, if not, then perform step g); if it exists, then perform Step f); f). The sharpening process of the low-resolution image is realized by the following steps: f-1). The acquisition of multiple low-resolution images, if the image to be cleared is a video frame image, through the video frame processing to obtain multiple low-resolution images with consistent frames; if the image to be cleared is a single digital image, use interpolation to obtain multiple low-resolution images with consistent frames; set the obtained low-resolution images The number is N; f-2). The super-resolution reconstruction of the image, according to the N low-resolution images obtained in the step f-1), adopts the super-resolution image reconstruction method of deblurring and noise reduction to obtain blurred The super-resolution image of the image; execution step g); g). The graphics processing is completed, and the restoration processing of the blurred and degraded digital graphics is completed. The blurring of the image can be eliminated, and the final obtained image is a scientific and reasonable restored image of the original blurred image, and the details displayed can be used as evidence.
本发明的模糊退化数字图像在司法中的复原取证方法,步骤b)中所述的运动或离焦模糊的清晰化过程通过以下步骤来实现:b-1).图像的差分运算,采用基于旋转差分算子的运动模糊方向来估计模糊图像的运动方向,将差分算子与模糊图像采用公式(3)进行线性卷积运算,实现对模糊图像的差分运算: In the judiciary restoration and evidence collection method of blurred and degraded digital images of the present invention, the clearing process of motion or defocus blur described in step b) is realized through the following steps: b-1). The difference operation of the image is based on rotation The motion blur direction of the differential operator is used to estimate the motion direction of the blurred image, and the differential operator and the blurred image are linearly convolved using formula (3) to realize the differential operation of the blurred image:
(3) (3)
其中,表示原始模糊图像,表示方向差分算子,表示被差分算子作用后的差分结果;b-2).运动方向的确定,令按照=的顺序依次变化,并求出相应的,并按照公式(4)求出每个中像素绝对值的和: in, represents the original blurred image, represents the directional difference operator, Indicates the differential result after being acted on by the differential operator; b-2). To determine the direction of motion, let according to = The order of changes in turn, and find the corresponding , and according to formula (4) to find each Sum of absolute values of pixels in :
(4) (4)
在运算的过程中,如果满足不等式(5)的出现, During the operation, if the inequality (5) is satisfied Appear,
(5) (5)
则使具有极小值的角度值即为模糊图像的运动方向,设运动方向为;b-3).运动模糊参数的求取,采用模糊图像点扩散函数参数估计方法来估计运动模糊图像的运动长度; then make The angle value with a minimum value is the motion direction of the blurred image, let the motion direction be ; b-3). Obtaining the motion blur parameters, using the fuzzy image point spread function parameter estimation method to estimate the motion length of the motion blur image;
采用公式(6)求取运动模糊参数: Use formula (6) to find the motion blur parameters :
(6) (6)
为初始模数运动参数,为运动步长,D为搜索次数,1≤≤D;b-4).获取再次模糊图像,利用模糊参数对原始模糊图像模糊处理得到再次模糊的图像,通过公式(7)进行求取: is the initial modulus motion parameter, is the motion step, D is the number of searches, 1≤ ≤D; b-4). Obtain the blurred image again, using the blur parameter to the original blurred image Blur to get a blurred image again , Find it by formula (7):
(7) (7)
b-5).模糊运动长度的确定,计算误差,使具有最小值的即为模糊运动步长。 b-5). Determination of fuzzy motion length and calculation error ,make with minimum That is, the blur motion step size.
本发明的模糊退化数字图像在司法中的复原取证方法,步骤b)中加性噪声的去除通过均值滤波法、中值滤波法或者频域低通滤波法来实现。 The restoration and evidence collection method of fuzzy and degraded digital images in judicial practice of the present invention, additive noise in step b) The removal of is realized by mean filtering method, median filtering method or frequency domain low-pass filtering method.
本发明的模糊退化数字图像在司法中的复原取证方法,步骤d)中,如果所获取的图像为灰度值图像,设像素点的灰度值为,图像中所有像素的灰度值范围为,0≤≤255;则模糊图像的清晰化处理通过公式(8)来实现: In the judiciary restoration and evidence collection method of fuzzy and degraded digital images of the present invention, in step d), if the acquired image is a gray value image, set the pixel The grayscale value of , the gray value range of all pixels in the image is ,0≤ ≤255; then the sharpening processing of the blurred image is realized by the formula (8):
(8) (8)
利用求取的值来替换像素点的值,即可实现对图形的清晰化处理;其中,。 Take advantage of value to replace the pixel of value, the clear processing of the graphics can be realized; among them, .
本发明的有益效果是:本发明的模糊退化数字图像在司法中的复原取证方法,在原始模糊图像存在运动或离焦模糊的情形下,通过退化函数和加性噪声实现对原始图像的最大估计,以最大限度地实现对图像的还原;在模糊图像存在由于拍摄环境恶劣所造成的图像模糊时,如大雨、大雾或大雪天气条件下所获取的图像,则采用像素值扩大的方法来获取清晰的图像;在模糊图像存在由于分辨率低所导致的图像模糊时,则采用超分辨率图像重建方法,获取模糊图像的超分辨率图像,最后获取的图像为原始模糊图像科学、合理的复原图像,其显示的细节内容可作为证据使用。 The beneficial effects of the present invention are: the restoration and evidence collection method of blurred and degraded digital images in judicial practice of the present invention, in the case of motion or defocus blur in the original blurred image, through the degradation function and additive noise Realize the maximum estimation of the original image to maximize the restoration of the image; when the blurred image has image blur caused by the poor shooting environment, such as the image acquired under heavy rain, heavy fog or heavy snow weather conditions, use The pixel value expansion method is used to obtain a clear image; when the blurred image has image blur caused by low resolution, the super-resolution image reconstruction method is used to obtain the super-resolution image of the blurred image, and the final obtained image is the original The fuzzy image is scientifically and reasonably restored, and the details displayed can be used as evidence.
本发明的模糊退化数字图像在司法中的复原取证方法,可将存在运动或离焦模糊、拍摄条件恶劣所造成的图像模糊、分辨率低下所造成的图像模糊消除,科学、合理地实现了原始模糊图像的逼真还原,不存在图像篡改行为,为图像作为司法依据提供了强有力的保障。 The restoration and evidence collection method of fuzzy and degraded digital images in judicial practice of the present invention can eliminate image blur caused by motion or defocus blur, poor shooting conditions, and image blur caused by low resolution, scientifically and reasonably realizing the original The realistic restoration of blurred images without image tampering provides a strong guarantee for images to be used as judicial basis.
附图说明 Description of drawings
图1为本发明的模糊退化数字图像在司法中的复原取证方法的流程图; Fig. 1 is the flow chart of the recovery evidence collection method of the fuzzy degraded digital image in the judiciary of the present invention;
图2为本发明中的原始模糊图像; Fig. 2 is original fuzzy image among the present invention;
图3为本发明中的原始模糊图像经过运动模糊清晰化处理后的图像; Fig. 3 is the image of the original blurred image in the present invention after being processed by motion blur clearing;
图4为图3中的图像经过像素均衡化处理后的图像; Fig. 4 is the image after pixel equalization processing of the image in Fig. 3;
图5为图4中的图像经过超分辨率图像重建处理后的图像。 FIG. 5 is an image after super-resolution image reconstruction processing of the image in FIG. 4 .
具体实施方式 Detailed ways
下面结合附图与实施例对本发明作进一步说明。 The present invention will be further described below in conjunction with the accompanying drawings and embodiments.
如图1所示,给出了本发明的模糊退化数字图像在司法中的复原取证方法的流程图,其通过以下方法来实现: As shown in Figure 1, the flow chart of the restoration and evidence collection method of blurred and degraded digital images in judicial practice of the present invention is provided, which is realized by the following methods:
a).运动或离焦模糊的判断,对于待清晰化的模糊退化数字图像,首先人为地判断其是否存在运动模糊或离焦模糊,如果存在,则执行步骤b);如果不存在,则执行步骤c); a). Judgment of motion or defocus blur. For the blurred and degraded digital image to be cleared, first artificially judge whether there is motion blur or defocus blur. If yes, perform step b); if not, perform step c);
如图2所示,给出了一幅原始模糊图像,所示的模糊图像不仅存在运动模糊,而且还存在由于拍摄环境恶劣所造成的图像模糊以及低分辨率所造成的图像模糊。由于原始图像的模糊,根本无法获取监控画面中的车牌号码。 As shown in Figure 2, an original blurred image is given. The blurred image shown not only has motion blur, but also image blur caused by poor shooting environment and image blur caused by low resolution. Due to the blurring of the original image, it is impossible to obtain the license plate number in the monitoring screen.
b).运动或离焦模糊的清晰化,对于待清晰化的数字图像,采用公式(1)对其进行清晰化处理: b). Clearing of motion or defocus blur. For the digital image to be cleared, formula (1) is used to clear it:
(1) (1)
为对原始图像的一个估计,为图像的退化函数,为图像的加性噪声;和获取的越准确,就越接近;由模糊运动方向和运动长度确定; for the original image an estimate of is the degradation function of the image, is the additive noise of the image; and The more accurate you can get, the closer ; Determined by blur motion direction and motion length;
利用获取的模糊运动方向和长度对图像进行清晰化处理,并将模糊图像的加性噪声去除,以获取清晰图像;执行步骤c); Perform clearing processing on the image by using the obtained blurred motion direction and length, and remove the additive noise of the blurred image to obtain a clear image; perform step c);
该步骤中,所述的运动或离焦模糊的清晰化过程通过以下步骤来实现: In this step, the process of clearing motion or defocus blur is realized through the following steps:
b-1).图像的差分运算,采用基于旋转差分算子的运动模糊方向来估计模糊图像的运动方向,将差分算子与模糊图像采用公式(3)进行线性卷积运算,实现对模糊图像的差分运算: b-1). Image differential operation, using the motion blur direction based on the rotation differential operator to estimate the motion direction of the blurred image, and performing linear convolution operation between the differential operator and the blurred image using formula (3) to realize the blurred image The difference operation:
(3) (3)
其中,表示原始模糊图像,表示方向差分算子,表示被差分算子作用后的差分结果; in, represents the original blurred image, represents the directional difference operator, Indicates the difference result after being acted on by the difference operator;
b-2).运动方向的确定,令按照=的顺序依次变化,并求出相应的,并按照公式(4)求出每个中像素绝对值的和: b-2). To determine the direction of motion, let according to = The order of changes in turn, and find the corresponding , and according to formula (4) to find each Sum of absolute values of pixels in :
(4) (4)
在运算的过程中,如果满足不等式(5)的出现, During the operation, if the inequality (5) is satisfied Appear,
(5) (5)
则使具有极小值的角度值即为模糊图像的运动方向,设运动方向为; then make The angle value with a minimum value is the motion direction of the blurred image, let the motion direction be ;
b-3).运动模糊参数的求取,采用模糊图像点扩散函数参数估计方法来估计运动模糊图像的运动长度; b-3). Calculation of the motion blur parameters, using the fuzzy image point spread function parameter estimation method to estimate the motion length of the motion blur image;
采用公式(6)求取运动模糊参数: Use formula (6) to find the motion blur parameters :
(6) (6)
为初始模数运动参数,为运动步长,D为搜索次数,1≤≤D; is the initial modulus motion parameter, is the motion step, D is the number of searches, 1≤ ≤D;
b-4).获取再次模糊图像,利用模糊参数对原始模糊图像模糊处理得到再次模糊的图像,通过公式(7)进行求取: b-4). Obtain the blurred image again, using the blur parameters to the original blurred image Blur to get a blurred image again , Find it by formula (7):
(7) (7)
b-5).模糊运动长度的确定,计算误差,使具有最小值的即为模糊运动步长。 b-5). Determination of fuzzy motion length and calculation error ,make with minimum That is, the blur motion step size.
该步骤中,加性噪声的去除通过均值滤波法、中值滤波法或者频域低通滤波法来实现。 In this step, the additive noise The removal of is realized by mean filtering method, median filtering method or frequency domain low-pass filtering method.
如图3所示,给出了经过步骤b)处理后的图像,由此可见,经过步骤b)的处理后,消除了图像运动模糊,但由于拍摄条件不好,获取的图像模糊不清,还是无法识别车牌号。 As shown in Figure 3, the image processed by step b) is given. It can be seen that after the processing of step b), the motion blur of the image is eliminated, but the acquired image is blurred due to poor shooting conditions. Still can't recognize the license plate number.
c).判断是否存在拍摄条件所限的模糊,判断待清晰化的图像是否存在由于拍摄条件恶劣所造成的图像模糊,如果存在,则执行步骤d);如果不存在,则执行步骤e); c). Judging whether there is blur limited by shooting conditions, judging whether the image to be cleared has image blur caused by bad shooting conditions, if it exists, then perform step d); if not, then perform step e);
d).模糊图像的清晰化处理,设待处理图像中像素点的R、G、B值分别为、、,图像中所有像素点的R、G、B值的取值范围分别为、、,0≤≤255,0≤≤255,0≤≤255,利用公式(2)对其进行清晰化处理: d). The clear processing of blurred images, set the pixel points in the image to be processed The R, G, and B values of , , , the value ranges of R, G, and B values of all pixels in the image are , , , 0≤ ≤255, 0≤ ≤255, 0≤ ≤255, use the formula (2) to clarify it:
(2) (2)
利用求取的、、值来替换像素点的R、G、B值,即可实现对图形的清晰化处理;其中,,,;执行步骤e); Take advantage of , , value to replace the pixel The R, G, B values of R, G, and B can realize the clear processing of the graphics; among them, , , ; Execute step e);
如果所获取的图像为灰度值图像,设像素点的灰度值为,图像中所有像素的灰度值范围为,0≤≤255;则模糊图像的清晰化处理通过公式(8)来实现: If the acquired image is a grayscale image, set the pixel The grayscale value of , the gray value range of all pixels in the image is ,0≤ ≤255; then the sharpening processing of the blurred image is realized by the formula (8):
(8) (8)
利用求取的值来替换像素点的值,即可实现对图形的清晰化处理;其中,。 Take advantage of value to replace the pixel of value, the clear processing of the graphics can be realized; among them, .
如图4所示,给出了图3中的图像经过像素均衡化处理后的图像,相对于图3中的监控画面来说,图4中的图像虽然以不存在运动、拍摄环境恶劣所造成的图像模糊,但由于图像本身的分辨率低下,还是无法获取车牌号码。 As shown in Figure 4, the image in Figure 3 after pixel equalization processing is given. Compared with the monitoring screen in Figure 3, the image in Figure 4 is caused by the absence of motion and the harsh shooting environment. The image is blurry, but the license plate number cannot be obtained due to the low resolution of the image itself.
e).分辨率低下模糊的判断,人为判断是否存在由于图像分辨率较低所导致的图像模糊不清的情形,如果没有,则执行步骤g);如果存在,则执行步骤f); e). Judgment of low resolution and fuzzy, artificially judge whether there is a situation of blurred image caused by low image resolution, if not, then perform step g); if it exists, then perform step f);
f).低分辨率图像的清晰化处理,通过以下步骤来实现: f). The clear processing of the low-resolution image is realized through the following steps:
f-1).多幅低分辨率图像的获取,如果待清晰化的图像为视频帧图像,通过对视频帧的处理,获取多幅画面一致的低分辨率图像;如果待清晰化的图像为单幅数字图像,则采用插值法获取多幅画面一致的低分辨率图像;设获取的低分辨率图像的数量为N个; f-1). The acquisition of multiple low-resolution images, if the image to be cleared is a video frame image, through the processing of the video frame, multiple low-resolution images with the same picture are obtained; if the image to be cleared is For a single digital image, an interpolation method is used to obtain a plurality of consistent low-resolution images; the number of low-resolution images obtained is N;
f-2).图像的超分辨率重建,依据步骤f-1)中所获取的N个低分辨率图像,采用去模糊、降噪的超分辨率图像重建方法,获取模糊图像的超分辨率图像;执行步骤g); f-2). The super-resolution reconstruction of the image, according to the N low-resolution images obtained in the step f-1), adopt the super-resolution image reconstruction method of deblurring and noise reduction to obtain the super-resolution of the blurred image image; perform step g);
如图5所示,给出了图4中的图像经超分辨率图像重建处理后的图像,由于消除了原始图像的运动模糊、拍摄环境恶劣模糊、低分辨率模糊,使得监控画面中的车牌号码清晰可辨。 As shown in Figure 5, the image in Figure 4 after super-resolution image reconstruction is given. Due to the elimination of the motion blur of the original image, the poor shooting environment blur, and the low-resolution blur, the license plate in the monitoring screen The numbers are clearly legible.
g).图形处理完毕,模糊退化数字图形的复原处理完毕,对于存在运动或离焦模糊、拍摄条件恶劣所造成的图像模糊、分辨率低下所造成的图像模糊均可消除,最后获取的图像为原始模糊图像科学、合理的复原图像,其显示的细节内容可作为证据使用。 g). After the graphics processing is completed, the restoration of the blurred and degraded digital graphics is completed. The image blur caused by motion or defocus blur, poor shooting conditions, and image blur caused by low resolution can be eliminated. The finally acquired image is The original blurred image is scientifically and reasonably restored, and the details displayed can be used as evidence.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510037693.6A CN104616257A (en) | 2015-01-26 | 2015-01-26 | Recovery evidence obtaining method for blurred degraded digital images in administration of justice |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510037693.6A CN104616257A (en) | 2015-01-26 | 2015-01-26 | Recovery evidence obtaining method for blurred degraded digital images in administration of justice |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104616257A true CN104616257A (en) | 2015-05-13 |
Family
ID=53150690
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510037693.6A Pending CN104616257A (en) | 2015-01-26 | 2015-01-26 | Recovery evidence obtaining method for blurred degraded digital images in administration of justice |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104616257A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105913392A (en) * | 2016-04-08 | 2016-08-31 | 西安电子科技大学昆山创新研究院 | Degraded image overall quality improving method in complex environment |
CN106097267A (en) * | 2016-06-08 | 2016-11-09 | 浙江传媒学院 | A kind of image deblurring method based on Fourier transformation |
CN108961186A (en) * | 2018-06-29 | 2018-12-07 | 赵岩 | A kind of old film reparation recasting method based on deep learning |
CN110264415A (en) * | 2019-05-24 | 2019-09-20 | 北京爱诺斯科技有限公司 | It is a kind of to eliminate the fuzzy image processing method of shake |
CN112652000A (en) * | 2020-12-30 | 2021-04-13 | 南京航空航天大学 | Method for judging small-scale motion direction of image |
CN112700386A (en) * | 2020-12-30 | 2021-04-23 | 江苏奥格视特信息科技有限公司 | Fuzzy image ultrahigh-definition transformation method and system based on artificial intelligence |
CN113014822A (en) * | 2021-03-24 | 2021-06-22 | 深圳市蔚来芯科技有限公司 | Image enhancement processing system and method based on camera image processing chip |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101079149A (en) * | 2006-09-08 | 2007-11-28 | 浙江师范大学 | Noise-possessing movement fuzzy image restoration method based on radial basis nerve network |
US20080232707A1 (en) * | 2007-03-23 | 2008-09-25 | Industrial Technology Research Institute | Motion blurred image restoring method |
CN101441765A (en) * | 2008-11-19 | 2009-05-27 | 西安电子科技大学 | Self-adapting regular super resolution image reconstruction method for maintaining edge clear |
CN101968881A (en) * | 2010-10-27 | 2011-02-09 | 东南大学 | Motion blurring and defocusing composite blurring image restoration method |
CN102170526A (en) * | 2011-03-22 | 2011-08-31 | 公安部第三研究所 | Method for calculation of defocus fuzzy core and sharp processing of defocus fuzzy image of defocus fuzzy core |
CN102236887A (en) * | 2011-03-11 | 2011-11-09 | 贵州大学 | Motion-blurred image restoration method based on rotary difference and weighted total variation |
-
2015
- 2015-01-26 CN CN201510037693.6A patent/CN104616257A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101079149A (en) * | 2006-09-08 | 2007-11-28 | 浙江师范大学 | Noise-possessing movement fuzzy image restoration method based on radial basis nerve network |
US20080232707A1 (en) * | 2007-03-23 | 2008-09-25 | Industrial Technology Research Institute | Motion blurred image restoring method |
CN101441765A (en) * | 2008-11-19 | 2009-05-27 | 西安电子科技大学 | Self-adapting regular super resolution image reconstruction method for maintaining edge clear |
CN101968881A (en) * | 2010-10-27 | 2011-02-09 | 东南大学 | Motion blurring and defocusing composite blurring image restoration method |
CN102236887A (en) * | 2011-03-11 | 2011-11-09 | 贵州大学 | Motion-blurred image restoration method based on rotary difference and weighted total variation |
CN102170526A (en) * | 2011-03-22 | 2011-08-31 | 公安部第三研究所 | Method for calculation of defocus fuzzy core and sharp processing of defocus fuzzy image of defocus fuzzy core |
Non-Patent Citations (4)
Title |
---|
方永选等: "《模糊图像处理技术在刑事侦查中的应用》", 《中国公共安全 学术版》 * |
杨洪臣等: "《模糊图像处理技术概述》", 《警察技术》 * |
武彬: "《一种有效的图像复原方法》", 《图像分析》 * |
计岑: "《一种低分辨率散焦模糊图像的超分辨率重建复原方法》", 《广播电视信息》 * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105913392A (en) * | 2016-04-08 | 2016-08-31 | 西安电子科技大学昆山创新研究院 | Degraded image overall quality improving method in complex environment |
CN106097267A (en) * | 2016-06-08 | 2016-11-09 | 浙江传媒学院 | A kind of image deblurring method based on Fourier transformation |
CN106097267B (en) * | 2016-06-08 | 2019-04-02 | 浙江传媒学院 | A kind of image deblurring method based on Fourier transformation |
CN108961186A (en) * | 2018-06-29 | 2018-12-07 | 赵岩 | A kind of old film reparation recasting method based on deep learning |
CN108961186B (en) * | 2018-06-29 | 2022-02-15 | 福建帝视信息科技有限公司 | Old film repairing and reproducing method based on deep learning |
CN110264415A (en) * | 2019-05-24 | 2019-09-20 | 北京爱诺斯科技有限公司 | It is a kind of to eliminate the fuzzy image processing method of shake |
CN112652000A (en) * | 2020-12-30 | 2021-04-13 | 南京航空航天大学 | Method for judging small-scale motion direction of image |
CN112700386A (en) * | 2020-12-30 | 2021-04-23 | 江苏奥格视特信息科技有限公司 | Fuzzy image ultrahigh-definition transformation method and system based on artificial intelligence |
CN112652000B (en) * | 2020-12-30 | 2024-05-24 | 南京航空航天大学 | Method for judging small-scale movement direction of image |
CN113014822A (en) * | 2021-03-24 | 2021-06-22 | 深圳市蔚来芯科技有限公司 | Image enhancement processing system and method based on camera image processing chip |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104616257A (en) | Recovery evidence obtaining method for blurred degraded digital images in administration of justice | |
JP5342068B2 (en) | Multiple frame approach and image upscaling system | |
CN108564597B (en) | Video foreground object extraction method fusing Gaussian mixture model and H-S optical flow method | |
Chen et al. | Hazy image restoration by bi-histogram modification | |
CN102708550B (en) | Blind deblurring algorithm based on natural image statistic property | |
CN104103050B (en) | A kind of real video restored method based on local policy | |
CN111275626A (en) | Video deblurring method, device and equipment based on ambiguity | |
Ramya et al. | Restoration of blurred images using Blind Deconvolution Algorithm | |
CN104282003B (en) | Digital blurred image blind restoration method based on gradient screening | |
CN102236887A (en) | Motion-blurred image restoration method based on rotary difference and weighted total variation | |
CN107292830A (en) | Low-light (level) image enhaucament and evaluation method | |
CN107146209A (en) | A Single Image Dehazing Method Based on Gradient Domain | |
CN110111267A (en) | A kind of single image based on optimization algorithm combination residual error network removes rain method | |
US20080025628A1 (en) | Enhancement of Blurred Image Portions | |
CN106558021B (en) | Video enhancement method based on super-resolution technology | |
CN105427266A (en) | Sand and dust image clearing method according to information loss restraint | |
CN103595933B (en) | A kind of noise-reduction method of image | |
CN112233032B (en) | A method for removing ghosts in high dynamic range images | |
CN111091500B (en) | Point light source multi-scattering model image restoration method | |
CN107292839B (en) | TDI flutter image restoration method based on image block self-adaptive adjustment | |
Abinaya et al. | Rectify the blurred license plate image from fast moving vehicles using morphological process | |
Kakar et al. | Detecting digital image forgeries through inconsistent motion blur | |
Chawdhary et al. | No reference evaluation in super-resolution for CCTV footage | |
Naseeba et al. | KP Visibility Restoration of Single Hazy Images Captured in Real-World Weather Conditions | |
Mane et al. | Design and implementation of median filter for image denoising |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20150513 |