CN104603086A - 通过与预热气体接触使液体卤素气化 - Google Patents

通过与预热气体接触使液体卤素气化 Download PDF

Info

Publication number
CN104603086A
CN104603086A CN201380012423.9A CN201380012423A CN104603086A CN 104603086 A CN104603086 A CN 104603086A CN 201380012423 A CN201380012423 A CN 201380012423A CN 104603086 A CN104603086 A CN 104603086A
Authority
CN
China
Prior art keywords
liquid
preheating
bromine
elemental halogen
heated air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201380012423.9A
Other languages
English (en)
Inventor
S·A·库鲁克奇
A·穆德雷
Y·刘
J·M·岗道尔夫
J·J·威库里斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marathon GTF Technology Ltd
Original Assignee
Marathon GTF Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marathon GTF Technology Ltd filed Critical Marathon GTF Technology Ltd
Publication of CN104603086A publication Critical patent/CN104603086A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/26Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only halogen atoms as hetero-atoms
    • C07C1/30Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only halogen atoms as hetero-atoms by splitting-off the elements of hydrogen halide from a single molecule
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/09Bromine; Hydrogen bromide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Abstract

本发明提供一种用于气化液体单质卤素的方法。在不存在卤素的情况下将加热气体预热至预热温度,其产生预热的加热气体。预热的加热气体与液体单质卤素的进料直接接触并且将该进料加热至足以将所述进料的至少一部分气化为一定量的单质卤素蒸气的气化温度。产生气体混合物,其包括加热气体和所述量的单质卤素蒸气。

Description

通过与预热气体接触使液体卤素气化
背景技术
本发明一般涉及用于通过饱和将挥发性液体气化为气流的方法和系统,并且更具体地讲,涉及用于将液体卤素如溴饱和为气体如轻质烃气体以形成均相、饱和的气体混合物的方法和系统。
天然气(一种化石燃料)主要由甲烷和其他轻质烷烃构成并且已在世界各地大量发现。当与其他化石燃料比较时,天然气一般为较清洁能源。例如,原油通常含有杂质,例如重金属,这在天然气中一般未发现。通过其他例子,燃烧天然气比燃烧煤产生更少的二氧化碳。然而,挑战与使用天然气替代其他化石燃料相关联。已发现天然气的许多位置远离人口密集地区,并因此不具有用于天然气的重要管道结构和/或市场需求。由于天然气的低密度,其以气态形式向人口更密集地区运输是昂贵的。因此,对天然气可以以其气态形式运输的距离存在实施和经济的限制。
形成液化天然气(常常称为“LNG”)的天然气的深冷液化常常用于在大距离上更经济地运输天然气。然而,该LNG工艺一般昂贵,并且仅在一些国家存在用于处置LNG的有限再气化设施。将天然气转化为较高分子量烃液体(由于其较高密度和价值而能够更经济地运输)可显著为天然气、特别是远离人口密集地区生产的多股天然气扩展市场。虽然已开发了用于将天然气转化为较高分子量烃液体的许多工艺,但由于它们有限的商业可行性,这些工艺尚未获得普遍工业接受性。通常,这些工艺受累于限制其使用的不希望的能量和/或碳效率。
一种用于将天然气转化为较高分子量烃液体的有利的气体-至-液体方法包括以下步骤:(1)将甲烷溴化以形成甲基溴(CH3Br)和溴化氢(HBr)副产物,(2)将甲基溴催化合成或低聚以形成较高分子量烃液体产物,(3)将溴化氢副产物与烃液体产物分离,(4)从溴化氢中再生单质溴(Br2)以再用于步骤(1),和(5)回收烃液体产物。
溴化一般为产生烷基溴的混合物的轻质烃气体与气态溴的气相反应。在例如上述的气体-至-液体转化方法中,优选在溴化反应器中保持轻质烃气体的过量以增加溴转化率并且还改善溴化反应至烷基单溴化物的选择性。在任何情况下,溴化反应的溴化氢副产物通常在溴再生步骤中通过溴化氢副产物的氧化转化为液体溴。如此,在可作为再循环料流进料回到溴化反应器之前,液体溴需要气化。
液体溴的气化可在常规壳管式热交换器中例如釜式再沸器、热虹吸管或降膜蒸发器中实现。在壳管式热交换器中,经过在第一流动路径中通过热交换器的管来输送并同时在围绕所述管的第二流动路径中经过热交换器的壳将传热介质(如热蒸汽)循环,将液体溴气化。在流体隔离中通过形成固体不可渗透传热板的管壁将第二流动路径与第一流动路径分离。通过经由管壁进行的热传导,经过壳循环的传热介质间接加热流过管的液体溴。特别地,传热介质接触管壁的一侧,从而加热管壁。热管壁的相对侧接触液体溴,从而加热和气化该液体溴。
用于本应用的壳管式热交换器必须由耐腐蚀材料构造,因为溴为侵蚀性腐蚀性介质并且其高腐蚀性在水的存在下还将进一步增加。用于气化溴的壳管式热交换器常常采用由玻璃构造的壳和由极其耐溴和水的组合的腐蚀的高成本合金构造的管。例如,在通常情况下钽管是必需的,其中热交换器中的溴含有大于30ppm的水。相反,如果溴含有小于30ppm的水,则可使用Hastelloy和Monel400管,并且如果溴基本上干燥(即含有小于1ppm的水),则可使用Inconel600管。在任何情况下,玻璃和钽用作构造的材料不合意地对热交换器造成上端尺寸限制,使得这种热交换器一般仅适用于相对小的应用。此外,用于本构造的热交换器的操作压力不合意地受限于约10barg。
从上述内容容易明白,在上述类型的天然气转化方法中,溴化为重要步骤。更一般而言,在由轻质烃气体原料(包括低级烷烃和烯烃如甲烷、天然气和液化石油气(“LPG”))制造许多有价值的最终产物中,卤化(包括溴化)为重要步骤。由这种原料制造的示例性最终产物包括运输燃料、化学物质和醇。如此,需要用于天然气转化方法以及更一般而言在最终产物制造方法中的气化包括溴的液体卤素的改善方法。具体来说,需要这样一种方法,其在设计上相对简单并且减少或消除在气化系统的操作单元中对昂贵冶金术的需要。还需要适用于大型工业应用的这种方法。
本发明的简要说明
本发明为一种用于气化液体单质卤素的方法。根据本气化方法,在不存在卤素的情况下并且优选还在不水的存在下将加热气体预热至预热温度。产生预热的加热气体,其直接与液体单质卤素的进料接触。预热的加热气体将液体单质卤素的进料加热至足以将该进料的至少一部分气化为一定量的单质卤素蒸气的气化温度。产生气体混合物,其包括加热气体和所述量的单质卤素蒸气。根据优选的实施方案,使气化的单质卤素在气体混合物的加热气体中饱和。
优选的单质卤素为溴并且优选的加热气体包括烃气体。更具体地讲,优选的加热气体为具有主要摩尔分数的甲烷的气体。优选的预热温度小于单质卤素和加热气体的卤化引发温度。替代地,优选的预热温度大于或等于液体单质卤素的沸点。在另一个替代形式中,优选的预热温度在约200℃至约300℃的范围内。在另一个替代形式中,优选的预热温度在约275℃至约300℃的范围内。在任何情况下,当用预热的加热气体加热液体单质卤素时,优选的加热气体基本上不与单质卤素反应。加热气体和单质卤素之间的反应性通过这样的事实而被抑制:因为加热气体提供用于气化该卤素的热,在与液体单质卤素接触时,预热的加热气体的温度迅速下降。
在本发明的本特征的替代性实施方案中,液体单质卤素的进料为第一进料,预热温度为第一预热温度,气化温度为第一气化温度,单质卤素蒸气的量为第一量并且气体混合物为具有第一卤素浓度的第一气体混合物。在该实施方案中,该方法还包括将第一气体混合物预热至第二预热温度,其产生第一预热的气体混合物。液体单质卤素的第二进料直接与第一预热的气体混合物接触。第一预热的气体混合物将液体单质卤素的第二进料加热至足以将液体单质卤素的第二进料的至少一部分气化为第二量的单质卤素蒸气的气化温度。因此,形成第二气体混合物,其包括加热气体和第一及第二量的单质卤素蒸气。第二气体混合物优选具有基本上大于第一卤素浓度的第二卤素浓度并且第一及第二预热温度优选小于或等于约300℃并且更优选小于或等于约200℃。
在本发明的本特征的另一个替代性实施方案中,第一预热和气化步骤构成该方法的第一阶段并且第二预热和气化步骤构成本发明的第二阶段。该方法还包括通过用第二气体混合物和液体单质卤素的第三进料重复预热和气化步骤进行该方法的第三阶段来产生第三气体混合物。
在本发明的本特征的另一个替代性实施方案中,在将液体单质卤素的部分气化为第一量的单质卤素蒸气之后,液体单质卤素的第一进料的液体残余部分剩余。该方法还包括将液体单质卤素的第一进料的液体残余部分与第一量的单质卤素蒸气分离。在一个优选的替代形式中,液体单质卤素的第二进料包括液体单质卤素的第一进料的液体残余部分的至少一部分。
本发明替代性特征为一种用于将气态较低分子量烷烃转化为液体较高分子量烃的方法。在不存在卤素的情况下将加热气体预热至预热温度,产生预热的加热气体。液体单质卤素的进料直接与预热的加热气体接触。预热的加热气体将液体单质卤素的进料加热至足以将液体单质卤素的进料的至少一部分气化为单质卤素蒸气的气化温度。因此,形成气体混合物,其包括加热气体和单质卤素蒸气。使气体混合物反应以形成烷基卤并且使所得烷基卤反应以形成液体较高分子量烃。优选的单质卤素为溴并且优选的烷基卤为烷基单溴化物。优选的加热气体包含新鲜烃气进料和作为气体副产物被回收的再循环气体,所述气体副产物来自用于形成液体较高分子量烃的烷基卤的反应。
本发明替代性特征为一种用于将气态较低分子量烷烃转化为液体较高分子量烃的系统。该系统包含预热热交换器、卤素气化单元、烷烃卤化反应器和烷基卤转化反应器。预热热交换器在不存在卤素的情况下将含有较低分子量烷烃的加热气体预热至预热温度,其产生预热的加热气体。卤素气化单元从热交换器接收液体单质卤素的进料和预热的加热气体。卤素气化单元直接接触其中的液体单质卤素和预热的加热气体以将液体单质卤素加热至足以将液体单质卤素的进料的至少一部分气化为单质卤素蒸气的气化温度。因此,形成气体混合物,其包括加热气体和单质卤素蒸气。烷烃卤化反应器使气体混合物在其中反应以形成烷基卤。烷基卤转化反应器使其中的所得烷基卤反应以形成液体较高分子量烃,其优选为具有高辛烷值的烷基芳族化合物。
将由附图和描述进一步理解本发明。
附图的若干视图的简要说明
附图示出本发明的某些方面,但不应视为通过其本身来限制或限定本发明。
图1为用于进行气体-至-液体转化方法的现有技术系统的程序框图;
图2为并入本发明的液体气化方法和系统的用于进行气体-至-液体转化方法的系统的程序框图;
图3为本发明的液体气化系统的多阶段实施方案的程序框图;
图4为本发明的液体气化系统的单阶段实施方案的程序框图;和
图5为本发明的液体气化系统的替代性单阶段实施方案的程序框图。
本发明的详细说明
本发明一般涉及通过饱和将挥发性液体气化为气流,从而将挥发性液体从液相转变为气相。更具体地讲,在其各种实施方案中,本发明为一种用于通过直接与相对热的预热的气体(一般称为加热气体接触将液体单质卤素气化的方法和系统。下文以举例的方式描述本气化方法和系统,其中液体单质卤素为液体单质溴并且加热气体为轻质烃气体。然而,在本发明的范围之内,可以使用任何数量的不同卤素和加热气体来实施本气化方法和系统。如此,应理解本气化方法和系统并不特定于任何一种液体卤素或任何一种加热气体。
根据本气化方法和系统的第一具体实施方案,相对较冷的液体单质溴与相对较热的预热的轻质烃气体混合,所述轻质烃气体优选为甲烷或通常主要含有甲烷以及一些乙烷和可能的一些更高级烷烃的天然气。将较冷的液体单质溴与较热的预热烃气体混合导致它们之间直接接触和相应的传热。较热的预热的烃气体的显热提供足够能量来部分或全部地克服气化的潜热。较冷的液体单质溴的至少一些并且优选大多数(如果非基本上所有)被气化,产生溴蒸气与烃气体的优选干燥的、均相的气体混合物,其为气化方法和系统的所需输出物(output)。根据本实施方案,优选将足够量的液体单质溴气化以在烃气体中接近或达到溴蒸气的饱和水平,这通过气化方法和系统本身的操作温度和压力来确定。
用于使液体单质溴与热的预热的烃气体混合和直接接触以在烃气体中气化和优选饱和该液体溴的基本上任何方式在本发明的气化方法和系统中均可具有实用性。用于使液体单质溴和热的预热的烃气体直接接触并且气化该液体溴的方式一般称为液体气化单元。在本文中具有实用性的具体示例性液体气化单元包括具有顺流或逆流气体/液体流动的填充塔,其中较冷的液体单质溴和更热的预热的烃气体彼此直接接触以加热和气化该液体单质溴。替代地,液体气化单元可包括:(1)用于保持液体单质溴的主要容器,(2)用于使热的预热的烃气体鼓泡通过液体单质溴的机构,从而使液体单质溴和热的预热的烃气体彼此直接接触以气化溴,和(3)用于捕集主要容器中产生的溴蒸气和烃气体的所得均相气体混合物的顶部空间或次要容器。
在任何情况下,液体气化单元优选不利用常规传热表面,以用定位在传热表面的相对侧上的传热介质如蒸汽等等来间接加热液体单质溴。优选地,液体气化单元也不为了在液体气化单元中直接或间接加热液体单质溴而包括任何有源加热装置如燃烧器或其他有源加热元件。气化液体溴所需的基本上所有热优选通过液体溴和热烃气体之间的直接接触来提供,所述烃气体在与液体溴的隔离中已预热至预热温度。通过说明,术语“间接加热”在本文定义为用于加热流体的方式,其中在被加热流体(如液体单质溴)和加热气体(如预热的烃气体)之间不存在直接接触或流体连通,从而从加热气体间接传热至被加热流体。相反地,术语“直接加热”在本文定义为这样的用于加热流体的方式:其中在被加热流体和加热气体之间存在直接接触和流体连通,从而从加热气体直接传热至被加热流体。
将该烃气体预热至预热温度可在液体气化单元上游的单独气体预热单元中或在上游气体预热单元中实现,所述上游气体预热单元与液体气化单元集成,但在气体预热步骤期间保持烃气体与液体溴隔离。应当注意,进入气体预热单元的烃气体优选不含气态或液态的水或溴。替代地,水和溴至多仅以极低浓度存在于烃气体中。如此,气体预热单元内的环境优选基本上不含水或溴以降低气体预热单元中构造的材料的腐蚀的风险或程度。
根据一个优选实施方案,烃气体可在气体预热单元中预热的温度(即气体预热温度)受卤化引发温度(或在所选卤素为溴的情况下的溴化引发温度)限制。卤化引发温度为所选卤素和加热气体之间(如溴和烃气体之间)发生实质反应的最低温度。当已选择液体气化单元中构造的材料来经受远超过卤化引发温度的操作温度时,该实施方案是特别优选的。例如,如果液体气化单元由(可操作地经受高至约600℃的温度)具有镍或镍合金包层的碳素钢制造,优选选择烃气体预热温度以接近但不超过约300℃(其接近就大多数烃气体而言的溴化引发温度的上限)。能够经受远超过卤化引发温度的操作温度的在本文中具有实用性的示例性镍合金包层材料包括Hastelloy、Monel和Inconel。虽然由于其高成本而与上述的示例性构造的材料相比更不优选,但钽同样适用于液体气化单元的构造,因为其也具有经受远超过卤化引发温度的操作温度的能力。
适用于液体气化单元的构造的其他替代性材料包括用纤维强化聚合物(FRP)或非强化聚合物内衬的碳素钢。可以用作碳素钢内衬的示例性聚合物包括聚四氟乙烯(PTFE)(常常称为Teflon)、聚偏二氟乙烯(PVDF)(常常称为Kymar)、全氟烷氧基(PFA)等等。然而,构造的上述聚合物材料比具有相对高的耐温性的此前所述的构造的材料更不合意,因为本聚合物材料通常具有相对低的耐温性并且一般不能经受处于或超过卤化引发温度的温度。如此,当使用这些构造聚合物材料时,用于该方法的烃气体预热温度在其上端被限制到不大于约200℃或甚至不大于约150℃(其代表就这些聚合物材料的可操作温度上限)。
另外应当注意,在上述两个实施方案中,烃气体预热温度上限也可以在某种程度上取决于液体气化单元的操作压力。
同样明显的是,应该选择液体气化单元中构造的材料以使得它们能够经受液体气化单元中的实际操作温度和压力而无显著劣化。相应地,应该选择气体预热单元下游的液体气化单元的操作温度和压力以使得在到达溴化反应器(如果溴化反应器定位于液体气化单元下游)之前,在液体气化单元或其后任何流体输送线内,在烃气体和溴(无论液体或蒸气)之间无显著反应发生。
本气化方法和系统优选在相对高的预热和气化温度(即优选在约200℃和约300℃之间,并且更优选在该范围较高端内)下以单个阶段实施。在上文以举例的方式描述的液体气化单元中使用具有相对高的耐温性(即能够经受远超过上述高温范围的温度)的材料,实现该高温实施方案。已经发现的是,气化方法和系统的本高温实施方案的单阶段操作一般足以在其中产生的均相气体混合物中实现所需溴浓度。
然而,特别是当气体预热和液体气化步骤处于相对低的预热和气化温度下(即小于约200℃或甚至小于约150℃)时,气化方法和系统可以替代地以多阶段来实施。当液体气化单元中的所用材料不能经受超过上述低温范围的温度时,优选采用该低温实施方案。已经发现的是,气化方法和系统的本低温实施方案的多阶段操作(与单阶段操作相对)一般是在其中产生的均相气体混合物中实现所需溴浓度所必需的。
根据低温多阶段实施方案,第一阶段包含第一阶段气体预热步骤和第一阶段液体气化步骤。第一阶段气体预热步骤包括在第一阶段气体预热单元中将烃气体预热至第一阶段预热温度。第一阶段液体气化步骤包括将处于第一阶段预热温度下的第一阶段液体单质溴和烃气体输送到第一阶段液体气化单元中,其中液体溴和烃气体彼此接触。在第一阶段预热温度下的烃气体的热能将第一阶段液体单质溴的至少一部分蒸发为烃气体,并同时维持在液体气化单元和其构造的材料的温度和压力操作限度以内。第一阶段液体气化单元中溴蒸气和烃气体的所得第一阶段气体混合物的特征在于第一阶段溴浓度。如果在第一阶段液体气化单元中并非所有第一阶段液体单质溴被蒸发为烃气体,则第一阶段残余液体单质溴还剩余在第一阶段液体气化单元中。
将第一阶段液体气化单元中产生的第一阶段气体混合物和第一阶段残余液体单质溴(如果有的话)彼此分离。通过仅输送第一阶段气体混合物至第二阶段气体预热单元并且将其中第一阶段气体混合物预热至第二阶段预热温度,进行第二阶段。第二阶段气体预热单元和任何后续阶段气体预热单元优选为由高度耐腐蚀材料如镍或镍合金构造的热交换器(包括Hastelloy C或Inconel 600),因为第一阶段气体混合物和任何后续阶段气体混合物包括高腐蚀性溴蒸气。然而,无需将过分昂贵的甚至更高度耐腐蚀的钽用作本实施方案的气体预热单元中构造的材料。虽然第一阶段气体混合物和后续阶段气体混合物含有溴蒸气,但气体混合物优选基本上不含比单独溴蒸气造成显著更大腐蚀风险的水和液体溴。
在任何情况下,通过将处于第二阶段预热温度下的第一阶段气体混合物以及可能包括第一阶段残余液体单质溴的全部或一部分的第二阶段液体单质溴输送到其中液体溴和气体混合物彼此接触的第二阶段液体气化单元中,进行相应的第二阶段液体气化步骤。处于第二阶段预热温度下的第一阶段气体混合物的热能将第二阶段液体单质溴的至少一部分蒸发至第一阶段气体混合物中,从而产生具有优选基本上大于第一阶段溴浓度的第二阶段溴浓度的溴蒸气和烃气体的第二阶段气体混合物。如果在第二阶段液体气化单元中并非所有第二阶段液体单质溴被蒸发为烃气体,则第二阶段残余液体单质溴还剩余在第二阶段液体气化单元中。
将第二阶段液体气化单元中产生的第二阶段气体混合物和第二阶段残余液体单质溴(如果有的话)彼此分离。按基本上与上文所述相同的方式,按需要进行多个附加阶段以实现具有所需最终溴浓度的最终均相气体混合物。在许多情况下,所需最终溴浓度优选为烃气体中溴的饱和水平。在任何情况下,在最终第n阶段液体气化步骤之后,第n阶段液体气化单元中产生的溴蒸气和烃气体的第n阶段气体混合物具有优选大于第n-1阶段溴浓度的第n阶段溴浓度。
本气化方法和系统具有用于产生溴蒸气和烃气体的气体混合物的特定实用性,所述气体混合物为用于将溴和烃气体催化转化为烷基溴和溴化氢的烷烃溴化反应器的有用进料。气化方法和系统的上述单阶段和多阶段实施方案均可以可操作地集成为综合性气体-至-液体转化方法。可将本气化方法和系统集成至其中的示例性现有技术气体-至-液体转化方法公开于以下各者:美国专利公开:(1)美国专利No.7,348,464,2008年3月25日公开;(2)美国专利申请公开No.20080275284,2008年11月6日公开;和(3)美国专利申请公开No.20110015458,2011年1月20日公开。公开于这些专利公开的气体-至-液体转化方法可易于修改以将本文的该气化方法和系统并入。
参照图1,示意性示出用于进行综合性气体-至-液体转化方法的示例性现有技术系统。应当注意,图1基本上为与美国专利No.7,348,464的图2中所公开相同的气体-至-液体转化系统。通过进行包括溴气化、烷烃溴化、烷基溴转化、溴化氢分离、溴化氢氧化、液体溴分离、液体产物脱水、液体产物分离、气体再循环、液体产物回收的多个功能,图1的本系统将气态较低分子量烷烃转化为较重液体烃产物。
使用图1的系统的现有技术气体-至-液体转化方法为连续工艺,其以烷烃溴化功能开始,特征在于以下。气体返回线10与烷烃溴化反应器14上游的液体返回线12相交以混合两条线路中的内容物。所得混合物为两相烃溴混合物,其包括来自气体返回线10的部分再循环气体混合物和来自液体返回线12的液体单质溴。在两相烃-溴混合物引入烷烃溴化反应器14之前,两相混合物通过常规溴气化热交换器16输送。较冷的两相混合物在热交换器16中接触传热表面的一侧,而较热的流体传热介质如蒸汽接触热转移表面的另一侧,从而以常规间接方式加热两相混合物。两相混合物优选在热交换器16的操作压力下加热至大于单质溴的沸点的温度,其气化两相烃溴混合物中的基本上所有单质溴。
包含部分再循环气体混合物和溴蒸气的混合物的所得溴化反应器进料离开热交换器16并且经由烷烃溴化反应器入口管线18被引入烷烃溴化反应器14中。溴化反应器进料在烷烃溴化反应器14中反应以形成溴化反应产物,其包括气态烷基溴和溴化氢蒸气。来自烷烃溴化反应器14的含有溴化反应产物的流出物被输送至烷基溴转化反应器20并且气态烷基溴在其中反应以形成较高分子量烃和额外的溴化氢蒸气。
来自烷基溴转化反应器20的包括较高分子量烃和溴化氢蒸气的流出物被进料到溴化氢洗涤器22,其中流出物与同样进料到溴化氢洗涤器22的再循环水溶液逆流接触。溴化氢蒸气溶解于再循环水溶液,将其与流出物的剩余物分离。含有溴化氢蒸气的所得溶液作为第一溴化氢洗涤器流出物从溴化氢洗涤器22的底部排出并且连续地进料到烃汽提器24,溴洗涤器26和溴化氢氧化反应器28。
取决于再循环水溶液在溴化氢洗涤器22中是否中已和氢溴酸,第一溴化氢洗涤器流出物中溶解的溴化氢蒸气为氢溴酸或金属溴化物盐形式。无论如何,如果氢溴酸在溴化氢洗涤器22中未被中和为金属溴化物盐,则其在进入溴化氢氧化反应器28之前在下游被中和以形成溶液中的金属溴化物盐。第一溴化氢洗涤器流出物在其通过烃汽提器24和溴洗涤器26时被改性,之后将流出物中的该金属溴化物盐溶液引入到溴化氢氧化反应器28中。在氧或空气进料已通过溴汽提器30之后,通过与从外部源(未示出)供应至溴化氢氧化反应器28的新鲜氧或空气进料接触,金属溴化物盐在其中氧化以形成单质溴。
含有单质溴的蒸气相混合物从溴化氢氧化反应器28的顶部取出,而再循环水溶液从溴化氢氧化反应器28的底部取出。来自溴化氢氧化反应器28的顶部的蒸气料流冷却并且部分冷凝,产生多相混合物,其在液体溴分离器32中被分离成三个料流。三个料流为液体单质溴流、残余气流和残余水流。液体单质溴从液体溴分离器32中排出并且再循环到液体返回线12中以在气体-至-液体转化方法的新循环中重复上述溴功能。残余水逆流于新鲜氧或空气通过溴汽提器30并且作为残余废水流从系统中排出。残余气体逆流通过溴洗涤器26以便移除任何残余溴并随后从系统中排放。来自溴化氢氧化反应器28的相对不含单质溴或其他溴成分的再循环水溶液从中排出并且再循环回到溴化氢洗涤器22,如上所述。
经由烃汽提器24将优选为富甲烷烃气体的新鲜气体进料引入该系统,其中新鲜气体进料逆流接触第一溴化氢洗涤器流出物。新鲜气体进料在烃汽提器24中从第一溴化氢洗涤器流出物中汽提任何残余较高分子量烃,并且所得的汽提的第一溴化氢洗涤器流出物从烃汽提器24的底部取出并且输送到溴洗涤器26。新鲜气体进料和残余较高分子量烃的所得混合物从烃汽提器24的顶部取出并且与来自烷基溴转化反应器20的流出物合并。合并料流与来自如上所述的溴化氢氧化反应器28的再循环水溶液一同输送至溴化氢洗涤器22。
使合并料流通过溴化氢洗涤器22产生除上述第一烃溴化物洗涤器流出物之外的第二烃溴化物洗涤器流出物。第二烃溴化物洗涤器流出物(其包括新鲜气体进料、水以及较高分子量烃的本体)从溴化氢洗涤器22的顶部排出并且输送至产物脱水机34,其中水与第二溴化氢洗涤器流出物分离。分离的水从系统中作为具有残余废水的废物排出。剩余的脱水流出物从产物脱水机34输送至产物分离器36,其中脱水流出物通过气体-液体分离被分为分离气流和液体产物流。液体产物流基本上包含液体较高分子量烃,其优选为具有高辛烷值的烷基芳族化合物。液体较高分子量烃在从产物分离器36排出时从系统中作为系统的理想主要最终产物(即烃液体产物)回收。另外,在离开溴化氢洗涤器22的第一或第二溴化氢洗涤器流出物中未夹带的任何较高分子量烃从溴化氢洗涤器22单独地取回并且与从产物分离器36中排出的液体产物流组合,作为补充烃液体产物。
来自产物分离器36的分离的气流为上文参照气体返回线10所述的部分再循环气体混合物,其包含新鲜气体进料和再循环气体。再循环气体基本上为分离的气流中除新鲜气体进料以外的任何气体。如此,再循环气体通常为来自气体-至-液体转化方法的残余副产物气体。将部分再循环气体混合物经由气体返回线10输送回到烷烃溴化阶段,从而完成该气体-至-液体转化方法的循环。
如下文参照图2所述,上述和图1所示的现有技术气体-至-液体转化方法和系统容易修改以将本发明的气化方法和系统并入。具体来说,通过用单阶段液体气化单元40(例如上述实施方案之一)替换图1的溴气化热交换器16,修改图1的现有技术气体-至-液体转化系统。更具体地讲,在烷烃溴化反应器14上游的液体返回线12中,液体气化单元40替代溴气化热交换器16。
通过在液体气化单元40上游的气体返回线10中安装气体预热单元42(例如上述实施方案之一)来进一步修改现有技术气体-至-液体转化系统。根据图2的气体-至-液体转化方法和系统,用于气化方法和与其集成的系统的加热气体为部分再循环气体混合物,即,与新鲜气体进料和再循环气体组合,其经由气体返回线10输送至气体预热单元42。用于气化方法和系统的液体卤素为液体单质溴,其经由液体返回线12输送至液体气化单元40。
通过将部分再循环气体混合物经由气体返回线10进料至气体预热单元42并且在其中将部分再循环气体混合物预热至合适温度和压力条件,实施图2的气体-至-液体转化方法和系统。来自气体预热单元42的热的预热的部分再循环气体混合物以及液体返回线12中的液体单质溴均直接并且优选单独地进料到液体气化单元40中。通过与热的预热气体接触,液体单质溴在液体气化单元40中气化。溴蒸气与部分再循环气体混合物混合并且所得气体混合物(即溴化反应器进料)构成烷烃溴化反应器14的整个进料。经由烷烃溴化反应器入口管线18,从液体气化单元40输送溴化反应器进料并且将其进料至烷烃溴化反应器14。
烷烃溴化反应器14使溴蒸气和部分再循环气体混合物在溴化反应器进料中催化反应以使部分再循环气体混合物中的某些烃成分(优选甲烷)溴化,从而形成甲基溴和溴化氢。下游烷基溴转化反应器20将甲基溴催化转化为液体较高分子量烃,其作为烃液体产物回收。将烷基溴转化反应器20的流出物中含有的溴成分分离并加工以回收液体单质溴以便如上所述经由液体返回线12再循环至液体气化单元40。将烷基溴转化反应器20的流出物中含有的气体的本体分离并且与新鲜气体进料组合,其共同地形成部分再循环气体混合物。部分再循环气体混合物按上述方式经由气体返回线10返回到气体预热单元42。
参照图3,示出气化方法和系统的多阶段实施方案,其能够替代集成到图2的气体-至-液体转化方法和系统中的单阶段气化方法和系统。多阶段气化方法和系统包含三个阶段,各自包括成对的气体预热步骤和液体气化步骤。第一阶段气体预热步骤利用优选为热交换器的第一阶段气体预热单元50。与第一阶段气体预热步骤成对的第一阶段液体气化步骤利用定位于第一阶段气体预热单元50下游的第一阶段液体气化单元52。第一阶段液体气化单元52优选为具有逆流气体/液体流动的填充塔。
第二阶段气体预热步骤利用第二阶段气体预热单元54,其同样优选为基本上与第一阶段气体预热步骤的热交换器相同或类似的热交换器。第二阶段气体预热单元54定位于第一阶段液体气化单元52的下游。与第二阶段气体预热步骤成对的第二阶段液体气化步骤利用第二阶段液体气化单元56,其定位于第二阶段气体预热单元54的下游。第二阶段液体气化单元56优选为基本上与第一阶段液体气化步骤的填充塔相同或类似的填充塔。
第三阶段气体预热步骤利用第三阶段气体预热单元58,其同样优选为热交换器,其基本上与第一阶段和第二阶段气体预热步骤的热交换器相同或类似。第三阶段气体预热单元58定位于第二阶段液体气化单元56的下游。与第三阶段气体预热步骤成对的第三阶段液体气化步骤利用定位于第三阶段气体预热单元58下游的第三阶段液体气化单元60。第三阶段液体气化单元60优选为基本上与第一阶段和第二阶段液体气化步骤的填充塔相同或类似的填充塔。
多阶段气化方法和系统还包含液体溴稳压罐62(surge tank),其可在图3的气体预热和液体气化阶段的上游插入到图2的系统中的液体返回线12中。液体溴稳压罐62接收并且储存从图2的液体溴分离器32排出的液体单质溴。如此,液体溴稳压罐62用于分别调节进到第一阶段、第二阶段和第三阶段液体气化单元52、56和60的液体单质溴进料。
当图3的多相气化方法和系统被替换到图2的气体-至-液体转化方法和系统中时,通过将气体返回线10从产物分离器(图2中所示36)导引至第一阶段气体预热单元50,实现连续操作。继续参照图3,部分再循环气体混合物经由气体返回线10和第一阶段预热单元气体入口管线64引入第一阶段气体预热单元50。部分再循环气体混合物在第一阶段气体预热单元50中被预热至第一阶段气体预热温度并且输送至第一阶段液体气化单元52,其中将其引入单元52的底部。
将液体返回线12从液体溴分离器(图2所示32)导引至液体溴稳压罐62并且从液体溴稳压罐62导引至第一阶段、第二阶段和第三阶段液体气化单元52、56、60的各自液体入口管线66、68、70。将得自液体溴稳压罐62的第一阶段干燥液体单质溴经由第一阶段气化单元液体入口管线66引入第一阶段液体气化单元52的顶部。第一阶段干燥液体单质溴的一部分通过引入第一阶段液体气化单元52的底部的预热的部分再循环气体混合物来气化,产生包含溴蒸气和部分再循环气体混合物的第一阶段气体混合物。第一阶段气体混合物的特征在于第一阶段溴浓度。
第一阶段气体混合物从第一阶段液体气化单元52的顶部取出并且经由第一阶段/第二阶段气体转移线72输送至第二阶段气体预热单元54。第一阶段残余液体单质溴剩余在第一阶段液体气化单元52中,其从单元52的底部取出并且经由第一阶段气化单元液体出口管线74和通用稳压罐液体入口管线76返回到液体溴稳压罐62。
将第一阶段气体混合物引入第二阶段气体预热单元54,其中其被预热至第二阶段气体预热温度并且输送至第二阶段液体气化单元56。将预热第一阶段气体混合物引入第二阶段液体气化单元56的底部。将得自液体溴稳压罐62的第二阶段干燥液体单质溴经由第二阶段气化单元液体入口管线68引入第二阶段液体气化单元56的顶部。第二阶段干燥液体单质溴的一部分通过预热的第一阶段气体混合物来气化,产生第二阶段气体混合物,其同样包含累积溴蒸气和部分再循环的气体混合物,但特征在于大于第一阶段溴浓度的第二阶段溴浓度。第二阶段气体混合物从第二阶段液体气化单元56的顶部取出并且经由第二阶段/第三阶段气体转移线78输送至第三阶段气体预热单元58。第二阶段残余液体单质溴剩余在第二阶段液体气化单元56中,其从单元56的底部取出并且经由第二阶段气化单元液体出口管线80和通用稳压罐液体入口管线76返回到液体溴稳压罐62。
将第二阶段气体混合物引入第三阶段气体预热单元58,其中其被预热至第三阶段气体预热温度并且输送至第三阶段液体气化单元60。将预热的第二阶段气体混合物引入第三阶段液体气化单元60的底部并且将得自液体溴稳压罐62的第三阶段干燥液体单质溴经由第三阶段液体气化单元入口管线70引入第三阶段液体气化单元60的顶部。第三阶段干燥液体单质溴的一部分通过预热的第二阶段气体混合物来气化,产生第三阶段气体混合物,其同样包含累积溴蒸气和部分再循环的气体混合物,但特征在于大于第二阶段溴浓度的第三阶段溴浓度。
第三阶段气体混合物从第三阶段液体气化单元60的顶部取出并且构成溴化反应器进料,其经由烷烃溴化反应器入口管线18被导引至烷烃溴化反应器(图2中所示14)。第三阶段残余液体单质溴剩余在第三阶段液体气化单元60中,其从单元60的底部取出并且经由第三阶段气化单元液体出口管线82和通用稳压罐液体入口管线72回到液体溴稳压罐62。
本发明的气化方法和系统的特征在上文关于不同优选实施方案表明。本发明的气化方法和系统的特征为在上文作为独立方法和系统和作为气体-至-液体转化方法和系统的集成子系统。下文阐述本发明的气化方法的替代性特征,其任选地包括液体溴预热步骤。替代性气化方法的一般化实施方案包括以下步骤:
(1)在气体预热单元中将轻质烃气体预热至比将溴化视为足以完全气化液体溴的引发温度低约5℃至10℃的气体预热温度;
(2)在液体气化单元中使液体溴与热的预热的轻质烃气体直接接触以气化液体溴;
(3)如果发现步骤(1)的气体预热温度不足以在步骤(2)中完全气化液体溴,则在步骤(2)之前在液体溴预热单元将液体溴预热至低于其泡点不超过约10℃的温度或如果其低于液体溴的泡点超过10℃则预热至不超过溴化引发温度的温度;
(4)如果在步骤(1)或(3)中达到气体或液体溴预热温度上限,则将来自液体气化单元的任何未气化液体溴与液体溴进料组合并且将其再循环回到液体气化单元;和
(5)取出溴蒸气和烃气体的所得饱和均相气体混合物作为来自液体气化单元的输出用于下游使用,例如用于溴化反应器的进料。
参照图4进一步描述包括任选的液体溴预热步骤的上述气化方法的更具体的实施方案。轻质烃气体(即加热气体)得自上游源(未示出)如压缩机,并且在气体预热单元90中预热,所述气体预热单元90为优选常规碳素钢壳管式热交换器或明火加热器。将所得热的预热的轻质烃气体输送至液体气化单元92并且在单元92(优选为填充塔)的底部引入气体入口。液体溴相应地得自上游源(未示出),例如分离单元或溴干燥单元,并且输送至液体气化单元92,其中其在单元92的顶部处被引入液体入口。
应当注意,在液体气化单元92中希望避免轻质烃气体和溴之间的反应,因为其导致烷基多溴化物高于理想的烷基单溴化物的不利选择性。为防止该反应,由从业者谨慎控制气体预热单元90中的轻质烃气流的预热,使得预热温度低于溴化引发温度约5℃至10℃。对于甲烷,溴引发温度为约270℃。对于其他轻质烃,例如包含乙烷、丙烷和丁烷的液化石油气(LPG),将溴引发温度降低至约230℃。AlkaneBromination Revisited,Lorkovic等人,The Journal of PhysicalChemistry A,2006,v.110,pp.8695–8700。
气化方法的本实施方案任选地允许单独预热液体溴以及在将液体溴引入液体气化单元92之前的其他预备步骤。从业者对这些任选步骤的选择取决于液体气化单元92中发生的溴气化的程度。具体来说,如果确定热的预热的轻质烃气体的预热温度足以在液体气化单元92中完全气化液体溴,则在上游液体溴源处提供上游滞留筒(holdup drum)(未示出)。上游滞留筒充当用于液体溴的储存器,所述液体溴按需要借助于液体泵和直接液体入口管线(未示出)以所需递送压力从上游滞留筒直接输送至液体气化单元92的液体入口。
然而,如果确定气体预热温度不足以完全气化液体溴,则在上游液体溴源的下游提供下游滞留筒94。下游滞留筒94同样充当用于液体溴的储存器。然而,不是将液体溴直接输送至液体气化单元92的液体入口,液体溴首先通过液体泵96输送至液体溴预热单元98,例如由高成本耐腐蚀合金构造的常规壳管式热交换器。液体溴在液体溴预热单元98中预热至液体溴预热温度,谨慎保持该预热温度低于液体溴的泡点至少10℃。不利的是在液体溴预热单元98中将液体溴气化,因为其降低传热系数并且需要设计用于在两相状态下操作的热交换器设备。在任何情况下,在完成液体溴预热步骤之后,将预热液体溴从液体溴预热单元98输送至液体气化单元92的液体入口。
无论是否挑选液体溴预热步骤,一旦将液体溴引入液体气化单元92的液体入口,则液体溴通过在单元92中的填充塔的顶部,其提供大接触表面积。如此,液体溴显示与逆流上塔填料的热的预热的轻质烃气体的有效直接接触。设计填充塔,使得横跨塔填料的上部发生溴的显著气化,并且随着液体溴流下塔填料,液体溴流量平稳地减少,朝向塔填料的底部达到基本上为零。如果在时常状态期间或处于任何其他原因,次要量的液体溴滑移至填充塔的底部,则液体溴在填充塔的底部从液体出口排出至下游滞留部94,从该处,其再循环回到在液体气化单元92的顶部的液体入口。
液体气化步骤的所需产物为溴蒸气和轻质烃气体的饱和均相混合物,其在液体气化单元92的顶部从单独气体出口排出。如果来自气体出口的气体线未良好隔绝,气体混合物的冷却将导致气体线中的不希望的冷凝,因为气体混合物处于其露点下。用于阻止冷凝的一种方式为延长烃气体或液体溴的预热以确保离开液体气化单元92的气体混合物稍微过热。用于阻止冷凝的另一个方式为降低离开液体气化单元92的气体混合物的压力,这有效地使气体混合物过热。在任何情况下,气体混合物从液体气化单元92的排出完成了气化方法的本实施方案。
也在本发明的范围内通过以下补充该气化方法:将离开液体气化单元92的气体出口的气体混合物作为溴化反应器进料发送至烷烃溴化反应器(未示出)以便按与上文关于先前实施方案所述基本上相同的方式在气体-至-液体转化方法和系统中加以利用。应当注意,在气体-至-液体的转化方法烷烃溴化反应器中优选的是高于1的烃-与-溴比例,以确保溴化反应至优选的烷基单溴化物而非较不理想的烷基多溴化物的高溴转化率和高选择性。较高烃-与-溴比例也有利地影响用于本气化方法和系统的设备的设计。具体来说,较高烃-与-溴比例增加气体预热单元90中负载,从而使得烃气体能够向液体气化步骤提供更多显热。因此,液体溴流向液体气化步骤提供额外显热的需要减少,如果该需要未消除的话。因此,液体气化单元92上游的更高成本的液体溴预热单元98的尺寸要求降低或液体溴预热单元98被完全消除。
下文参照图5描述包括任选的液体溴预热步骤的气化方法的另一个具体实施方案。图5与图4共同的元件在图5中通过图4中所用的相同参考符号标识。图5的实施方案在较低的烃-与-溴比例下具有特殊实用性。其类似于图4的实施方案,不同的是在液体气化单元92中允许液体溴的不完全气化,即,相当大一部分液体溴在液体气化单元92中维持未气化。根据该实施方案,未气化的液体溴在液体气化单元92的底部从液体出口排出并且借助于泵100从下游滞留筒94再循环回到液体溴进料线。将所得的组合的溴液体流在液体气化单元92的顶部引入液体入口。另外,优选通过将轻质烃气体和液体溴均预热至它们的各自温度限度,进行本实施方案。溴化引发温度为轻质烃气体的预热温度限度,并且低于溴泡点10℃为液体溴的预热温度限度。与再循环未气化液体溴的步骤结合的预热步骤的具体条件有利地确保在本实施方案的气化方法中液体溴进料的完全气化。
本发明的气化方法和系统提供优于现有技术气化方法和系统的多个优点。本气化方法和系统显著降低对昂贵冶金术的需求,因为更廉价的常规碳素钢热交换器可用于预热该轻质烃气体,而非具有与液体溴直接接触的设备需要的更昂贵镍合金。在其中液体溴预热以补充来自用于溴气化的预热气体的热输入的实施方案中,比液体气化单元所需要的更廉价的合金也可用于液体溴预热单元中。
通过在低于溴化引发温度下操作,该方法和系统还确保在烷烃溴化反应器之前不发生溴化反应。相比于相同功能需要大得多的塔的板式塔,该方法和系统的液体气化单元中的填充塔提供用于传热和传质的大接触表面积。相对于顺流,液体气化单元中的逆流也改善饱和的效率。此外,从液体气化单元作为溴化反应器进料排出的所得气体混合物的均相性极大地增强烷烃溴化反应器的性能。
以下实施例显示出使液体单质溴能够气化的本发明的范围和实用性。然而,这些实施例不应解释为限制本发明的范围。
实施例1
在6.3barg压力下以262吨/小时的速率将由甲烷、乙烷和丙烷组成的天然气预热至170℃。将预热天然气引入填充塔的底部,所述填充塔由用Hastelloy合金内衬并且用Hastelloy合金鞍填充的碳素钢壳构造。在54℃和6.2barg下将液体单质溴以392吨/小时的速率引入填充塔的顶部,使得天然气和液体溴逆流穿过填充塔。基本上所有溴被气化为气流,导致在55℃和6.1barg下654吨/小时的气体混合物输出流量。气体混合物输出具有59.9重量%或13.5摩尔%的溴浓度。
实施例2
重复实施例1的方法,不同的是填充塔的入口压力为6.8barg并且出口温度为57℃。将离开填充塔的气体混合物预热至170℃并且在6.4barg下引入第二填充塔。将第二液体单质溴进料以225吨/小时的速率并且在54℃和6.8barg下引入第二填充塔的顶部。第二液体单质溴进料在其中与来自第一阶段填充塔的预热的气体混合物接触以将溴气化为气流。来自第二填充塔的所得气体混合物输出具有70.2重量%或19.8摩尔%的溴浓度。将离开第二填充塔的气体混合物预热至120℃并且在6.0barg下引入第三填充塔。将第三液体单质溴进料以168吨/小时的速率并且在54℃和6.8barg下引入第三填充塔的顶部。第三液体单质溴进料在其中与来自第二填充塔的预热的气体混合物接触以将溴气化为气流。所得气体混合物为在1047吨/小时的速率下并且在72℃和5.8barg下的来自第三填充塔的输出。来自第三填充塔的气体混合物输出具有75重量%或23.8摩尔%的溴浓度。
实施例3
采用图4的流程图,将100吨/小时的干燥液体溴通过饱和而气化为30吨/小时的纯甲烷气体,产生饱和的3:1CH4/Br2摩尔混合物。通过预热甲烷气体和液体溴,将用于气化液体溴的潜热作为显热输入该工艺。具体来说,提供1.6MW的热来将液体溴从80℃预热至204℃,并同时确保液体溴维持低于其泡点至少10℃。提供4.4MW的热来将甲烷气体从80℃预热至270℃。所得的预热的甲烷气体发送至在饱和器的底部的气体入口,而预热的液体溴发送至在饱和器的顶部的液体入口。预热的液体溴流下填充床并且接触气化该溴的向上流的热甲烷气体。饱和CH4/Br2混合物在30barg和128℃下在填充床的顶部处从气体出口取出。应当注意,通过充分地加热该甲烷气体,饱和器可设计用于完全气化溴。饱和器可设计用于不存在在通过饱和器的底部填充部分和在饱和器的底部之外的液体溴流的情况。
实施例4
采用图4的流程图,将100吨/小时的干燥液体溴通过饱和而气化为40吨/小时的纯甲烷气体,产生4:1CH4/Br2摩尔混合物。通过仅预热甲烷气体,将用于气化液体溴的潜热作为显热输入该工艺。具体来说,提供5.0MW的热将甲烷气体从80℃预热至246℃,其足以确保在单个饱和阶段中完全气化溴。所得的预热的甲烷气体发送至在饱和器的底部的气体入口,而液体溴发送至在饱和器的顶部的液体入口。液体溴流下填充床并且接触气化该溴的向上流的热甲烷气体。饱和CH4/Br2混合物在10barg和81℃下在填充床的顶部处从气体出口取出。应当注意,通过使用比实施例4更高的CH4/Br2比例,更多显热加入本实施例的甲烷气体,从而排除预热该液体溴的必要。
实施例5
本实施例的气体进料为LPG而非甲烷气体。如此,采用图4的流程图,干燥液体溴通过饱和被气化为LPG。提供5.3MW的热以将LPG从80℃预热至230℃,其足以在164℃下完全气化100吨/小时的热液体溴。离开饱和器的所得气流为具有1.8:1LPG/Br2摩尔比的饱和气体混合物。
表1归纳实施例3-5的结果,其中实施例3标识为事例A,实施例4标识为事例B并且实施例5标识为事例C。
表1
实施例6
采用图5的流程图,将100吨/小时的干燥液体溴通过饱和而气化为25吨/小时的纯甲烷气体,以产生饱和的2.5:1CH4/Br2摩尔混合物。该实施例类似于实施例3,但在该实施例的较低CH4/Br2比例下,存在液体溴的不完全气化。根据该实施例,46吨/小时的液体溴在饱和器的底部从液体出口排出,并且通过将其与100吨/小时的液体溴进料组合,将组合的液体流预热至208℃并且将预热的组合的液体流进料至在饱和器的顶部的液体入口,再循环至饱和器。与实施例3相比,在本实施例中,气体预热器的负荷减少0.7MW,至3.7MW。相应地,液体溴预热器的负荷增加0.7MW,至2.3MW。热液体溴流下饱和器的填充床,接触流上填充床的热甲烷气体,从而气化68%的溴。饱和CH4/Br2混合物在30barg和134℃下离开填充床的顶部。
实施例7
本实施例示出,在甚至更低的2.0的CH4/Br2摩尔比下操作导致更低的52%的每次通过的气化分数并且需要91吨/小时的增加的液体溴再循环。
表2归纳实施例6和7的结果,其中实施例6标识为事例D并且实施例7标识为事例E。
表2
实施例8
将采用图3的流程图的多阶段气化方法和系统集成到图2的气体-至-液体转化方法和系统中。气化系统的各阶段气体预热单元为采用蒸汽作为传热介质的热交换器。各阶段液体气化单元为逆流填充塔。
在114℃和7.0barg下的269吨/小时的含有干燥天然气进料和再循环气体的部分再循环气体混合物从气体-至-液体转化系统的产物分离器进料至气化系统的第一阶段气体预热单元。第一阶段气体预热单元提供10.2MW的热以预热该部分再循环气体混合物,其以166℃、6.9barg和269吨/小时的速率离开第一阶段气体预热单元并且进料至第一阶段液体气化单元。来自气体-至-液体转化系统的液体溴分离器的液体单质溴保存在气化系统的液体溴稳压罐中。在54℃、6.9barg下并且以400吨/小时的速率将从溴稳压罐取出的液体单质溴的第一阶段进料送料至第一阶段液体气化单元并且第一阶段部分在其中气化。含有富甲烷气体和溴蒸气的第一阶段部分的第一阶段气体混合物从第一阶段液体气化单元的顶部取出并且进料至第二阶段气体预热单元。液体单质溴的第一阶段液体残余部分从第一阶段液体气化单元的底部取出并且返回到溴稳压罐。
第二阶段气体预热单元提供23.2MW的热以预热第一阶段气体混合物,其以165℃、6.6barg和669吨/小时的速率离开第二阶段气体预热单元并且进料至第二阶段液体气化单元。在54℃、6.9barg下并且以378吨/小时的速率将从溴稳压罐取出的液体单质溴的第二阶段进料送料至第二阶段液体气化单元并且第二阶段部分在其中气化。含有富甲烷气体和溴蒸气的第一阶段和第二阶段部分的第二阶段气体混合物从第二阶段液体气化单元的顶部取出并且进料至第三阶段气体预热单元。液体单质溴的第二阶段液体残余部分从第二阶段液体气化单元的底部取出并且返回到溴稳压罐。
第三阶段气体预热单元提供0.2MW的热以预热第二阶段气体混合物,其以74℃、6.3barg和1047吨/小时的速率离开第三阶段气体预热单元并且进料至第三阶段液体气化单元。在54℃、6.9barg下并且以8吨/小时的速率将从溴稳压罐取出的液体单质溴的第三阶段进料送料至第三阶段液体气化单元并且第三阶段部分在其中气化。含有富甲烷气体和溴蒸气的第一阶段、第二阶段和第三阶段部分的第三阶段气体混合物从第三阶段液体气化单元的顶部取出并且液体单质溴的第三阶段液体残余部分从第三阶段液体气化单元的底部取出并且返回到溴稳压罐。
第三阶段气体混合物为溴化反应器进料。使溴化反应器进料通过气体-至-液体转化系统的烷烃溴化反应器预热器,其为采用烷基溴转化反应器的流出物作为传热介质的热交换器。烷烃溴化反应器预热器提供31.4MW的热以预热溴化反应器进料,所述溴化反应器进料以200℃、6.0barg和1055吨/小时的速率离开烷烃溴化反应器预热器并且直接进料至烷烃溴化反应器。
虽然已描述和示出本发明的上述优选实施方案,应理解诸如建议的那些和其他的替代形式和修改可以实施并且属于本发明的范围之内。

Claims (29)

1.一种用于气化液体单质卤素的方法,其包括:
a)在不存在卤素的情况下将加热气体预热至预热温度,从而产生预热的加热气体;
b)使液体单质卤素的进料与所述预热的加热气体直接接触;和
c)用所述预热的加热气体将所述液体单质卤素的所述进料加热至足以将所述液体单质卤素的所述进料的至少一部分气化为一定量的单质卤素蒸气的气化温度,从而形成包括所述加热气体和所述量的所述单质卤素蒸气的气体混合物。
2.根据权利要求1所述的方法,其中所述加热气体在不存在水的情况下预热。
3.根据权利要求1所述的方法,其中所述单质卤素为溴。
4.根据权利要求1所述的方法,其中所述加热气体包括烃。
5.根据权利要求1所述的方法,其中所述加热气体具有主要摩尔分数的甲烷。
6.根据权利要求1所述的方法,其中当用所述预热的加热气体加热所述液体单质卤素时,所述加热气体基本上不与所述单质卤素反应。
7.根据权利要求1所述的方法,其中在所述气体混合物的所述加热中使所述单质卤素蒸气饱和。
8.根据权利要求1所述的方法,其中所述预热温度小于所述单质卤素和所述加热气体的卤化引发温度。
9.根据权利要求1所述的方法,其中所述预热温度大于或等于所述液体单质卤素的沸点。
10.根据权利要求1所述的方法,其中所述预热温度在约200℃至约300℃的范围内。
11.根据权利要求1所述的方法,其中所述预热温度在约275℃至约300℃的范围内。
12.根据权利要求1所述的方法,其中所述液体单质卤素的所述进料为第一进料,所述预热温度为第一预热温度,所述气化温度为第一气化温度,所述单质卤素蒸气的所述量为第一量并且所述气体混合物为具有第一卤素浓度的第一气体混合物,并且其中所述方法还包括:
d)将所述第一气体混合物预热至第二预热温度,从而产生第一预热气体混合物;
e)使所述液体单质卤素的第二进料与所述第一预热气体混合物直接接触;和
f)用所述第一预热气体混合物将所述液体单质卤素的所述第二进料加热至足以将所述液体单质卤素的所述第二进料的至少一部分气化为第二量的所述单质卤素蒸气的第二气化温度,从而形成包括所述加热气体和所述第一和第二量的所述单质卤素蒸气的第二气体混合物。
13.根据权利要求12所述的方法,其中所述第二气体混合物具有基本上大于所述第一卤素浓度的第二卤素浓度。
14.根据权利要求12所述的方法,其中所述第一和第二预热温度小于或等于约200℃。
15.根据权利要求12所述的方法,其中步骤a)、b)和c)构成所述方法的第一阶段并且步骤d)、e)和f)构成所述方法第二阶段,并且其中所述方法还包括通过用所述第二气体混合物和所述液体单质卤素的第三进料来重复步骤d)、e)和f)来进行所述方法的第三阶段以生产第三气体混合物。
16.根据权利要求12所述的方法,其中在所述液体单质卤素的所述部分气化为所述第一量的所述单质卤素蒸气之后,所述液体单质卤素的所述第一进料的液体残余部分剩余,并且其中所述方法还包括将所述液体单质卤素的所述第一进料的所述液体残余部分与所述单质卤素蒸气的所述第一量分离。
17.根据权利要求16所述的方法,其中所述液体单质卤素的所述第二进料包括所述液体单质卤素的所述第一进料的所述液体残余部分的至少一部分。
18.一种用于将气态较低分子量烷烃转化为液体较高分子量烃的方法,其包括:
在不存在卤素的情况下将加热气体预热至预热温度,从而产生预热的加热气体;
使液体单质卤素的进料与所述预热的加热气体直接接触;
用所述预热的加热气体将所述液体单质卤素的所述进料加热至足以将所述液体单质卤素的所述进料的至少一部分气化为单质卤素蒸气的气化温度,从而形成包括所述加热气体和所述单质卤素蒸气的气体混合物;
使所述气体混合物反应以形成烷基卤;和
使所述烷基卤反应以形成液体较高分子量烃。
19.根据权利要求18所述的方法,其中所述加热气体在不存在水的情况下预热。
20.根据权利要求18所述的方法,其中所述单质卤素为溴。
21.根据权利要求20所述的方法,其中所述烷基卤为烷基溴。
22.根据权利要求18所述的方法,其中所述加热气体包括烃。
23.根据权利要求18所述的方法,其中所述加热气体具有主要摩尔分数的甲烷。
24.根据权利要求18所述的方法,其中当用所述预热的加热气体加热所述液体单质卤素时,所述加热气体基本上不与所述单质卤素反应。
25.根据权利要求18所述的方法,其中在所述气体混合物的所述加热气体中使所述单质卤素蒸气饱和。
26.根据权利要求18所述的方法,其中所述预热温度在约200℃至约300℃的范围内。
27.根据权利要求18所述的方法,其中所述预热温度在约275℃至约300℃的范围内。
28.根据权利要求18所述的方法,其中所述加热气体包含新鲜烃气进料和作为气体副产物被回收的再循环气体,所述气体副产物来自用于形成所述液体较高分子量烃的所述烷基卤的反应。
29.一种用于将气态较低分子量烷烃转化为液体较高分子量烃的系统,其包括:
预热热交换器,用于在不存在卤素的情况下将含有较低分子量烷烃的加热气体预热至预热温度,从而产生预热的加热气体;
卤素气化单元,用于接收来自所述热交换器的所述预热的加热气体以及液体单质卤素的进料并且使所述液体单质卤素和所述预热的加热气体直接接触以用所述预热的加热气体将所述液体单质卤素加热至以足以将所述液体单质卤素的所述进料的至少一部分气化为单质卤素蒸气的气化温度,从而形成包括所述加热气体和所述单质卤素蒸气的气体混合物;
烷烃卤化反应器,用于使所述气体混合物反应以形成烷基卤;和
烷基卤转化反应器,用于使所述烷基卤反应以形成液体较高分子量烃。
CN201380012423.9A 2012-01-09 2013-01-08 通过与预热气体接触使液体卤素气化 Pending CN104603086A (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201261584754P 2012-01-09 2012-01-09
US61/584,754 2012-01-09
US13/733,449 2013-01-03
US13/733,449 US20130178675A1 (en) 2012-01-09 2013-01-03 Vaporization of Liquid Halogen by Contact with a Preheated Gas
PCT/US2013/020644 WO2013106311A2 (en) 2012-01-09 2013-01-08 Vaporization of liquid halogen by contact with a preheated gas

Publications (1)

Publication Number Publication Date
CN104603086A true CN104603086A (zh) 2015-05-06

Family

ID=48744356

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380012423.9A Pending CN104603086A (zh) 2012-01-09 2013-01-08 通过与预热气体接触使液体卤素气化

Country Status (10)

Country Link
US (1) US20130178675A1 (zh)
EP (1) EP2802548A2 (zh)
KR (1) KR20140136432A (zh)
CN (1) CN104603086A (zh)
AU (1) AU2013208245A1 (zh)
CA (1) CA2865401A1 (zh)
IN (1) IN2014DN06699A (zh)
RU (1) RU2014132861A (zh)
SG (1) SG11201404725UA (zh)
WO (1) WO2013106311A2 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080275284A1 (en) 2004-04-16 2008-11-06 Marathon Oil Company Process for converting gaseous alkanes to liquid hydrocarbons
US8367884B2 (en) 2010-03-02 2013-02-05 Marathon Gtf Technology, Ltd. Processes and systems for the staged synthesis of alkyl bromides
US8815050B2 (en) 2011-03-22 2014-08-26 Marathon Gtf Technology, Ltd. Processes and systems for drying liquid bromine
US8829256B2 (en) 2011-06-30 2014-09-09 Gtc Technology Us, Llc Processes and systems for fractionation of brominated hydrocarbons in the conversion of natural gas to liquid hydrocarbons
US8802908B2 (en) 2011-10-21 2014-08-12 Marathon Gtf Technology, Ltd. Processes and systems for separate, parallel methane and higher alkanes' bromination
US9193641B2 (en) 2011-12-16 2015-11-24 Gtc Technology Us, Llc Processes and systems for conversion of alkyl bromides to higher molecular weight hydrocarbons in circulating catalyst reactor-regenerator systems

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4626607A (en) * 1984-01-27 1986-12-02 Societe Chimique De La Grande Pariosse, Azote Et Produits Chimiques Process and installation for manufacturing nitromethane
US20050234277A1 (en) * 2004-04-16 2005-10-20 Waycuilis John J Process for converting gaseous alkanes to liquid hydrocarbons
US20070238909A1 (en) * 2006-02-03 2007-10-11 Gadewar Sagar B Continuous process for converting natural gas to liquid hydrocarbons
CN102056867A (zh) * 2008-06-13 2011-05-11 马拉索恩科技有限责任公司 将气态烷烃转化为液态烃的方法
US20110218372A1 (en) * 2010-03-02 2011-09-08 Marathon Gtf Technology, Ltd. Processes and systems for the staged synthesis of alkyl bromides

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8227647B2 (en) * 2009-11-30 2012-07-24 Sajet Development Llc Method of producing alcohols

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4626607A (en) * 1984-01-27 1986-12-02 Societe Chimique De La Grande Pariosse, Azote Et Produits Chimiques Process and installation for manufacturing nitromethane
US20050234277A1 (en) * 2004-04-16 2005-10-20 Waycuilis John J Process for converting gaseous alkanes to liquid hydrocarbons
US20070238909A1 (en) * 2006-02-03 2007-10-11 Gadewar Sagar B Continuous process for converting natural gas to liquid hydrocarbons
CN102056867A (zh) * 2008-06-13 2011-05-11 马拉索恩科技有限责任公司 将气态烷烃转化为液态烃的方法
US20110218372A1 (en) * 2010-03-02 2011-09-08 Marathon Gtf Technology, Ltd. Processes and systems for the staged synthesis of alkyl bromides

Also Published As

Publication number Publication date
SG11201404725UA (en) 2014-10-30
KR20140136432A (ko) 2014-11-28
US20130178675A1 (en) 2013-07-11
WO2013106311A2 (en) 2013-07-18
IN2014DN06699A (zh) 2015-05-22
EP2802548A2 (en) 2014-11-19
RU2014132861A (ru) 2016-03-10
WO2013106311A3 (en) 2015-06-18
CA2865401A1 (en) 2013-07-18
AU2013208245A1 (en) 2014-08-28

Similar Documents

Publication Publication Date Title
CN104603086A (zh) 通过与预热气体接触使液体卤素气化
CN101218324B (zh) 烃热解排出物的加工方法
CN101253254A (zh) 使用全馏分原油原料生产烯烃
CN105873659B (zh) 用于分离含有氢气的烃混合物的方法、分离设备和烯烃装置
US11207611B1 (en) Process for separating hydrocarbons in a liquid feed utilizing an externally heated reboiler connected to a divided wall column as the primary source of heat energy
US8436220B2 (en) Processes and systems for demethanization of brominated hydrocarbons
US8829256B2 (en) Processes and systems for fractionation of brominated hydrocarbons in the conversion of natural gas to liquid hydrocarbons
CN216536963U (zh) 一种硫酸烷基化反应产物的分离系统
CN104784958A (zh) 蒸馏塔
CN100532336C (zh) 乙烯厂馏分头部所用的双压催化蒸馏加氢塔系统
CN113521786A (zh) 烷基化反应产物热耦合与热泵组合分离工艺及分离装置
CN105732292A (zh) 一种带有半贫液循环物流的环丁砜芳烃萃取蒸馏装置
CN108473391B (zh) 用于改进fcc回收单元的丙烯回收率的方法
CN1050893A (zh) 蒸汽裂解进料气体的饱和
CN106062139B (zh) 用于加热原油的方法
US11274256B2 (en) Apparatus for separation and recovery of hydrocarbons from LNG
US8506765B2 (en) Device and method for thermal decomposition of organic materials
CN105579107A (zh) 在直径均匀的单个容器中具有精馏塔和汽提塔的分馏系统
RU104860U1 (ru) Технологический комплекс для переработки попутного нефтяного газа
CN111019686A (zh) 一种用于汽油项目的分馏系统
CN103708989B (zh) 一种乙烯基甲苯生产中的脱氢装置
CN105399592A (zh) 粗二甲醚联产混合烯烃、芳烃、液化气的系统及工艺
US20240060716A1 (en) Processes and Systems for Separating Liquified Natural Gas
NL2033250B1 (en) Method of heating plastics for the production of oil
CN115105851B (zh) 一种硫酸烷基化反应产物的分离工艺及分离装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20150506