CN104601247B - 本振增强型差分信号接收装置 - Google Patents

本振增强型差分信号接收装置 Download PDF

Info

Publication number
CN104601247B
CN104601247B CN201410823006.9A CN201410823006A CN104601247B CN 104601247 B CN104601247 B CN 104601247B CN 201410823006 A CN201410823006 A CN 201410823006A CN 104601247 B CN104601247 B CN 104601247B
Authority
CN
China
Prior art keywords
light
polarization beam
wave plate
detector
beam apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410823006.9A
Other languages
English (en)
Other versions
CN104601247A (zh
Inventor
马小平
孙建锋
侯培培
刘福川
李光远
周煜
刘立人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Optics and Fine Mechanics of CAS
Original Assignee
Shanghai Institute of Optics and Fine Mechanics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Optics and Fine Mechanics of CAS filed Critical Shanghai Institute of Optics and Fine Mechanics of CAS
Priority to CN201410823006.9A priority Critical patent/CN104601247B/zh
Publication of CN104601247A publication Critical patent/CN104601247A/zh
Application granted granted Critical
Publication of CN104601247B publication Critical patent/CN104601247B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Optical Communication System (AREA)

Abstract

一种本振增强型差分信号接收装置,该装置由偏振分束器件、二分之一波片、四分之一波片、2×4光学桥接器、光电探测器、同相平衡接收电路、正交平衡接收电路、混频器和加法器组成。其中,2×4光学桥接器由偏振分束器件和波片构成。本发明用于自由空间激光通信接收机中,本振光和信号光经过不同的光程时延后进行光学混频,通过外差探测来对DPSK差分光信号进行光信号接收和信息解码,最终经数据处理电路,输出数据信号。该装置可以保持两支路光程差相对稳定,无需经过锁相电路,可以通过增大本振光的入射光功率来提高接收系统解调差分信号的灵敏度;并且可以在不改变器件基本结构的情况下,通过移动导轨平移台来匹配不同的通信速率,使得装置结构具有简单、灵活的特点,也降低了成本。

Description

本振增强型差分信号接收装置
技术领域
本发明涉及自由空间激光通信领域,特别是一种用于自由空间星地激光通信链路中的地面接收端本振增强型差分信号接收装置,用于空间激光通信接收机中,对差分相移键控(以下简称为DPSK)调制的光信号进行接收和解调,最后经处理电路,输出数据信号。该接收装置原理清晰、结构简单,较易实现。
背景技术
自由空间激光通信中,星地激光通信链路是制约地基的全空间通信链路贯通的主要瓶颈问题。在地面接收的近地面端,大气湍流变化造成接收光信号的波前畸变,使得光束相位不完整,大大降低接收系统的灵敏度和探测效率,增大通信误码率。因此,克服大气湍流对光学信号传输的扰动就成为星地激光通信亟待解决的问题。另外一方面由于针对复杂湍流介质以及湍流效应对光束波面的变化情况,相关的研究模型也仅仅停留在理论阶段,而且仍然没有统一的理论模型来分析,因此需要新的方案来克服大气湍流对通信系统的影响。
在先前技术研究[1](相位补偿偏振分光2×4自由空间光学桥接器,光学学报,Vol.29,3291~3294,2009)中,在星地激光通信的地面端,采取本振光和信号光进行外差探测来接收光信号,通过增大本振光的强度提高光信号的接收灵敏度。该方案中,本振光和信号光在自由空间光学桥接器中相干合成,输出的四束光中两两组成同相通道和正交通道,二者具有90度相位差。但是该方案中为了保证一定的外差探测效率,需要本振光和信号光的相位稳定,需要引入锁相电路来控制本振光和信号光的频率相等,技术难度交大,不易实现。
在先前技术研究[2](自相位差分干涉光信号接收装置,专利,CN 102594456A)中,采用DPSK调制的编码方式来克服大气湍流效应。即可以通过自相位差分干涉接收装置解调DPSK调制的编码光信号,使信号前后码元的信号光相位相减来克服大气湍流对信号解调的扰动,同时解调出信号。但是该方法使用了4f透镜组,引入透镜误差产生的附加相位,此外需要通过输出IQ通道信号混频产生锁相需要的误差信号,技术上不宜实现,需要进一步改进方案。
在先前技术研究[3](Fiber-based free-space optical coherent receiverwith vibration compensation mechanism,Optics Express,Vol.21,No.15,2013)中,采用振动补偿机理解调QDPSK调制的光信号,接收机采用光纤放大和光纤型马赫曾德尔干涉仪解调,通过快反镜来补偿大气扰动引起的光强抖动,利用平衡探测器实现平衡接收,灵敏度比开关键控(OOK)调制直接探测方法高3dB。但是大气扰动下的波面质量下降,光纤耦合效率降低,严重影响灵敏度,使DPSK这种调制方式抗扰动的能力得不到充分利用。
发明内容
本发明要解决的技术问题是克服上述已有技术困难,提供一种本振增强型差分信号接收装置,以实现对DPSK调制光信号的平光电探和测衡接收。
本发明的具体技术解决方案如下:
一种本振增强型差分信号接收装置,特点在于其构成包括:
信号光经第一偏振分束器分为第一反射光和第一透射光,所述的第一反射光经第一二分之一波片、第一四分之一波片后进入第六偏振分束器,本振光经过第二二分之一波片进入第二偏振分束器分为第二反射光和第二透射光,第二透射光经第三二分之一波片后进入第六偏振分束器,所述的第二透射光和第一反射光在偏振分束面合束,合束后的光束分为第一水平支路光束和第一竖直支路光束,第一水平支路光束经第四二分之一波片由第七偏振分束器分为第三透射光和第三反射光,第三透射光通过第一透镜聚焦到第一探测器上,第三反射光通过第二透镜聚焦到第二探测器上;所述的第一竖直支路光束经第五二分之一波片由第八偏振分束器分为第四透射光和第四反射光,第四透射光通过第三透镜聚焦到第三探测器上,第四反射光通过第四透镜聚焦到第四探测器上;所述的第一探测器和第二探测器的输出端接第一同相平衡接收电路的输入端,所述的第三探测器和第四探测器的输出端与第一正交平衡接收电路的输入端相连;
所述的第一透射光经第六二分之一波片进入第三偏振分束器,所述的第二反射光经第七二分之一波片、第二四分之一波片进入第三偏振分束器,所述的第一透射光和第二反射光在第三偏振分束器的偏振分束面进行合束,合束后分为第二水平支路光束和第二竖直支路光束,第二水平支路光束第八二分之一波片由第五偏振分束器分为第五透射光和第五反射光,第五透射光通过第五透镜聚焦到第五探测器上,第五反射光通过第六透镜聚焦到第六探测器上;所述的第二竖直支路光束通过第九二分之一波片由第四偏振分束器分为第六透射光和第六反射光,第六透射光通过第七透镜聚焦到第七探测器上,第六反射光通过第八透镜聚焦到第八探测器上,所述的第五探测器和第六探测器的输出端接第二正交平衡接收电路的输入端,所述的第七探测器和第八探测器的输出端接第二同相平衡接收电路的输入端;
所述的第一同相平衡接收电路的输出端和第二同相平衡接收电路的输出端接第一混频器的输入端,第一正交平衡接收电路的输出端和第二正交平衡接收电路的输出端接第二混频器的输入端,第一混频器和第二混频器的输出端与加法器的输入端相连,所述的加法器的输出端为最终数据信号输出端。
所述的信号光经过第一偏振分束器后的第一透射光经过第六二分之一波片后入射到第三偏振分束器的偏振分束面经过的传输距离,与本振光经过第二偏振分束器后的第二透射光经过第三二分之一波片后入射到第三偏振分束器的偏振分束面经过的传输距离相等,令距离为z1;此外,信号光经过第一偏振分束器后的第一反射光经过第一二分之一波片、四分之一波片后入射到第六偏振分束器的偏振分束面经过的传输距离,与本振光经过第二偏振分束器后的第二反射光经过第七二分之一波片、四分之一波片后入射到第三偏振分束器的偏振分束面经过的传输距离相等,令距离为z2
所述的信号光经过第一偏振分束器分束后的第一透射光和第一反射光分别入射到第三偏振分束器和第六偏振分束器的光程差为(z1-z2),对应的时间间隔等于调制数据1比特的时间间隔,即满足关系式:
式中:c为光速,v为数据传输速率。
所述的第一偏振分束器、第六偏振分束器、第七偏振分束器、第八偏振分束器、第一四分之一波片、第一二分之一波片、第三二分之一波片、第四二分之一波片、第五二分之一波片、第一透镜、第二透镜、第三透镜、第四透镜、第一探测器、第二探测器、第三探测器、第四探测器集成在一个可以移动的导轨平移台上,通过移动平台来改变光束传输距离z2,构成与数据传输速率v匹配的光程模块。
所述的偏振分束器均设定为对入射的水平偏振光束透过,垂直偏振光束反射。
所述的第二四分之一波片和第一四分之一波片的光轴方向与入射线偏光偏振方向之间的角度设置45度,使得透射光束为圆偏振光束。
所述的二分之一波片的光轴方向和入射线偏光偏振方向之间角度设置,使得透射光的偏振方向旋转45度或135度。
本发明的技术效果如下:
本发明用于空间激光通信链路的地面段解调DPSK信号。采用偏振器件和波片组合构成2×4 90°自由空间光学桥接器,通过光电探测器件、同相平衡接收电路、正交平衡接收电路、混频器和加法器实现对DPSK调制信号的接收和解码。该接收装置中,信号光和本振光在桥接器的输出端,两个同相平衡电路输出信号经过混频后的信号,与两个正交平衡电路输出信号经过混频后的信号通过加法电路求和,得到最终的解码信号。
附图说明
图1为本发明本振增强型差分信号接收装置的具体结构示意图。
具体实施方式
下面结合附图和实施例对本发明进一步说明,但不应以此限制本发明保护范围。
先请参阅图1,由图可见,本发明本振增强型差分信号接收装置的构成包括:
信号光经第一偏振分束器1分为第一反射光和第一透射光,所述的第一反射光经第一二分之一波片9、第一四分之一波片18后进入第六偏振分束器6,本振光经过第二二分之一波片13进入第二偏振分束器2分为第二反射光和第二透射光,第二透射光经第三二分之一波片10后进入第六偏振分束器6,所述的第一反射光和第二透射光在偏振分束面合束,合束后的光束分为第一水平支路光束和第一竖直支路光束,第一水平支路光束经第四二分之一波片11由第七偏振分束器7分为第三透射光和第三反射光,第三透射光通过第一透镜34聚焦到第一探测器35上,第三反射光通过第二透镜32聚焦到第二探测器33上;所述的第一竖直支路光束经第五二分之一波片12由第八偏振分束器8分为第四透射光和第四反射光,第四透射光通过第三透镜30聚焦到第三探测器31上,第四反射光通过第四透镜28聚焦到第四探测器29上;所述的第一探测器35和第二探测器33的输出端接第一同相平衡接收电路38的输入端,所述的第三探测器31和第四探测器29的输出端与第一正交平衡接收电路39的输入端相连;
所述的第一透射光经第六二分之一波片15进入第三偏振分束器3,所述的第二反射光经第七二分之一波片14、第二四分之一波片19进入第三偏振分束器3,所述的第一透射光和第二反射光在第三偏振分束器3的偏振分束面进行合束,合束后分为第二水平支路光束和第二竖直支路光束,第二水平支路光束第八二分之一波片17由第五偏振分束器5分为第五透射光和第五反射光,第五透射光通过第五透镜24聚焦到第五探测器25上,第五反射光通过第六透镜26聚焦到第六探测器27上;所述的第二竖直支路光束通过第九二分之一波片16由第四偏振分束器4分为第六透射光和第六反射光,第六透射光通过第七透镜20聚焦到第七探测器21上,第六反射光通过第八透镜22聚焦到第八探测器23上,所述的第五探测器25和第六探测器27的输出端接第二正交平衡接收电路37,所述的第七探测器20和第八探测器22的输出端接第二同相平衡接收电路36;
所述的第一同相平衡接收电路38的输出端和第二同相平衡接收电路36的输出端接第一混频器40的输入端,第一正交平衡接收电路39的输出端和第二正交平衡接收电路37的输出端接第二混频器41的输入端,第一混频器40和第二混频器41的输出端与加法器42的输入端相连,所述的加法器42的输出端为最终数据信号输出端。
所述的信号光经过第一偏振分束器1后,第一透射光经过第六二分之一波片15后入射到第三偏振分束器3的偏振分束面经过的传输距离,与本振光经过第二偏振分束器2后的第二透射光经过第三二分之一波片10后入射到第三偏振分束器6的偏振分束面经过的传输距离相等,令距离为z1;此外,信号光经过第一偏振分束器1后的第一反射光经过第一二分之一波片9、四分之一波片18后入射到第六偏振分束器6的偏振分束面经过的传输距离,与本振光经过第二偏振分束器2后的第二反射光经过第七二分之一波片14、四分之一波片19后入射到第三偏振分束器3的偏振分束面经过的传输距离相等,令距离为z2
所述的信号光经过第一偏振分束器1分束后的第一透射光和第一反射光分别入射到第三偏振分束器3和第六偏振分束器6的光程差为(z1-z2),对应的时间间隔等于调制数据1比特的时间间隔,即满足关系式:
式中:c为光速,v为数据传输速率。
所述的第一偏振分束器1、第六偏振分束器6、第七偏振分束器7、第八偏振分束器8、第一四分之一波片18、第一二分之一波片9、第三二分之一波片1、第四二分之一波片11、第五二分之一波片12,第一透镜34、第二透镜32、第三透镜30、第四透镜28、第一探测器35、第二探测器33、第三探测器31、第四探测器29集成在一个可以移动的导轨平移台上,通过移动平台来改变光束传输距离z2,构成与数据传输速率v匹配的光程模块。
所述的偏振分束器均设定为对入射的水平偏振光束透过,垂直偏振光束反射。
所述的第二四分之一波片19和第一四分之一波片18的光轴方向与入射线偏光偏振方向之间的角度设置45度,使得透射光束为圆偏振光束。
所述的二分之一波片的光轴方向和入射线偏光偏振方向之间角度设置,使得透射光的偏振方向旋转45度或135度。
由图1可以看到,接收到的信号光和本振光都是线偏振光,分别表示为As(t)和ALO(t):
这里,fs和fLO分别表征信号光、本振光频率,分别表征信号光和本振光的随机相位,Δθ=θ(t1)-θ(t2),Δθ表征信号相位信息。经过偏振分束器后,都分为两个等强度的正交偏振光束1和偏振分束器2,通过二分之一波片、四分之一波片、偏振分束器,聚焦透镜等光学器件。经过不同的衍射距离z1或者z2,对应不同的时间间隔t1和t2,在探测器的光敏面的外差干涉,经过第一探测器35、第二探测器33、第三探测器31、第四探测器29探测得到光强分别为I10(t)、I1180(t)、Q190(t)、Q1270(t):
经过第一同相平衡电路38和第一正交平衡支路电路39,分布得到第一同相平衡支路I1(t)和第一正交平衡支路支路Q1(t):
组成复数信号:A1=I1(t)+jQ1(t)。
同理,另外两支路信号经过第二同相平衡电路36和第二正交平衡支路电路37,分布得到第一同相平衡支路I2(t)和第一正交平衡支路支路Q2(t):
组成复数信号:A2=I2(t)+jQ2(t),取复共轭得到:将两路信号进行相乘,
经过加法器42得到实数信号为:
由于通信速率达到Gbps,随机相位变化缓慢,即那么,Δθ(t1-t2)为要解调的差分信号。
分析表明,本结构完全可以用于空间激光通信DPSK信号解调,原理清楚,结构简单,易于搭建,导轨平移台可以移动改变光程差,适合于高速率的激光通信中匹配不同的通信速率。

Claims (7)

1.一种本振增强型差分信号接收装置,特征在于其构成包括:
信号光经第一偏振分束器(1)分为第一反射光和第一透射光,所述的第一反射光经第一二分之一波片(9)、第一四分之一波片(18)后进入第六偏振分束器(6),本振光经过第二二分之一波片(13)进入第二偏振分束器(2)分为第二反射光和第二透射光,第二透射光经第三二分之一波片(10)后进入第六偏振分束器(6),所述的第一反射光与第二透射光在偏振分束面合束,合束后的光束分为第一水平支路光束和第一竖直支路光束,第一水平支路光束经第四二分之一波片(11)由第七偏振分束器(7)分为第三透射光和第三反射光,第三透射光通过第一透镜(34)聚焦到第一探测器(35)上,第三反射光通过第二透镜(32)聚焦到第二探测器(33)上;所述的第一竖直支路光束经第五二分之一波片(12)由第八偏振分束器(8)分为第四透射光和第四反射光,第四透射光通过第三透镜(30)聚焦到第三探测器(31)上,第四反射光通过第四透镜(28)聚焦到第四探测器(29)上;所述的第一探测器(35)和第二探测器(33)的输出端接第一同相平衡接收电路(38)的输入端,所述的第三探测器(31)和第四探测器(29)的输出端与第一正交平衡接收电路(39)的输入端相连;
所述的第一透射光经第六二分之一波片(15)进入第三偏振分束器(3),所述的第二反射光经第七二分之一波片(14)、第二四分之一波片(19)进入第三偏振分束器(3),所述的第一透射光和第二反射光在第三偏振分束器(3)的偏振分束面合束,合束后分为第二水平支路光束和第二竖直支路光束,第二水平支路光束第八二分之一波片(17)由第五偏振分束器(5)分为第五透射光和第五反射光,第五透射光通过第五透镜(24)聚焦到第五探测器(25)上,第五反射光通过第六透镜(26)聚焦到第六探测器(27)上;所述的第二竖直支路光束通过第九二分之一波片(16)由第四偏振分束器(4)分为第六透射光和第六反射光,第六透射光通过第七透镜(20)聚焦到第七探测器(21)上,第六反射光通过第八透镜(22)聚焦到第八探测器(23)上,所述的第五探测器(25)和第六探测器(27)的输出端接第二正交平衡接收电路(37),所述的第七探测器(20)和第八探测器(22)的输出端接第二同相平衡接收电路(36);
所述的第一同相平衡接收电路(38)的输出端和第二同相平衡接收电路(36)的输出端接第一混频器(40)的输入端,第一正交平衡接收电路(39)的输出端和第二正交平衡接收电路(37)的输出端接第二混频器(41)的输入端,第一混频器(40)和第二混频器(41)的输出端与加法器(42)的输入端相连,所述的加法器(42)的输出端为最终数据信号输出端。
2.根据权利要求1所述的本振增强型差分信号接收装置,其特征在于所述的信号光经过第一偏振分束器(1)后,第一透射光经过第六二分之一波片(15)后入射到第三偏振分束器(3)的偏振分束面经过的传输距离,与本振光经过第二偏振分束器(2)后的第二透射光经过第三二分之一波片(10)后入射到第三偏振分束器(6)的偏振分束面经过的传输距离相等,令距离为z1;此外,信号光经过第一偏振分束器(1)后的第一反射光经过第一二分之一波片(9)、四分之一波片(18)后入射到第六偏振分束器(6)的偏振分束面经过的传输距离,与本振光经过第二偏振分束器(2)后的第二反射光经过第七二分之一波片(14)、四分之一波片(19)后入射到第三偏振分束器(3)的偏振分束面经过的传输距离相等,令距离为z2
3.根据权利要求1所述的本振增强型差分信号接收装置,其特征在于所述的信号光经过第一偏振分束器(1)分束后的第一透射光和第一反射光分别入射到第三偏振分束器(3)和第六偏振分束器(6)的光程差(z1-z2),对应的时间间隔等于调制数据1比特的时间间隔,即满足关系式:
z 1 - z 2 = c v
式中:c为光速,v为数据传输速率。
4.根据权利要求1所述的本振增强型差分信号接收装置,其特征在于所述的第一偏振分束器(1)、第六偏振分束器(6)、第七偏振分束器(7)、第八偏振分束器(8)、第一四分之一波片(18)、第一二分之一波片(9)、第三二分之一波片(10)、第四二分之一波片(11)、第五二分之一波片(12),第一透镜(34)、第二透镜(32)、第三透镜(30)、第四透镜(28)、第一探测器(35)、第二探测器(33)、第三探测器(31)、第四探测器(29)集成在一个可以移动的导轨平移台上,通过移动平台来改变光束传输距离z2,构成与数据传输速率v匹配的光程模块。
5.根据权利要求1所述的本振增强型差分信号接收装置,其特征在于所述的偏振分束器均设定为对入射的水平偏振光束透过,垂直偏振光束反射。
6.根据权利要求1所述的本振增强型差分信号接收装置,其特征在于所述的第二四分之一波片(16)和第一四分之一波片(18)的光轴方向与入射线偏光偏振方向之间的角度设置45度,使得透射光束为圆偏振光束。
7.根据权利要求1所述的本振增强型差分信号接收装置,其特征在于所述的二分之一波片的光轴方向和入射线偏光偏振方向之间角度设置,使得透射光的偏振方向旋转45度或135度。
CN201410823006.9A 2014-12-22 2014-12-22 本振增强型差分信号接收装置 Active CN104601247B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410823006.9A CN104601247B (zh) 2014-12-22 2014-12-22 本振增强型差分信号接收装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410823006.9A CN104601247B (zh) 2014-12-22 2014-12-22 本振增强型差分信号接收装置

Publications (2)

Publication Number Publication Date
CN104601247A CN104601247A (zh) 2015-05-06
CN104601247B true CN104601247B (zh) 2017-04-05

Family

ID=53126793

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410823006.9A Active CN104601247B (zh) 2014-12-22 2014-12-22 本振增强型差分信号接收装置

Country Status (1)

Country Link
CN (1) CN104601247B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109560878B (zh) * 2019-01-21 2021-07-27 中国科学院上海光学精密机械研究所 基于相干探测的空间光到单模光纤的自适应耦合系统
CN113949461A (zh) * 2021-09-07 2022-01-18 中航海信光电技术有限公司 一种自由空间相干接收机
CN114024623B (zh) * 2021-11-03 2023-06-30 中南大学 一种主动防御方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7483641B1 (en) * 2004-07-07 2009-01-27 Nortel Networks Limited Optical hybrid
CN101369851A (zh) * 2007-08-16 2009-02-18 富士通株式会社 相干光接收系统
CN101931457A (zh) * 2009-06-22 2010-12-29 安捷伦科技有限公司 在卡尔曼滤波器控制下的光信号解调
CN102594456A (zh) * 2012-03-29 2012-07-18 中国科学院上海光学精密机械研究所 自相位差分干涉光信号接收装置
CN102866510A (zh) * 2012-09-06 2013-01-09 中国科学院上海光学精密机械研究所 自由空间2×4光桥接器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7483641B1 (en) * 2004-07-07 2009-01-27 Nortel Networks Limited Optical hybrid
CN101369851A (zh) * 2007-08-16 2009-02-18 富士通株式会社 相干光接收系统
CN101931457A (zh) * 2009-06-22 2010-12-29 安捷伦科技有限公司 在卡尔曼滤波器控制下的光信号解调
CN102594456A (zh) * 2012-03-29 2012-07-18 中国科学院上海光学精密机械研究所 自相位差分干涉光信号接收装置
CN102866510A (zh) * 2012-09-06 2013-01-09 中国科学院上海光学精密机械研究所 自由空间2×4光桥接器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
New coherent laser communication detection scheme based on channel-switching method;Liu F, Sun J, Ma X, et al.;《Applied Optics》;20150325;第2738-2746页 *
Self-homodyne interferometric detection in 2×4 optical hybrid for free-space optical communication;Zhi Y, Zhou Y, Sun J, et al.;《Proceedings of SPIE - The International Society for Optical Engineering》;20100801;第781412-1页-第781412-8页 *

Also Published As

Publication number Publication date
CN104601247A (zh) 2015-05-06

Similar Documents

Publication Publication Date Title
US9735886B2 (en) Self-coherent robust spectrally efficient optical transmission systems
CN105794129B (zh) 偏振无关相干光接收器
CN109883412A (zh) 一种双光程光纤陀螺仪
CN104303435B (zh) 相干光通信的装置和方法
CN105634591B (zh) 基于2×4 90°光学桥接器的自由空间相干光通信探测装置
US9236940B2 (en) High bandwidth demodulator system and method
CN107395288A (zh) 一种偏振分集的光外差相干接收方法及系统
CN104702339A (zh) 一种模拟光链路线性化的方法及装置
CN104020334B (zh) 一种电光相位调制器半波电压测量系统及测量方法
CN107528638A (zh) 基于微波光子滤波的宽带微波信号到达角估计方法
CN104779997B (zh) 基于Stokes参量识别的偏振调制空间激光通信方法
CN102546026B (zh) 一种相干光接收机输出信号的偏斜检测方法和系统
CN106788704A (zh) 基于同步序列的少模光纤模间延时的测量系统及方法
CN105162522B (zh) 本地锁相正交偏振自由空间相干光通信装置
CN104601247B (zh) 本振增强型差分信号接收装置
US11757534B1 (en) Self-coherent receiver based on single delay interferometer
CN110535532A (zh) 一种偏振无关的脉冲幅度调制信号相干接收方法及系统
CN102087421B (zh) 用于相干光通信的晶体型光混合器
CN115134004A (zh) 一种基于双向复用延迟干涉仪的集成自相干接收光芯片
CN107733525B (zh) 光电混合振荡锁相环
US20140003815A1 (en) Photonic Integrated Circuit Based Phase Conjugation Devices and Methods
CN115242315B (zh) 一种偏振无关的dqpsk解调集成光芯片
CN110445550A (zh) 一种相干光直接检测方法、装置及光通信系统
CN102523047A (zh) 全光强度信号同时放大、反转和码型转换的方法及装置
CN105721051B (zh) 基于2×2 180°光学桥接器的自由空间相干光通信探测装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant