CN104616059A - DOA (Direction of Arrival) estimation method based on quantum-behaved particle swarm - Google Patents

DOA (Direction of Arrival) estimation method based on quantum-behaved particle swarm Download PDF

Info

Publication number
CN104616059A
CN104616059A CN201510048332.1A CN201510048332A CN104616059A CN 104616059 A CN104616059 A CN 104616059A CN 201510048332 A CN201510048332 A CN 201510048332A CN 104616059 A CN104616059 A CN 104616059A
Authority
CN
China
Prior art keywords
mrow
msup
theta
particle
estimation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510048332.1A
Other languages
Chinese (zh)
Other versions
CN104616059B (en
Inventor
叶倩
楼旭阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuxi Institute of Technology
Original Assignee
Wuxi Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuxi Institute of Technology filed Critical Wuxi Institute of Technology
Priority to CN201510048332.1A priority Critical patent/CN104616059B/en
Publication of CN104616059A publication Critical patent/CN104616059A/en
Application granted granted Critical
Publication of CN104616059B publication Critical patent/CN104616059B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

The invention discloses a DOA (Direction of Arrival) estimation method based on a quantum-behaved particle swarm; the method comprises the steps: establishing an array signal model and setting relevant parameters of an array; establishing maximum likelihood estimation according to the array signal data; then performing initialization, calculating a fitness function for each particle, updating the speed and position of the quantum-behaved particle swarm; judging whether the maximum iteration times is obtained; and finally, outputting the vector estimated value of information message incidence angles and calculating the mean square error of incidence direction angles. The quantum behaviors of the particles are utilized in the optimization process; the DOA estimation method overcomes the disadvantage that the standard particle swarm algorithm is easy to fall into the partial minimum value; the standard particle swarm algorithm is high in estimation precision and has better effect for solving the DOA estimation problem; and a new solving idea is provided to the high-resolution DOA estimation.

Description

Direction-of-arrival estimation method based on quantum particle swarm
Technical Field
The invention relates to the technical field of array signal processing and intelligence, in particular to a direction of arrival estimation technology based on quantum particle swarm.
Background
At present, the estimation of the direction of arrival based on an array mainly comprises a traditional method, a subspace method, a maximum likelihood method and a MUSIC algorithm. The traditional method needs more array elements to ensure high resolution, thereby limiting the application of the method; the subspace method fully utilizes the spatial structure of the received data, decomposes the data into a signal subspace and a noise subspace, and has the performance superior to that of the traditional method; the maximum likelihood method has better robustness, and can obtain better performance even when the signal-to-noise ratio is lower, but the maximum likelihood method needs huge calculation amount, so that the application of the maximum likelihood method is limited in engineering; the MUSIC algorithm presents difficulties with multi-dimensional spectral peak searching.
The Quantum Particle Swarm Optimization (QPSO) is a new emerging group intelligent computing method in recent years, combines the basic theory of quantum physics, applies the quantum theory to the standard particle swarm optimization algorithm, and provides a new particle swarm optimization algorithm model from the perspective of quantum mechanical wave function, which is a new improvement on the standard PSO algorithm, has the particle search performance far superior to that of the basic PSO algorithm, and has been applied in the fields of function optimization, neural network training and the like.
In view of the above-mentioned shortcomings or shortcomings of the conventional array-based direction of arrival estimation techniques, the applicant of the present invention has been engaged in the technical accumulation of the present industry for many years, and actively studies how to apply the quantum-behaved particle swarm algorithm to the estimation of the direction of arrival, so as to improve the shortcomings of the prior art, and finally develops the present invention under careful consideration of various conditions.
Disclosure of Invention
The invention aims to solve the problem of nonlinear complex optimization in the existing direction-of-arrival estimation algorithm, and provides a direction-of-arrival estimation method based on quantum particle swarm.
In order to achieve the purposes and effects, the invention adopts the following technical contents:
a method for estimating the direction of arrival based on quantum particle swarm comprises the following steps:
(1) determining array element numberNumber of plane wave signals P, central wavelength of signal lambda, number of snapshotsPerforming feature decomposition on the maximum likelihood estimation of the data covariance matrix by combining the received signals to obtain a signal subspace S and a noise subspace G at the distance d between adjacent array elements;
(2) initializing; determining the population size M of the particle swarm, wherein the initial position vector of the particle is ziThe velocity vector corresponding to the particle is viI 1,2, …, M, maximum speed VmaxThe number of iterations K is 1, and the maximum number of iterations KmaxLocal optimum position of each particleAnd global optimal position of the whole population
(3) Calculating a fitness function of each particle; positioning M particles at ziM is substituted as the estimated value of the direction of arrival angle θ, i is 1,2, …, and the spectrum estimation fitness function of the MUSIC algorithm is substituted
<math> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <msup> <mi>a</mi> <mi>H</mi> </msup> <mrow> <mo>(</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> <mi>a</mi> <mrow> <mo>(</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> </mrow> <mrow> <msup> <mi>a</mi> <mi>H</mi> </msup> <mrow> <mo>(</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>I</mi> <mo>-</mo> <msup> <mi>SS</mi> <mi>H</mi> </msup> <mo>)</mo> </mrow> <mi>a</mi> <mrow> <mo>(</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </math>
Obtaining an individual fitness function value of each particle;
wherein, I is an identity matrix, <math> <mrow> <mi>a</mi> <mrow> <mo>(</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mrow> <mo>[</mo> <mn>1</mn> <mo>,</mo> <msup> <mi>e</mi> <mrow> <mi>j&phi;</mi> <mrow> <mo>(</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> </mrow> </msup> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msup> <mi>e</mi> <mrow> <mi>j</mi> <mrow> <mo>(</mo> <mover> <mi>N</mi> <mo>&OverBar;</mo> </mover> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>&phi;</mi> <mrow> <mo>(</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> </mrow> </msup> <mo>]</mo> </mrow> <mi>T</mi> </msup> <mo>,</mo> <mi>&phi;</mi> <mrow> <mo>(</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <mi>&pi;</mi> </mrow> <mi>&lambda;</mi> </mfrac> <mi>d </mi> <mi>sin</mi> <mi>&theta;</mi> <mo>;</mo> </mrow> </math>
(4) updating the group velocity and position of the quantum particles; on the (k + 1) th iteration, the particle updates the velocity and position according to the following formula:
v i k + 1 = 2 r 1 p i k + 2.1 r 2 p g k 2 r 1 + 2.1 r 2 ;
wherein: i is 1,2, …, M, α is contraction expansion coefficient; r is1,r2,r3,r4Take [0,1]Are uniformly distributed with the random numbers in between,for the best position the ith particle experiences, the best position to experience for all particle populations;
(5) if the maximum iteration number K is equal to KmaxIf the information source is the optimal arrival direction angle estimation value, the optimization is finished, the obtained first P global optimal position vectors are the optimal arrival direction angle estimation value, namely the information source incidence angle vector estimation value is output, and then the mean square error of the incidence direction angle is calculated; otherwise, k ═ k +1, go to step 3.
The invention has at least the following beneficial effects:
compared with the standard particle swarm algorithm, the particle swarm optimization method has more states, the particles do not have a certain motion track and can appear at any position in a search space with a certain determined probability, and the position can be far away from a local attraction point and even better than the global optimal position in the current population, so that the diversity of the particles is greatly increased, the premature convergence of the algorithm is avoided, the optimization search efficiency and performance are greatly improved, and the global search capability of the algorithm is enhanced. Therefore, the invention can better realize the estimation of the direction of arrival.
Other objects and advantages of the present invention will be further understood from the technical disclosure of the present invention. In order to make the aforementioned and other objects, features and advantages of the present invention comprehensible, embodiments accompanied with figures are described in detail below.
Drawings
FIG. 1 is a flow chart of a direction of arrival estimation method of the present invention.
FIG. 2 is a diagram of the mean square error of the estimation of the direction of arrival angle versus the signal-to-noise ratio in an embodiment of the present invention.
Detailed Description
The following description will be provided to enable one of ordinary skill in the art to make and use the present invention as provided in the following detailed description. It should be noted that modifications and variations can be made by those skilled in the art without departing from the spirit of the present invention without departing from the scope of the present invention.
Consider oneThe linear uniform array of array elements has P narrow-band plane wave signals in space, and the baseband envelope of the received signal of the ith array element can be expressed as
<math> <mrow> <msub> <mi>x</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>P</mi> </munderover> <msub> <mi>s</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mi>exp</mi> <mo>[</mo> <mi>j</mi> <mfrac> <mrow> <mn>2</mn> <mi>&pi;</mi> </mrow> <mi>&lambda;</mi> </mfrac> <mi>d</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>sin</mi> <msub> <mi>&theta;</mi> <mi>k</mi> </msub> <mo>]</mo> <mo>+</mo> <msub> <mi>w</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </math>
Wherein,λ is the central wavelength of the signal, d is the distance between adjacent array elements, and θkIs the angle between the kth signal source direction and the array normal (i.e. the direction of arrival angle), skIs the baseband envelope of the kth signal source, wi(t) is the additive received noise on the ith array element.
Expression (1) is expressed as a vector as follows:
X(t)=A(θ)s(t)+w(t) (2)
wherein, <math> <mrow> <mi>X</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mrow> <mo>[</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msub> <mi>x</mi> <mover> <mi>N</mi> <mo>&OverBar;</mo> </mover> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>]</mo> </mrow> <mi>T</mi> </msup> <mo>,</mo> </mrow> </math> s(t)=[s1(t),…,sP(t)]T <math> <mrow> <mi>w</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mrow> <mo>[</mo> <msub> <mi>w</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msub> <mi>w</mi> <mover> <mi>N</mi> <mo>&OverBar;</mo> </mover> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>]</mo> </mrow> <mi>T</mi> </msup> <mo>,</mo> </mrow> </math> t denotes transposition. A (theta) isA matrix of order with column vectors of
<math> <mrow> <mi>a</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mrow> <mo>[</mo> <mn>1</mn> <mo>,</mo> <msup> <mi>e</mi> <mrow> <mi>j&phi;</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> </mrow> </msup> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msup> <mi>e</mi> <mrow> <mi>j</mi> <mrow> <mo>(</mo> <mover> <mi>N</mi> <mo>&OverBar;</mo> </mover> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>&phi;</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> </mrow> </msup> <mo>]</mo> </mrow> <mi>T</mi> </msup> <mo>,</mo> <mi>k</mi> <mo>=</mo> <mn>1,2</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mi>P</mi> <mo>,</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow> </math>
Wherein, <math> <mrow> <mi>&phi;</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <mi>&pi;</mi> </mrow> <mi>&lambda;</mi> </mfrac> <mi>d</mi> <mi>sin</mi> <msub> <mi>&theta;</mi> <mi>k</mi> </msub> <mo>,</mo> <mi>k</mi> <mo>=</mo> <mn>1,2</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mi>P</mi> <mo>.</mo> </mrow> </math>
the maximum likelihood estimation from the covariance matrix is:
<math> <mrow> <mi>R</mi> <mo>=</mo> <mfrac> <mn>1</mn> <mover> <mi>M</mi> <mo>&OverBar;</mo> </mover> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>m</mi> <mo>=</mo> <mn>1</mn> </mrow> <mover> <mi>M</mi> <mo>&OverBar;</mo> </mover> </munderover> <mi>X</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>m</mi> </msub> <mo>)</mo> </mrow> <msup> <mi>X</mi> <mi>H</mi> </msup> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>m</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein,is the snapshot number, and H is the complex conjugate transpose. The characteristic decomposition of R is as follows:
R=UΣUH=SΣSSH+GΣNGH (5)
wherein U ═ S | G]S is a subspace spanned by the feature vectors corresponding to the large feature values, namely a signal subspace; g is a subspace spanned by the feature vectors corresponding to the small feature values, i.e. the noise subspace. Due to the presence of noise, the steering vectors of the signal subspace and the noise subspace are not completely orthogonal. Thus, the direction of arrival is achieved with a minimum optimization search:according to the nature SSH+GGHIn the actual optimization algorithm, the spectral estimation fitness function of the MUSIC algorithm is calculated as I
<math> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <msup> <mi>a</mi> <mi>H</mi> </msup> <mrow> <mo>(</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> <mi>a</mi> <mrow> <mo>(</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> </mrow> <mrow> <msup> <mi>a</mi> <mi>H</mi> </msup> <mrow> <mo>(</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>I</mi> <mo>-</mo> <msup> <mi>SS</mi> <mi>H</mi> </msup> <mo>)</mo> </mrow> <mi>a</mi> <mrow> <mo>(</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow> </math>
Wherein I is an identity matrix. The angle theta corresponding to the minimum value of f (theta) is the estimated direction of arrival angle.
In one embodiment, consider oneLinear uniform array of array elements, where the distance d between adjacent array elements is 1, there are 1 narrow-band plane wave signals in space, the central wavelength of the signal is 2, and its amplitude is 1The angular frequency of the signal is 1.0 and the initial phase of the signal is pi/3, the actual direction of arrival angles of the signal with respect to the array are pi/4, respectively. And performing characteristic decomposition on the data covariance matrix by using the baseband envelope of the received signal to obtain a signal subspace S and a noise subspace G.
The working flow of the method of the invention is shown in fig. 1, and the specific implementation can be divided into the following steps:
step 1:setting a fast tempoAccording to given array element numberThe number P of plane wave signals, the central wavelength lambda of the signals, the distance d between adjacent array elements and the maximum likelihood estimation of the data covariance matrix are combined with the received signals to carry out feature decomposition to obtain a signal subspace S and a noise subspace G.
Step 2: and (5) initializing. Setting the population size M of the particle swarm to be 20, the dimension size D to be 1, and the initial position vector of the particle to be zi∈[0,π/2]The velocity vector corresponding to the particle is viE (0,0.01), i ═ 1,2, …, M, maximum velocity Vmax0.01, 1, and K, the maximum number of iterationsmaxDetermining the local optimum position of each particle 80And global optimal position of the whole population
And step 3: a fitness function for each particle is calculated. Positioning M particles at zi(i ═ 1,2, …, M) is substituted into (6) as the estimated value of the direction of arrival angle θ, to obtain a value of fitness function for each particle;
<math> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <msup> <mi>a</mi> <mi>H</mi> </msup> <mrow> <mo>(</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> <mi>a</mi> <mrow> <mo>(</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> </mrow> <mrow> <msup> <mi>a</mi> <mi>H</mi> </msup> <mrow> <mo>(</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>I</mi> <mo>-</mo> <msup> <mi>SS</mi> <mi>H</mi> </msup> <mo>)</mo> </mrow> <mi>a</mi> <mrow> <mo>(</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein, I is an identity matrix, <math> <mrow> <mi>a</mi> <mrow> <mo>(</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mrow> <mo>[</mo> <mn>1</mn> <mo>,</mo> <msup> <mi>e</mi> <mrow> <mi>j&phi;</mi> <mrow> <mo>(</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> </mrow> </msup> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msup> <mi>e</mi> <mrow> <mi>j</mi> <mrow> <mo>(</mo> <mover> <mi>N</mi> <mo>&OverBar;</mo> </mover> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>&phi;</mi> <mrow> <mo>(</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> </mrow> </msup> <mo>]</mo> </mrow> <mi>T</mi> </msup> <mo>,</mo> <mi>&phi;</mi> <mrow> <mo>(</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <mi>&pi;</mi> </mrow> <mi>&lambda;</mi> </mfrac> <mi>d</mi> <mi>sin</mi> <mi>&theta;</mi> <mo>.</mo> </mrow> </math>
and 4, step 4: the quantum particle group velocity and position are updated. On the (k + 1) th iteration, the particle updates the velocity and position according to the following formula:
v i k + 1 = 2 r 1 p i k + 2.1 r 2 p g k 2 r 1 + 2.1 r 2
wherein: 1,2, …, M, M is the population scale, and is generally 20-40; alpha is the coefficient of contraction and expansion,r1,r2,r3,r4take [0,1]Are uniformly distributed with the random numbers in between,for the best position (individual extremum) experienced by the ith particle, the best position (global extremum) experienced by all particle populations.
And 5: if the maximum number of iterations is reached (K ═ K)max) If so, the optimization is finished, and the obtained first P global optimal position vectors are the optimal arrival direction angle estimation values, namely, the information source incident angle vector estimation values are output, and then the mean square error of the incident direction angles is calculated; otherwise, k: ═ k +1, go to step 3.
Fig. 2 shows a diagram of the mean square error of the estimation of the direction of arrival angle and the signal-to-noise ratio in the embodiment of the present invention. Therefore, the accuracy of the estimation of the direction of arrival by using the scheme of the invention is high.
In conclusion, the quantum behavior of the particles is utilized in the optimization process, the defect that the standard particle swarm algorithm is easy to fall into the local minimum value is overcome, the estimation precision is high, and a good effect is achieved for solving the estimation problem of the direction of arrival. The high-resolution direction-of-arrival estimation is always a bottleneck for improving the performance of the communication system, and the invention provides a new solution for obtaining the high-resolution direction-of-arrival estimation.
What has been described above is only a preferred embodiment of the present invention, and the present invention is not limited to the above examples. It is to be understood that other modifications and variations directly derivable or suggested by those skilled in the art without departing from the spirit and concept of the present invention are to be considered as included within the scope of the present invention.

Claims (1)

1. A method for estimating a direction of arrival based on a quantum particle swarm is characterized by comprising the following steps:
(1) determining array element numberNumber of plane wave signals P, central wavelength of signal lambda, number of snapshotsSpacing d between adjacent array elements, combined with reception informationPerforming characteristic decomposition on the maximum likelihood estimation of the signal pair data covariance matrix to obtain a signal subspace S and a noise subspace G;
(2) initializing; determining the population size M of the particle swarm, wherein the initial position vector of the particle is ziThe velocity vector corresponding to the particle is viI 1,2, …, M, maximum speed VmaxThe number of iterations K is 1, and the maximum number of iterations KmaxLocal optimum position of each particleAnd global optimal position of the whole population
(3) Calculating a fitness function of each particle; positioning M particles at ziM is substituted as the estimated value of the direction of arrival angle θ, i is 1,2, …, and the spectrum estimation fitness function of the MUSIC algorithm is substituted
<math> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <msup> <mi>a</mi> <mi>H</mi> </msup> <mrow> <mo>(</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> <mi>a</mi> <mrow> <mo>(</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> </mrow> <mrow> <msup> <mi>a</mi> <mi>H</mi> </msup> <mrow> <mo>(</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>I</mi> <mo>-</mo> <msup> <mi>SS</mi> <mi>H</mi> </msup> <mo>)</mo> </mrow> <mi>a</mi> <mrow> <mo>(</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </math>
Obtaining an individual fitness function value of each particle;
wherein, I is an identity matrix, <math> <mrow> <mi>a</mi> <mrow> <mo>(</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mrow> <mo>[</mo> <mn>1</mn> <mo>,</mo> <msup> <mi>e</mi> <mrow> <mi>j&phi;</mi> <mrow> <mo>(</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> </mrow> </msup> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msup> <mi>e</mi> <mrow> <mi>j</mi> <mrow> <mo>(</mo> <mover> <mi>N</mi> <mo>&OverBar;</mo> </mover> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>&phi;</mi> <mrow> <mo>(</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> </mrow> </msup> <mo>]</mo> </mrow> <mi>T</mi> </msup> <mo>,</mo> <mi>&phi;</mi> <mrow> <mo>(</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <mi>&pi;</mi> </mrow> <mi>&lambda;</mi> </mfrac> <mi>d</mi> <mi>sin</mi> <mi>&theta;</mi> <mo>;</mo> </mrow> </math>
(4) updating the group velocity and position of the quantum particles; on the (k + 1) th iteration, the particle updates the velocity and position according to the following formula:
v i k + 1 = 2 r 1 p i k + 2.1 r 2 p g k 2 r 1 + 2.1 r 2 ;
wherein: i is 1,2, …, M, α is contraction expansion coefficient; r is1,r2,r3,r4Take [0,1]Are uniformly distributed with the random numbers in between,for the best position the ith particle experiences, the best position to experience for all particle populations;
(5) if the maximum iteration number K is equal to KmaxIf the information source is the optimal arrival direction angle estimation value, the optimization is finished, the obtained first P global optimal position vectors are the optimal arrival direction angle estimation value, namely the information source incidence angle vector estimation value is output, and then the mean square error of the incidence direction angle is calculated; otherwise, k ═ k +1, go to step 3.
CN201510048332.1A 2015-01-29 2015-01-29 A kind of Wave arrival direction estimating method based on quantum particle swarm Expired - Fee Related CN104616059B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510048332.1A CN104616059B (en) 2015-01-29 2015-01-29 A kind of Wave arrival direction estimating method based on quantum particle swarm

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510048332.1A CN104616059B (en) 2015-01-29 2015-01-29 A kind of Wave arrival direction estimating method based on quantum particle swarm

Publications (2)

Publication Number Publication Date
CN104616059A true CN104616059A (en) 2015-05-13
CN104616059B CN104616059B (en) 2017-05-31

Family

ID=53150495

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510048332.1A Expired - Fee Related CN104616059B (en) 2015-01-29 2015-01-29 A kind of Wave arrival direction estimating method based on quantum particle swarm

Country Status (1)

Country Link
CN (1) CN104616059B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108387865A (en) * 2018-03-07 2018-08-10 河南理工大学 A kind of Wave arrival direction estimating method based on vector error model
CN110046326A (en) * 2019-04-28 2019-07-23 哈尔滨工程大学 A kind of time-frequency DOA estimation method
CN111458676A (en) * 2020-03-05 2020-07-28 北京邮电大学 Direction-of-arrival estimation method and device based on cascaded neural network
CN112363106A (en) * 2020-10-28 2021-02-12 西安电子科技大学 Signal subspace direction of arrival detection method and system based on quantum particle swarm
CN113050037A (en) * 2021-03-23 2021-06-29 上海交通大学 Method and system for positioning abnormal sound source of transformer substation equipment
CN113759303A (en) * 2021-08-04 2021-12-07 中山大学 Non-grid DOA (angle of arrival) estimation method based on particle swarm optimization

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107884743A (en) * 2017-11-03 2018-04-06 中国人民解放军陆军炮兵防空兵学院 Suitable for the direction of arrival intelligence estimation method of arbitrary structures sound array

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1819682A (en) * 2006-02-27 2006-08-16 宇龙计算机通信科技(深圳)有限公司 Mobile communication terminal synergistic method and interface system thereof
CN104155629A (en) * 2014-08-07 2014-11-19 哈尔滨工程大学 Method for estimating signal DOA (direction of arrival) under fewer snapshots and impulsive noise background

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1819682A (en) * 2006-02-27 2006-08-16 宇龙计算机通信科技(深圳)有限公司 Mobile communication terminal synergistic method and interface system thereof
CN104155629A (en) * 2014-08-07 2014-11-19 哈尔滨工程大学 Method for estimating signal DOA (direction of arrival) under fewer snapshots and impulsive noise background

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
张志成等: "《用加权空间拟合和量子粒子群算法联合估计多普勒频率和波达方向》", 《光学精密工程》 *
张朝柱等: "《一种改进型粒子群优化波达方向估计算法》", 《信号处理》 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108387865A (en) * 2018-03-07 2018-08-10 河南理工大学 A kind of Wave arrival direction estimating method based on vector error model
CN110046326A (en) * 2019-04-28 2019-07-23 哈尔滨工程大学 A kind of time-frequency DOA estimation method
CN110046326B (en) * 2019-04-28 2022-09-27 哈尔滨工程大学 Time-frequency DOA estimation method
CN111458676A (en) * 2020-03-05 2020-07-28 北京邮电大学 Direction-of-arrival estimation method and device based on cascaded neural network
CN111458676B (en) * 2020-03-05 2022-03-29 北京邮电大学 Direction-of-arrival estimation method and device based on cascaded neural network
CN112363106A (en) * 2020-10-28 2021-02-12 西安电子科技大学 Signal subspace direction of arrival detection method and system based on quantum particle swarm
CN112363106B (en) * 2020-10-28 2022-11-01 西安电子科技大学 Signal subspace direction of arrival detection method and system based on quantum particle swarm
CN113050037A (en) * 2021-03-23 2021-06-29 上海交通大学 Method and system for positioning abnormal sound source of transformer substation equipment
CN113050037B (en) * 2021-03-23 2022-10-04 上海交通大学 Transformer substation equipment abnormal sound source positioning method and system
CN113759303A (en) * 2021-08-04 2021-12-07 中山大学 Non-grid DOA (angle of arrival) estimation method based on particle swarm optimization
CN113759303B (en) * 2021-08-04 2024-05-24 中山大学 Gridless angle of arrival estimation method based on particle swarm optimization

Also Published As

Publication number Publication date
CN104616059B (en) 2017-05-31

Similar Documents

Publication Publication Date Title
CN104616059B (en) A kind of Wave arrival direction estimating method based on quantum particle swarm
CN109655799B (en) IAA-based covariance matrix vectorization non-uniform sparse array direction finding method
CN106980106B (en) Sparse DOA estimation method under array element mutual coupling
CN109490819B (en) Sparse Bayesian learning-based method for estimating direction of arrival of wave in a lattice
CN103353596B (en) Wave beam space domain meter wave radar height measurement method based on compressed sensing
CN104375115B (en) Polarization sensitive array based non-circular signal DOA and polarization parameter joint estimation method
CN111337893B (en) Off-grid DOA estimation method based on real-value sparse Bayesian learning
CN107092004B (en) Estimation method of direction of arrival of co-prime array based on signal subspace rotation invariance
CN104991236B (en) A kind of single base MIMO radar not rounded signal coherence source Wave arrival direction estimating method
CN104515969B (en) Hexagonal array-based coherent signal two-dimensional DOA (Direction of Arrival) estimation method
CN106646376A (en) P-norm noise source positioning identification method based on weight correction parameter
CN106156451A (en) A kind of based on the Mutual coupling technology improving quantum particle swarm
CN104035069B (en) Arrowband based on partial correction linear array symmetrically and evenly near-field signals source location method
CN109239646B (en) Two-dimensional dynamic direction finding method for continuous quantum water evaporation in impact noise environment
CN111337873A (en) DOA estimation method based on sparse array
CN103344939B (en) A kind of estimating two-dimensional direction-of-arrival method of incoherent and relevant mixed signal
CN104020440B (en) Interfere the two-dimentional direction of arrival estimation method of formula linear array based on L-type
CN104155629B (en) Fewer snapshots method for estimating signal wave direction under a kind of impact noise background
CN113075610B (en) DOA estimation method for differential array interpolation based on co-prime polarization array
CN109507636B (en) Direction-of-arrival estimation method based on virtual domain signal reconstruction
CN110895325B (en) Arrival angle estimation method based on enhanced quaternion multiple signal classification
CN109738852B (en) Distributed source two-dimensional space spectrum estimation method based on low-rank matrix reconstruction
CN104502885A (en) Characteristic value differential signal source number estimation method based on transformational matrix
CN104392114A (en) High-resolution target direction estimation method based on space-time data
CN110927663A (en) Three-dimensional compressed sensing dimension reduction method for near-field sound source parameter estimation

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170531

CF01 Termination of patent right due to non-payment of annual fee