CN104581917A - Method for reducing transmission power at user side in multiple-connection wireless communication system - Google Patents

Method for reducing transmission power at user side in multiple-connection wireless communication system Download PDF

Info

Publication number
CN104581917A
CN104581917A CN201310473671.5A CN201310473671A CN104581917A CN 104581917 A CN104581917 A CN 104581917A CN 201310473671 A CN201310473671 A CN 201310473671A CN 104581917 A CN104581917 A CN 104581917A
Authority
CN
China
Prior art keywords
mrow
msub
transmission power
base station
priority
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310473671.5A
Other languages
Chinese (zh)
Other versions
CN104581917B (en
Inventor
温萍萍
钱德瑞卡·沃拉尔
邓云
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nokia Shanghai Bell Co Ltd
Alcatel Optical Networks Israel Ltd
Original Assignee
Alcatel Lucent Shanghai Bell Co Ltd
Alcatel Optical Networks Israel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel Lucent Shanghai Bell Co Ltd, Alcatel Optical Networks Israel Ltd filed Critical Alcatel Lucent Shanghai Bell Co Ltd
Priority to CN201310473671.5A priority Critical patent/CN104581917B/en
Publication of CN104581917A publication Critical patent/CN104581917A/en
Application granted granted Critical
Publication of CN104581917B publication Critical patent/CN104581917B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The present invention discloses a method for reducing transmission power at a user side in a dual/multiple-connection wireless communication system, wherein: according to a type of a channel and/or data transmitted in the channel, setting a primary priority for the channel; according to a base station corresponding to the channel and/or a link connected to the base station, setting a secondary priority for the channels having the same primary priority; and when the entire transmission power of the user apparatus exceeds maximum transmission power allowed by the user apparatus, according to the primary priority and the secondary priority, reducing the transmission power for parts of or all of the channels.

Description

Method for reducing transmission power of user side in multi-connection wireless communication system
Technical Field
The present invention relates generally to communication technologies, and more particularly, to a method for reducing transmission power of a user equipment in a multi/dual connection wireless communication system.
Background
Since low power nodes can bring gains in capacity expansion and blind spot coverage, more and more research is being directed to the deployment and enhancement of small cells (small cells) covered by low power nodes. Here, the low power node may be a small base station, examples of which include, but are not limited to, Pico, Femto, and other low power base stations. In 3GPP R12, a new research item "Small Cell Enhancements for E-UTRA and E-UTRA high-layer applications" has been approved, and one of the important points is to support dual/multiple connectivity (dual/pluralconnection) between macro cells (cells covered by macro base station) and Small cells.
Since there are at least two connections in a multi-connection wireless communication system, in an uplink system, a user performs uplink power control independently on each carrier of each connection, the total transmission power of the user may exceed the maximum transmission power allowed by the user side, and generally, power reduction is used to reduce the transmission power, so that the total transmission power of the user is less than/equal to the maximum transmission power allowed by the user side. For a dual/multi-connection wireless communication system with a macro base station and a small base station, various channels such as an uplink control channel, an uplink data channel with uplink control information, and an uplink data channel with no uplink control information and transmitting only data may be transmitted on each connection, and different channel types on two/more connections and path loss and different service quality requirements of different connections need to be considered when performing power reduction, so as to determine the transmission power of each channel of each connection. The invention provides a method for reducing the transmission power of a user side in a dual/multi-connection wireless communication system by considering the characteristics of supporting the dual/multi-connection system, different path loss values on links of a user, a macro base station and a small base station and the requirements of service quality.
The principle of power reduction in the existing wireless communication system supporting carrier aggregation using a single connection is as follows:
1. if the total transmission power at the user side of sub-frame i would exceedThen the reduction is on carrier c in subframe iSo thatThe following conditions are satisfied
<math> <mrow> <munder> <mi>&Sigma;</mi> <mi>c</mi> </munder> <mi>w</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mover> <mi>P</mi> <mo>^</mo> </mover> <mrow> <mi>PUSCH</mi> <mo>,</mo> <mi>c</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>&le;</mo> <mrow> <mo>(</mo> <msub> <mover> <mi>P</mi> <mo>^</mo> </mover> <mi>CMAX</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mover> <mi>P</mi> <mo>^</mo> </mover> <mi>PUCCH</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mrow> </math>
Wherein w (i) is on carrier cWherein 0. ltoreq. w (i). ltoreq.1.
2. If there is PUSCH with UCI on sub-frame i and PUSCH without UCI on other carriers on the user side, the whole transmission power of the user side will exceedThen the power of the PUSCH without UCI on the other carrier c than carrier j in subframe i is first reducedSo thatThe following conditions are satisfied
<math> <mrow> <munder> <mi>&Sigma;</mi> <mrow> <mi>c</mi> <mo>&NotEqual;</mo> <mi>j</mi> </mrow> </munder> <mi>w</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mover> <mi>P</mi> <mo>^</mo> </mover> <mrow> <mi>PUSCH</mi> <mo>,</mo> <mi>c</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>&le;</mo> <mrow> <mo>(</mo> <msub> <mover> <mi>P</mi> <mo>^</mo> </mover> <mi>CMAX</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mover> <mi>P</mi> <mo>^</mo> </mover> <mrow> <mi>PUSCH</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mrow> </math>
When w (i) is greater than 0, the w (i) value is the same for different carriers and may be 0 for a particular carrier w (i).
3. If there is PUCCH and PUSCH with UCI on carrier j in subframe i and PUSCH without UCI on other carriers on the user side, and the whole transmission power on the user side will exceedThen of the userSatisfies the following formula
P ^ PUSCH , j ( i ) = min ( P ^ PUSCH , j ( i ) , ( P ^ CMAX ( i ) - P ^ PUCCH ( i ) ) ) And
<math> <mrow> <munder> <mi>&Sigma;</mi> <mrow> <mi>c</mi> <mo>&NotEqual;</mo> <mi>j</mi> </mrow> </munder> <mi>w</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mover> <mi>P</mi> <mo>^</mo> </mover> <mrow> <mi>PUSCH</mi> <mo>,</mo> <mi>c</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>&le;</mo> <mrow> <mo>(</mo> <msub> <mover> <mi>P</mi> <mo>^</mo> </mover> <mi>CMAX</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mover> <mi>P</mi> <mo>^</mo> </mover> <mi>PUCCH</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mover> <mi>P</mi> <mo>^</mo> </mover> <mrow> <mi>PUSCH</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mrow> </math>
according to the above description, we can find that the transmission power of PUCCH needs to be guaranteed preferentially, then the transmission power of PUSCH with UCI is guaranteed, and finally the transmission power of PUSCH without UCI is guaranteed. In addition, when w (i) is greater than 0, the w (i) value is the same for different carriers but there is some difference between wireless communication systems supporting dual/multiple connectivity and systems supporting carrier aggregation. Firstly, only basic carriers in carrier aggregation transmit PUCCH, but in a dual/multi-connection system, PUCCH is required to be supported in both a macro base station (MeNB) and a small base station (SeNB), and secondly, in the dual/multi-connection system, the macro base station (MeNB) and the small base station (SeNB) are deployed at different positions, so that a path loss value difference between connection with the macro base station and connection with the small base station may be large, and a path loss difference caused by a difference in frequency may not be large because each serving cell is a Co-Node (Co-location Node) in carrier aggregation. In addition, there is only one MAC in a system supporting carrier aggregation, and thus there is no difference in the requirements of quality of service for different PUSCHs. However, for a dual/multi-connection wireless communication system, data transmitted in a macro base station (MeNB) and a small base station (SeNB) may have different quality of service requirements. For example, data transmitted through a macro base station (MeNB) has a relatively strict quality of service requirement, e.g., in terms of delay, while data transmitted through a small scale base station (SeNB) has less strict delay requirement.
In view of the above difference, the method for reducing the transmission power of the user side disclosed by the present invention can effectively support a multi-connection wireless communication system.
Disclosure of Invention
The invention provides a method for reducing the transmission power of a user side in a dual/multi-connection wireless communication system by considering the characteristics of supporting the dual/multi-connection system, different path loss values on links of a user, a macro base station and a small base station and the requirements of service quality.
In accordance with one aspect of the present invention, a method for reducing transmission power of a user equipment in a dual/multi-connection wireless communication system including the user equipment and at least two base stations connected to the user equipment, the at least two base stations including at least one macro base station and at least one small base station, is disclosed, wherein: setting a main priority for a channel according to the type of the channel and/or data transmitted in the channel; setting a secondary priority for channels with the same primary priority according to the base station corresponding to the channel and/or a link connected with the base station; when the whole transmission power of the user equipment exceeds the maximum transmission power allowed by the user equipment, reducing the transmission power of part or all channels according to the primary priority and the secondary priority so as to enable the whole transmission power of the user equipment to be lower than the maximum transmission power allowed by the user equipment.
Specifically, the transmission power of the channel with the low primary priority is reduced before the transmission power of the channel with the high primary priority, and when the channels with the same primary priority are reduced, the transmission power of the channel with the low secondary priority is reduced before the transmission power of the channel with the high secondary priority.
In particular, when the transmission power of the channels with low secondary priority is all reduced to zero and the overall transmission power of the user equipment still exceeds the maximum transmission power allowed by the user equipment, the transmission power of the channels with the same primary priority and with a higher secondary priority is reduced; when the transmission power of the channels with the lower primary priority is reduced to zero and the whole transmission power of the user equipment still exceeds the maximum transmission power allowed by the user equipment, reducing the transmission power of the channels with the higher primary priority.
In particular, the main priority of the channel is set according to the type of the channel and/or whether the channel carries control information, and the main priority of the control channel or the data channel carrying control information is high.
Specifically, PUCCH has the highest primary priority, PUSCH with UCI has the next highest primary priority, and PUSCH without UCI has the lowest primary priority.
Specifically, the same sub-priority is set for channels having the same main priority.
In particular, the same reduction factor is set for channels having the same primary priority and the same secondary priority.
In particular, for channels having the same primary priority, different reduction factors are set for the channels connected to the macro base station and for the channels connected to the small base station.
Particularly, according to the importance degree and/or the requirement of the service quality of the base station corresponding to the PUSCH without UCI, the PUSCH without UCI is set with a sub-priority, and the PUSCH without UCI corresponding to the base station with high importance degree and/or high requirement of the service quality has a high sub-priority; wherein the importance of the base station is determined by the importance of data transmitted between the base station and the user equipment, and the requirement of the service quality of the base station is determined by the requirement of the service quality of the data transmitted between the base station and the user equipment.
In particular, for channels having the same primary priority, the channel transmitted to the macro base station has a second priority higher than the channel transmitted to the small base station.
Specifically, a sub-priority is set for the PUSCH without UCI according to a path loss value of a link between the user equipment and the base station corresponding to the PUSCH without UCI, and the sub-priority of the PUSCH without UCI corresponding to a link with a high path loss value is lower than the sub-priority of the PUSCH without UCI corresponding to a link with a low path loss value.
In particular, when the path loss of the link between the base station with the high degree of importance and the user equipment in the wireless communication system is greater than the path loss of the link between the base station with the low degree of importance and the user equipment: calculating the minimum power required for transmitting data to the base station with high importance degree through the PUSCH without UCI, wherein the minimum power can guarantee the requirement of basic service quality for transmitting the data; reducing a transmission power of the PUSCH without UCI such that an overall transmission power of the user equipment is lower than the maximum transmission power allowed by the user equipment; reducing the transmission power of a PUSCH without UCI for transmitting data to the less important base station when the transmission power of the PUSCH without UCI is reduced to the minimum power and the entire transmission power of the user equipment still exceeds the maximum transmission power allowed by the user equipment; wherein the importance of the base station is determined by the importance of the data transmitted between the base station and the user equipment.
In particular, when the path loss of the link between the base station with high requirement for service quality and the user in the wireless communication system is greater than the path loss of the link between the base station with low requirement for service quality and the user: calculating the minimum power required for transmitting data to the base station with high service quality requirement through the PUSCH without UCI, wherein the minimum power can guarantee the requirement of basic service quality for transmitting the data; reducing a transmission power of the PUSCH without UCI such that an overall transmission power of the user equipment is lower than the maximum transmission power allowed by the user equipment; when the transmission power of the PUSCH without UCI is reduced to the minimum power and the entire transmission power of the user equipment still exceeds the maximum transmission power allowed by the user equipment, reducing the transmission power of the PUSCH without UCI for transmitting data to the base station with low requirement of the quality of service, wherein the quality of service required by the base station is determined by the quality of service required by the data transmitted between the base station and the user equipment.
Drawings
The above and other features of the present invention will become more apparent from the following detailed description of the embodiments thereof, when taken in conjunction with the accompanying drawings, wherein like or similar reference characters designate like or similar steps;
fig. 1 shows a schematic diagram of a user equipment located in a multi-connection wireless communication system transmitting signals to a base station in the multi-connection wireless communication system.
Detailed Description
In the following detailed description of the preferred embodiments, reference is made to the accompanying drawings which form a part hereof. The accompanying drawings illustrate, by way of example, specific embodiments in which the invention may be practiced. The illustrated embodiments are not intended to be exhaustive of all embodiments according to the invention. It should be noted that although the steps of the methods of the present invention are described herein in a particular order, this does not require or imply that these operations must be performed in this particular order, or that all of the illustrated operations must be performed, to achieve desirable results, but rather that the steps described herein can be performed in an order that varies. Additionally or alternatively, certain steps may be omitted, multiple steps combined into one step execution, and/or one step decomposed into multiple step executions.
The method of the invention is applied to a multi-connection wireless communication system, which refers to a wireless communication system in which multiple types of cells are connected, and is explained below by way of example by implementing the invention in a multi-connection wireless communication system having two cell types (macro cell and small cell). It should be noted that, although the multi-connection wireless communication system in the following example only connects the macro cell and the small cell, those skilled in the art can know that the cell types connected by the multi-connection wireless communication system include not only two, but also the number of the connected cell types may be more than two.
Fig. 1 shows a schematic diagram of a user equipment located in a multi-connection wireless communication system transmitting signals to a base station in the multi-connection wireless communication system. The wireless communication system is connected with a macro cell and a small cell, and comprises user equipment and at least two base stations connected with the user equipment, wherein the at least two base stations comprise at least one macro base station and at least one small base station.
Those skilled in the art will appreciate that the channels between the user equipment and the base station of a cell are of different types, and typically include the following 3 channels in the uplink system: PUCCH (physical uplink control channel), PUSCH (physical uplink shared channel) with UCI (uplink control information), PUSCH (physical uplink shared channel) without UCI (uplink control information). The scheme of the present invention is discussed below by reducing the transmission power of these 3 channels. It should be noted that although the scheme of the present invention is discussed herein by only exemplifying the 3 channels, it does not mean that the scheme of the present invention is only applicable to the 3 channels, but instead, the method disclosed by the present invention is applicable to all types of uplink channels between the user equipment and the base station.
Since the PUCCH (physical uplink control channel) carries important information such as ACK/NACK, CQI, PMI, and RI, it is important to avoid reducing the transmission power for transmitting the PUCCH in the ue in order to ensure the transmission quality of the PUCCH when the transmission power of the ue needs to be reduced.
Since a PUSCH (physical uplink shared channel) with UCI (uplink control information) carries relatively important UCI (uplink control information), when the transmission power of the user equipment needs to be reduced, the transmission quality of the PUSCH with UCI also needs to be considered.
Compared with the channel carrying the uplink control information, the PUSCH (physical uplink shared channel) without UCI (uplink control information) transmits data with lower importance than the control information, so when the transmission power of the user equipment needs to be reduced, the transmission power of the PUSCH without UCI should be reduced first.
Therefore, it can be known that, of the above three channels, the PUCCH (physical uplink control channel) is the most important, the PUSCH (physical uplink shared channel) with UCI (uplink control information) is the next, and the PUSCH (physical uplink shared channel) without UCI (uplink control information) is the last, so that the importance levels of the three channels can be obtained according to the priority levels.
It is noted that the primary priorities of the same type of channels transmitting data to different types of base stations are the same. For example, the main priority of PUCCH connected to the macro base station is the same as the main priority of PUCCH connected to the small base station.
In the method disclosed by the invention, the main priority is determined by the type of the channel and/or the data transmitted in the channel, the main priority of the control channel is higher than that of the shared channel for transmitting the data, and the main priority of the shared channel for transmitting the control information is higher than that of the shared channel without the control information.
When the total transmission power of the user equipment exceeds the maximum transmission power allowed by the user equipment, the transmission power of the PUSCH without the UCI is reduced before the transmission power of the PUSCH with the UCI, and the transmission power of the PUSCH with the UCI is reduced before the transmission power of the PUCCH.
In addition, according to the base station and/or link corresponding to the channel, the secondary priority can be set for the channel with the same primary priority. The secondary priority may be used to assist the primary priority in determining the order in which the transmission power of the channel is reduced. The sub-priorities are compared only when the main priorities of the channels are the same, and the order of reduction of the transmission power of the channels having the same main priority is decided. As with the rule of operation of the primary priority, the transmission power of the channel with the lower secondary priority is reduced before the transmission power of the channel with the higher secondary priority.
For example, as described above, the primary priority of the PUCCH connected to the macro base station is the same as the primary priority of the PUCCH connected to the small base station, and different secondary priorities may be set for the two channels according to their corresponding base station conditions and/or link conditions. For example, as known to those skilled in the art, in a multi-connection system, a macro base station may transmit more important data as an anchor base station than a small base station, and therefore, the sub-priority of the PUCCH corresponding to the macro base station is higher than the sub-priority of the PUCCH corresponding to the small base station, that is, the sub-priority of the PUCCH connected to the macro base station is higher than the sub-priority of the PUCCH connected to the small base station.
Similarly, the sub-optimal priority of the channel may also be determined according to other factors of the base station and/or the link corresponding to the channel, for example, the sub-optimal priority of the channel may be determined according to the service quality requirement of information transmission in the base station, for a base station with high quality of service requirements for information transmission, in order to guarantee the quality of the information transmission in a channel, the transmission power of said channel should be maintained as much as possible, the sub-priority of the channel corresponding to the base station is also high, and, for example, the sub-priority of the channel is determined according to the path loss condition of the link, if a channel exists in a link with a poor path loss condition, the channel's transmission power is used inefficiently, and the same transmission power may provide more throughput or higher quality of service for a plurality of channels located in a link with a good path loss condition, so the sub-optimal priority corresponding to the channel with a poor path loss value should be set low.
Accordingly, the reduction scheme of the invention for the transmission power of the channel is as follows:
1. the transmission power of the PUCCH is reduced only when the transmission power of the PUSCH without UCI and the transmission power of the PUSCH with UCI are reduced to zero, and the entire transmission power of the user equipment still exceeds the maximum transmission power allowed by the user equipment, for which case the transmission power of the channel needs to satisfy the following formula:
<math> <mrow> <munder> <mi>&Sigma;</mi> <msub> <mi>c</mi> <mi>M</mi> </msub> </munder> <msub> <mi>w</mi> <mi>M</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mover> <mi>P</mi> <mo>^</mo> </mover> <mrow> <msub> <mi>PUSCH</mi> <mi>MeNB</mi> </msub> <mo>,</mo> <msub> <mi>c</mi> <mi>M</mi> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>+</mo> <munder> <mi>&Sigma;</mi> <msub> <mi>c</mi> <mi>s</mi> </msub> </munder> <msub> <mi>w</mi> <mi>S</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mover> <mi>P</mi> <mo>^</mo> </mover> <mrow> <mi>PUSC</mi> <msub> <mi>H</mi> <mi>SeNB</mi> </msub> <mo>,</mo> <msub> <mi>c</mi> <mi>s</mi> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> </mrow> </math> and is
<math> <mrow> <munder> <mi>&Sigma;</mi> <msub> <mi>c</mi> <mrow> <mi>M</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> </munder> <msub> <mi>w</mi> <mi>j</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mover> <mi>P</mi> <mo>^</mo> </mover> <mrow> <mi>PUCC</mi> <msub> <mi>H</mi> <mi>MeNB</mi> </msub> <mo>,</mo> <msub> <mi>c</mi> <mrow> <mi>M</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>+</mo> <munder> <mi>&Sigma;</mi> <msub> <mi>c</mi> <mrow> <mi>s</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> </munder> <msub> <mi>w</mi> <mi>j</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mover> <mi>P</mi> <mo>^</mo> </mover> <mrow> <msub> <mi>PUCCH</mi> <mi>SeNB</mi> </msub> <mo>,</mo> <msub> <mi>c</mi> <mrow> <mi>s</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>&le;</mo> <mrow> <mo>(</mo> <msub> <mover> <mi>P</mi> <mo>^</mo> </mover> <mi>CMAX</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mrow> </math>
Wherein, CMAnd CsCarriers, w, transmitted by the user equipment to the macro and small base stations, respectivelyMAnd wSRespectively of the channel connected to the macro base station and of the small base station, CM,jAnd Cs,jRespectively, the user equipment transmits to the macro base station and the small base station, and the carrier j carries the PUCCH.
In addition, a secondary priority may be set for PUCCHs having the same primary priority according to base stations and/or links to which the PUCCHs correspond, and transmission power of the PUCCHs corresponding to different base stations and/or links may be sequentially reduced according to the secondary priority.
2. When the transmission power of the PUSCH without UCI is reduced to zero and the overall transmission power of the user equipment still exceeds the maximum transmission power allowed by the user equipment, the transmission power of the PUSCH with UCI is reduced, for which case the transmission power of the channel needs to satisfy the following formula:
<math> <mrow> <munder> <mi>&Sigma;</mi> <mrow> <msub> <mi>c</mi> <mi>M</mi> </msub> <mo>&NotEqual;</mo> <msub> <mi>c</mi> <mrow> <mi>M</mi> <mo>,</mo> <mi>l</mi> </mrow> </msub> </mrow> </munder> <msub> <mi>w</mi> <mi>M</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mover> <mi>P</mi> <mo>^</mo> </mover> <mrow> <mi>PUSC</mi> <msub> <mi>H</mi> <mi>MeNB</mi> </msub> <mo>,</mo> <msub> <mi>c</mi> <mi>M</mi> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>+</mo> <munder> <mi>&Sigma;</mi> <mrow> <msub> <mi>c</mi> <mi>s</mi> </msub> <mo>&NotEqual;</mo> <msub> <mi>c</mi> <mrow> <mi>s</mi> <mo>,</mo> <mi>l</mi> </mrow> </msub> </mrow> </munder> <msub> <mi>w</mi> <mi>S</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mover> <mi>P</mi> <mo>^</mo> </mover> <mrow> <msub> <mi>PUSCH</mi> <mi>SeNB</mi> </msub> <mo>,</mo> <msub> <mi>c</mi> <mi>s</mi> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> </mrow> </math> and is
<math> <mrow> <munder> <mi>&Sigma;</mi> <msub> <mi>c</mi> <mrow> <mi>M</mi> <mo>,</mo> <mi>l</mi> </mrow> </msub> </munder> <msub> <mi>w</mi> <mi>l</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mover> <mi>P</mi> <mo>^</mo> </mover> <mrow> <mi>PUSC</mi> <msub> <mi>H</mi> <mi>MeNB</mi> </msub> <mo>,</mo> <msub> <mi>c</mi> <mrow> <mi>M</mi> <mo>,</mo> <mi>l</mi> </mrow> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>+</mo> <munder> <mi>&Sigma;</mi> <msub> <mi>c</mi> <mrow> <mi>s</mi> <mo>,</mo> <mi>l</mi> </mrow> </msub> </munder> <msub> <mi>w</mi> <mi>l</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mover> <mi>P</mi> <mo>^</mo> </mover> <mrow> <mi>PUSC</mi> <msub> <mi>H</mi> <mi>SeNB</mi> </msub> <mo>,</mo> <msub> <mi>c</mi> <mrow> <mi>s</mi> <mo>,</mo> <mi>l</mi> </mrow> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>&le;</mo> </mrow> </math>
<math> <mrow> <mo>(</mo> <msub> <mover> <mi>P</mi> <mo>^</mo> </mover> <mi>CMAX</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>-</mo> <munder> <mi>&Sigma;</mi> <msub> <mi>c</mi> <mrow> <mi>M</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> </munder> <msub> <mi>w</mi> <mi>j</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mover> <mi>P</mi> <mo>^</mo> </mover> <mrow> <mi>PUCC</mi> <msub> <mi>H</mi> <mi>MeNB</mi> </msub> <mo>,</mo> <msub> <mi>c</mi> <mrow> <mi>M</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>+</mo> <munder> <mi>&Sigma;</mi> <msub> <mi>c</mi> <mrow> <mi>s</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> </munder> <msub> <mi>w</mi> <mi>j</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mover> <mi>P</mi> <mo>^</mo> </mover> <mrow> <msub> <mi>PUCCH</mi> <mi>SeNB</mi> </msub> <mo>,</mo> <msub> <mi>c</mi> <mrow> <mi>s</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </math>
Wherein, CM,lAnd Cs,lThe carrier waves carrying the PUSCH with the UCI are transmitted to the macro base station and the small base station by the user equipment respectively.
Likewise, all PUSCHs with UCI may be set with a sub-priority and reduced according to the sub-priority, which will not be described in detail herein.
3. When the total transmission power of the user equipment exceeds the maximum transmission power allowed by the user equipment, the transmission power of the PUSCH without the UCI is firstly reduced. For how to reduce the transmission power of the PUSCH without UCI, the present invention proposes the following schemes to reduce the transmission power of this type of channel.
Setting the sub-optimal levels of all PUSCHs without UCI to be the same, and using the same reduction factor w for all channels corresponding to all macro base stations and small base stations, the power of the channel connected with the macro base station and the channel connected with the small base station is reduced proportionally, according to the uplink power control quasi side, the channel corresponding to the link with smaller path loss has smaller transmission power, and the reduced power of the channel corresponding to the link with smaller path loss is less than that of the channel corresponding to the link with larger path loss. The formula is as follows:
<math> <mrow> <munder> <mi>&Sigma;</mi> <mrow> <msub> <mi>c</mi> <mi>M</mi> </msub> <mo>&NotEqual;</mo> <msub> <mi>c</mi> <mrow> <mi>M</mi> <mo>,</mo> <mi>l</mi> </mrow> </msub> </mrow> </munder> <msub> <mi>w</mi> <mi>M</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mover> <mi>P</mi> <mo>^</mo> </mover> <mrow> <msub> <mi>PUSCH</mi> <mi>MeNB</mi> </msub> <mo>,</mo> <msub> <mi>c</mi> <mi>M</mi> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>+</mo> <munder> <mi>&Sigma;</mi> <mrow> <msub> <mi>c</mi> <mi>s</mi> </msub> <mo>&NotEqual;</mo> <msub> <mi>c</mi> <mrow> <mi>s</mi> <mo>,</mo> <mi>l</mi> </mrow> </msub> </mrow> </munder> <msub> <mi>w</mi> <mi>S</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mover> <mi>P</mi> <mo>^</mo> </mover> <mrow> <msub> <mi>PUSCH</mi> <mi>SeNB</mi> </msub> <mo>,</mo> <msub> <mi>c</mi> <mi>s</mi> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>&le;</mo> </mrow> </math>
<math> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <msub> <mover> <mi>P</mi> <mo>^</mo> </mover> <mi>CMAX</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>-</mo> <mrow> <mo>(</mo> <munder> <mi>&Sigma;</mi> <msub> <mi>c</mi> <mrow> <mi>M</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> </munder> <msub> <mi>w</mi> <mi>j</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mover> <mi>P</mi> <mo>^</mo> </mover> <mrow> <msub> <mi>PUCCH</mi> <mi>MeNB</mi> </msub> <mo>,</mo> <msub> <mi>c</mi> <mrow> <mi>M</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>+</mo> <munder> <mi>&Sigma;</mi> <msub> <mi>c</mi> <mrow> <mi>s</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> </munder> <msub> <mi>w</mi> <mi>j</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mover> <mi>P</mi> <mo>^</mo> </mover> <mrow> <mi>PUCC</mi> <msub> <mi>H</mi> <mi>SeNB</mi> </msub> <mo>,</mo> <msub> <mi>c</mi> <mrow> <mi>s</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <mrow> <mo>(</mo> <munder> <mi>&Sigma;</mi> <msub> <mi>c</mi> <mrow> <mi>M</mi> <mo>,</mo> <mi>l</mi> </mrow> </msub> </munder> <msub> <mi>w</mi> <mi>l</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mover> <mi>P</mi> <mo>^</mo> </mover> <mrow> <mi>PUSC</mi> <msub> <mi>H</mi> <mi>MeNB</mi> </msub> <mo>,</mo> <msub> <mi>c</mi> <mrow> <mi>M</mi> <mo>,</mo> <mi>l</mi> </mrow> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>+</mo> <munder> <mi>&Sigma;</mi> <msub> <mi>c</mi> <mrow> <mi>s</mi> <mo>,</mo> <mi>l</mi> </mrow> </msub> </munder> <msub> <mi>w</mi> <mi>l</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mover> <mi>P</mi> <mo>^</mo> </mover> <mrow> <msub> <mi>PUSCH</mi> <mi>SeNB</mi> </msub> <mo>,</mo> <msub> <mi>c</mi> <mrow> <mi>s</mi> <mo>,</mo> <mi>l</mi> </mrow> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> </math>
here, wMIs equal to wS. In addition, since the PUSCH without UCI has the lowest primary priority and its transmission power is reduced first, w herej(i)=wl(i)=1。
Setting the sub-optimal priority of all PUSCHs without UCI to be the same, wherein the reduction factor of the channel on the carrier connected with the macro base station is w1, and the reduction factor of the channel on the carrier connected with the small base station is w 2. For this situation, if the macro base station and the small base station share the same carrier, the macro base station and the small base station may implement transmission with the user equipment in a time division multiplexing manner, for one subframe, the user equipment may only perform transmission with one base station, and the user equipment uses a reduction factor corresponding to the base station performing data transmission with the user equipment on the carrier. The formula is as follows:
<math> <mrow> <munder> <mi>&Sigma;</mi> <mrow> <msub> <mi>c</mi> <mi>M</mi> </msub> <mo>&NotEqual;</mo> <msub> <mi>c</mi> <mrow> <mi>M</mi> <mo>,</mo> <mi>l</mi> </mrow> </msub> </mrow> </munder> <msub> <mi>w</mi> <mi>M</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mover> <mi>P</mi> <mo>^</mo> </mover> <mrow> <msub> <mi>PUSCH</mi> <mi>MeNB</mi> </msub> <mo>,</mo> <msub> <mi>c</mi> <mi>M</mi> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>+</mo> <munder> <mi>&Sigma;</mi> <mrow> <msub> <mi>c</mi> <mi>s</mi> </msub> <mo>&NotEqual;</mo> <msub> <mi>c</mi> <mrow> <mi>s</mi> <mo>,</mo> <mi>l</mi> </mrow> </msub> </mrow> </munder> <msub> <mi>w</mi> <mi>S</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mover> <mi>P</mi> <mo>^</mo> </mover> <mrow> <msub> <mi>PUSCH</mi> <mi>SeNB</mi> </msub> <mo>,</mo> <msub> <mi>c</mi> <mi>s</mi> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>&le;</mo> </mrow> </math>
<math> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <msub> <mover> <mi>P</mi> <mo>^</mo> </mover> <mi>CMAX</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>-</mo> <mrow> <mo>(</mo> <munder> <mi>&Sigma;</mi> <msub> <mi>c</mi> <mrow> <mi>M</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> </munder> <msub> <mi>w</mi> <mi>j</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mover> <mi>P</mi> <mo>^</mo> </mover> <mrow> <msub> <mi>PUCCH</mi> <mi>MeNB</mi> </msub> <mo>,</mo> <msub> <mi>c</mi> <mrow> <mi>M</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>+</mo> <munder> <mi>&Sigma;</mi> <msub> <mi>c</mi> <mrow> <mi>s</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> </munder> <msub> <mi>w</mi> <mi>j</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mover> <mi>P</mi> <mo>^</mo> </mover> <mrow> <mi>PUCC</mi> <msub> <mi>H</mi> <mi>SeNB</mi> </msub> <mo>,</mo> <msub> <mi>c</mi> <mrow> <mi>s</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <mrow> <mo>(</mo> <munder> <mi>&Sigma;</mi> <msub> <mi>c</mi> <mrow> <mi>M</mi> <mo>,</mo> <mi>l</mi> </mrow> </msub> </munder> <msub> <mi>w</mi> <mi>l</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mover> <mi>P</mi> <mo>^</mo> </mover> <mrow> <mi>PUSC</mi> <msub> <mi>H</mi> <mi>MeNB</mi> </msub> <mo>,</mo> <msub> <mi>c</mi> <mrow> <mi>M</mi> <mo>,</mo> <mi>l</mi> </mrow> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>+</mo> <munder> <mi>&Sigma;</mi> <msub> <mi>c</mi> <mrow> <mi>s</mi> <mo>,</mo> <mi>l</mi> </mrow> </msub> </munder> <msub> <mi>w</mi> <mi>l</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mover> <mi>P</mi> <mo>^</mo> </mover> <mrow> <msub> <mi>PUSCH</mi> <mi>SeNB</mi> </msub> <mo>,</mo> <msub> <mi>c</mi> <mrow> <mi>s</mi> <mo>,</mo> <mi>l</mi> </mrow> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> </math>
here wM=w1And wS=w2
In addition, since the PUSCH without UCI has the lowest primary priority and its transmission power is reduced first, w herej(i)=wl(i)=1。
And 3c, setting a secondary priority for the PUSCH without the UCI according to the base station corresponding to the channel, wherein in the example, because the macro base station and the small base station are connected through a non-ideal backhaul with time delay in the multi-connection system, data with a strict requirement of service quality, such as the requirement of time delay, is transmitted through the macro base station (MeNB) preferentially, and data transmitted through the small base station (SeNB) has no strict requirement of time delay, setting a high secondary priority for the channel corresponding to the macro base station and setting a low secondary priority for the channel corresponding to the small base station. Therefore, the transmission power of the PUSCH without UCI corresponding to the macro base station is kept unchanged, the transmission power of the PUSCH without UCI corresponding to the small base station is reduced, if the transmission power of the channel with low secondary priority is reduced to zero, the user equipment still needs to reduce the transmission power, and then the transmission power of the channel with high secondary priority is reduced. The following steps and equations are derived from this:
the method comprises the following steps: the transmission power of PUSCH without UCI corresponding to small-sized base station is reduced
<math> <mrow> <munder> <mi>&Sigma;</mi> <mrow> <msub> <mi>c</mi> <mi>s</mi> </msub> <mo>&NotEqual;</mo> <msub> <mi>c</mi> <mrow> <mi>s</mi> <mo>,</mo> <mi>l</mi> </mrow> </msub> </mrow> </munder> <msub> <mi>w</mi> <mi>S</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mover> <mi>P</mi> <mo>^</mo> </mover> <mrow> <msub> <mi>PUSCH</mi> <mi>SeNB</mi> </msub> <mo>,</mo> <msub> <mi>c</mi> <mi>s</mi> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>&le;</mo> </mrow> </math>
<math> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <msub> <mover> <mi>P</mi> <mo>^</mo> </mover> <mi>CMAX</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>-</mo> <mrow> <mo>(</mo> <munder> <mi>&Sigma;</mi> <msub> <mi>c</mi> <mrow> <mi>M</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> </munder> <msub> <mi>w</mi> <mi>j</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mover> <mi>P</mi> <mo>^</mo> </mover> <mrow> <msub> <mi>PUCCH</mi> <mi>MeNB</mi> </msub> <mo>,</mo> <msub> <mi>c</mi> <mrow> <mi>M</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>+</mo> <munder> <mi>&Sigma;</mi> <msub> <mi>c</mi> <mrow> <mi>s</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> </munder> <msub> <mi>w</mi> <mi>j</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mover> <mi>P</mi> <mo>^</mo> </mover> <mrow> <mi>PUCC</mi> <msub> <mi>H</mi> <mi>SeNB</mi> </msub> <mo>,</mo> <msub> <mi>c</mi> <mrow> <mi>s</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <mrow> <mo>(</mo> <munder> <mi>&Sigma;</mi> <msub> <mi>c</mi> <mrow> <mi>M</mi> <mo>,</mo> <mi>l</mi> </mrow> </msub> </munder> <msub> <mi>w</mi> <mi>l</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mover> <mi>P</mi> <mo>^</mo> </mover> <mrow> <mi>PUSC</mi> <msub> <mi>H</mi> <mi>MeNB</mi> </msub> <mo>,</mo> <msub> <mi>c</mi> <mrow> <mi>M</mi> <mo>,</mo> <mi>l</mi> </mrow> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>+</mo> <munder> <mi>&Sigma;</mi> <msub> <mi>c</mi> <mrow> <mi>s</mi> <mo>,</mo> <mi>l</mi> </mrow> </msub> </munder> <msub> <mi>w</mi> <mi>l</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mover> <mi>P</mi> <mo>^</mo> </mover> <mrow> <msub> <mi>PUSCH</mi> <mi>SeNB</mi> </msub> <mo>,</mo> <msub> <mi>c</mi> <mrow> <mi>s</mi> <mo>,</mo> <mi>l</mi> </mrow> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>-</mo> <munder> <mi>&Sigma;</mi> <mrow> <msub> <mi>c</mi> <mi>M</mi> </msub> <mo>&NotEqual;</mo> <msub> <mi>c</mi> <mrow> <mi>M</mi> <mo>,</mo> <mi>l</mi> </mrow> </msub> </mrow> </munder> <msub> <mi>w</mi> <mi>M</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mover> <mi>P</mi> <mo>^</mo> </mover> <mrow> <msub> <mi>PUSCH</mi> <mi>MeNB</mi> </msub> <mo>,</mo> <msub> <mi>c</mi> <mi>M</mi> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> </math>
Wherein, wM(i)=wj(i)=wl(i)=1
Step two: if the transmission power of the PUSCH without UCI corresponding to the small-sized base station is reduced to zero and the whole transmission power of the user equipment still exceeds the maximum transmission power allowed by the user equipment, the transmission power of the PUSCH without UCI corresponding to the macro base station is reduced according to the following formula
<math> <mrow> <munder> <mi>&Sigma;</mi> <mrow> <msub> <mi>c</mi> <mi>M</mi> </msub> <mo>&NotEqual;</mo> <msub> <mi>c</mi> <mrow> <mi>M</mi> <mo>,</mo> <mi>l</mi> </mrow> </msub> </mrow> </munder> <msub> <mi>w</mi> <mi>M</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mover> <mi>P</mi> <mo>^</mo> </mover> <mrow> <msub> <mi>PUSCH</mi> <mi>MeNB</mi> </msub> <mo>,</mo> <msub> <mi>c</mi> <mi>M</mi> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>&le;</mo> </mrow> </math>
<math> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <msub> <mover> <mi>P</mi> <mo>^</mo> </mover> <mi>CMAX</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>-</mo> <mrow> <mo>(</mo> <munder> <mi>&Sigma;</mi> <msub> <mi>c</mi> <mrow> <mi>M</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> </munder> <msub> <mi>w</mi> <mi>j</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mover> <mi>P</mi> <mo>^</mo> </mover> <mrow> <msub> <mi>PUCCH</mi> <mi>MeNB</mi> </msub> <mo>,</mo> <msub> <mi>c</mi> <mrow> <mi>M</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>+</mo> <munder> <mi>&Sigma;</mi> <msub> <mi>c</mi> <mrow> <mi>s</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> </munder> <msub> <mi>w</mi> <mi>j</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mover> <mi>P</mi> <mo>^</mo> </mover> <mrow> <mi>PUCC</mi> <msub> <mi>H</mi> <mi>SeNB</mi> </msub> <mo>,</mo> <msub> <mi>c</mi> <mrow> <mi>s</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <mrow> <mo>(</mo> <munder> <mi>&Sigma;</mi> <msub> <mi>c</mi> <mrow> <mi>M</mi> <mo>,</mo> <mi>l</mi> </mrow> </msub> </munder> <msub> <mi>w</mi> <mi>l</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mover> <mi>P</mi> <mo>^</mo> </mover> <mrow> <mi>PUSC</mi> <msub> <mi>H</mi> <mi>MeNB</mi> </msub> <mo>,</mo> <msub> <mi>c</mi> <mrow> <mi>M</mi> <mo>,</mo> <mi>l</mi> </mrow> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>+</mo> <munder> <mi>&Sigma;</mi> <msub> <mi>c</mi> <mrow> <mi>s</mi> <mo>,</mo> <mi>l</mi> </mrow> </msub> </munder> <msub> <mi>w</mi> <mi>l</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mover> <mi>P</mi> <mo>^</mo> </mover> <mrow> <msub> <mi>PUSCH</mi> <mi>SeNB</mi> </msub> <mo>,</mo> <msub> <mi>c</mi> <mrow> <mi>s</mi> <mo>,</mo> <mi>l</mi> </mrow> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> </math>
In addition, since PUSCH without UCI has low primary priority and reduced transmission power is implemented first, w herej(i)=wl(i)=1。
Determining a secondary priority from the perspective of achieving maximum throughput. Since the links from the user equipment to the macro base station and the small base station have different path losses, the channel in the link with the larger path loss needs more transmission power to obtain the same receiving effect (e.g., receiving the output signal to interference plus noise ratio), and the channel in the link with the larger path loss needs more transmission power to obtain the same throughput. So when power is limited, if power is allocated to a channel on a link with a smaller path loss value, the channel will get a higher SINR (signal to interference plus noise ratio), i.e. a greater throughput, than a channel on a link with a larger path loss value. Therefore, from a throughput point of view, power should be left to the channel corresponding to the link with the smaller path loss, and the transmission power of the channel corresponding to the link with the larger path loss should be first reduced. In summary, the sub-priority of the channel is determined according to the path loss value of the link corresponding to the channel.
For example, the path loss of the link between the user equipment and the macro base station is relatively large, then
The method comprises the following steps: firstly, reducing the transmission power of the PUSCH with UCI corresponding to larger path loss, namely the transmission power of a channel of a link between the PUSCH and a macro base station, wherein the formula is as follows
<math> <mrow> <munder> <mi>&Sigma;</mi> <mrow> <msub> <mi>c</mi> <mi>M</mi> </msub> <mo>&NotEqual;</mo> <msub> <mi>c</mi> <mrow> <mi>M</mi> <mo>,</mo> <mi>l</mi> </mrow> </msub> </mrow> </munder> <msub> <mi>w</mi> <mi>M</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mover> <mi>P</mi> <mo>^</mo> </mover> <mrow> <msub> <mi>PUSCH</mi> <mi>MeNB</mi> </msub> <mo>,</mo> <msub> <mi>c</mi> <mi>M</mi> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>&le;</mo> </mrow> </math>
<math> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <msub> <mover> <mi>P</mi> <mo>^</mo> </mover> <mi>CMAX</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>-</mo> <mrow> <mo>(</mo> <munder> <mi>&Sigma;</mi> <msub> <mi>c</mi> <mrow> <mi>M</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> </munder> <msub> <mi>w</mi> <mi>j</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mover> <mi>P</mi> <mo>^</mo> </mover> <mrow> <msub> <mi>PUCCH</mi> <mi>MeNB</mi> </msub> <mo>,</mo> <msub> <mi>c</mi> <mrow> <mi>M</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>+</mo> <munder> <mi>&Sigma;</mi> <msub> <mi>c</mi> <mrow> <mi>s</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> </munder> <msub> <mi>w</mi> <mi>j</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mover> <mi>P</mi> <mo>^</mo> </mover> <mrow> <mi>PUCC</mi> <msub> <mi>H</mi> <mi>SeNB</mi> </msub> <mo>,</mo> <msub> <mi>c</mi> <mrow> <mi>s</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <mrow> <mo>(</mo> <munder> <mi>&Sigma;</mi> <msub> <mi>c</mi> <mrow> <mi>M</mi> <mo>,</mo> <mi>l</mi> </mrow> </msub> </munder> <msub> <mi>w</mi> <mi>l</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mover> <mi>P</mi> <mo>^</mo> </mover> <mrow> <mi>PUSC</mi> <msub> <mi>H</mi> <mi>MeNB</mi> </msub> <mo>,</mo> <msub> <mi>c</mi> <mrow> <mi>M</mi> <mo>,</mo> <mi>l</mi> </mrow> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>+</mo> <munder> <mi>&Sigma;</mi> <msub> <mi>c</mi> <mrow> <mi>s</mi> <mo>,</mo> <mi>l</mi> </mrow> </msub> </munder> <msub> <mi>w</mi> <mi>l</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mover> <mi>P</mi> <mo>^</mo> </mover> <mrow> <msub> <mi>PUSCH</mi> <mi>SeNB</mi> </msub> <mo>,</mo> <msub> <mi>c</mi> <mrow> <mi>s</mi> <mo>,</mo> <mi>l</mi> </mrow> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>-</mo> <munder> <mi>&Sigma;</mi> <mrow> <msub> <mi>c</mi> <mi>s</mi> </msub> <mo>&NotEqual;</mo> <msub> <mi>c</mi> <mrow> <mi>s</mi> <mo>,</mo> <mi>l</mi> </mrow> </msub> </mrow> </munder> <msub> <mi>w</mi> <mi>S</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mover> <mi>P</mi> <mo>^</mo> </mover> <mrow> <msub> <mi>PUSCH</mi> <mi>SeNB</mi> </msub> <mo>,</mo> <msub> <mi>c</mi> <mi>s</mi> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> </math>
Wherein ws(i)=wj(i)=wl(i)=1。
If the transmission power of the PUSCH with UCI corresponding to the larger path loss is reduced to zero and the whole transmission power of the user equipment still exceeds the maximum transmission power allowed by the user equipment, the transmission power of the PUSCH with UCI corresponding to the smaller path loss is reduced according to the following formula
<math> <mrow> <munder> <mi>&Sigma;</mi> <mrow> <msub> <mi>c</mi> <mi>s</mi> </msub> <mo>&NotEqual;</mo> <msub> <mi>c</mi> <mrow> <mi>s</mi> <mo>,</mo> <mi>l</mi> </mrow> </msub> </mrow> </munder> <msub> <mi>w</mi> <mi>S</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mover> <mi>P</mi> <mo>^</mo> </mover> <mrow> <msub> <mi>PUSCH</mi> <mi>SeNB</mi> </msub> <mo>,</mo> <msub> <mi>c</mi> <mi>s</mi> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>&le;</mo> </mrow> </math>
<math> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <msub> <mover> <mi>P</mi> <mo>^</mo> </mover> <mi>CMAX</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>-</mo> <mrow> <mo>(</mo> <munder> <mi>&Sigma;</mi> <msub> <mi>c</mi> <mrow> <mi>M</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> </munder> <msub> <mi>w</mi> <mi>j</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mover> <mi>P</mi> <mo>^</mo> </mover> <mrow> <msub> <mi>PUCCH</mi> <mi>MeNB</mi> </msub> <mo>,</mo> <msub> <mi>c</mi> <mrow> <mi>M</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>+</mo> <munder> <mi>&Sigma;</mi> <msub> <mi>c</mi> <mrow> <mi>s</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> </munder> <msub> <mi>w</mi> <mi>j</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mover> <mi>P</mi> <mo>^</mo> </mover> <mrow> <mi>PUCC</mi> <msub> <mi>H</mi> <mi>SeNB</mi> </msub> <mo>,</mo> <msub> <mi>c</mi> <mrow> <mi>s</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <mrow> <mo>(</mo> <munder> <mi>&Sigma;</mi> <msub> <mi>c</mi> <mrow> <mi>M</mi> <mo>,</mo> <mi>l</mi> </mrow> </msub> </munder> <msub> <mi>w</mi> <mi>l</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mover> <mi>P</mi> <mo>^</mo> </mover> <mrow> <mi>PUSC</mi> <msub> <mi>H</mi> <mi>MeNB</mi> </msub> <mo>,</mo> <msub> <mi>c</mi> <mrow> <mi>M</mi> <mo>,</mo> <mi>l</mi> </mrow> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>+</mo> <munder> <mi>&Sigma;</mi> <msub> <mi>c</mi> <mrow> <mi>s</mi> <mo>,</mo> <mi>l</mi> </mrow> </msub> </munder> <msub> <mi>w</mi> <mi>l</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mover> <mi>P</mi> <mo>^</mo> </mover> <mrow> <msub> <mi>PUSCH</mi> <mi>SeNB</mi> </msub> <mo>,</mo> <msub> <mi>c</mi> <mrow> <mi>s</mi> <mo>,</mo> <mi>l</mi> </mrow> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> </math>
In addition, since PUSCH without UCI has low primary priority and reduced transmission power is implemented first, w herej(i)=wl(i)=1
3e, in order to take into account the quality of service and the throughput of information transmission between the user equipment and the base station, the schemes in 3c and 3d may be used in combination, for example, if the path loss of the link between the user equipment and the macro base station is smaller than the path loss value of the link between the user equipment and the small base station, then the procedure is simple, and the sub-priority of the channel corresponding to the macro base station is set to be higher than the sub-priority of the channel corresponding to the small base station. However, if the path loss of the link between the user equipment and the macro base station is larger than the path loss value of the link between the user equipment and the small base station, the procedure becomes complicated, first, the minimum power of the channel of the corresponding macro base station (as before, the channel here still refers to the PUSCH without UCI) is determined/calculated to ensure the basic service quality requirement of the data, and then the transmission power of the channel is reduced. And if the whole transmission power of the user equipment still exceeds the maximum transmission power allowed by the user equipment when the transmission power of the channel of the corresponding macro base station is reduced to the minimum power, reducing the transmission power of the channel (the PUSCH without the UCI) of the corresponding small base station. Similarly, the method can also give consideration to the service quality and the throughput of the information transmission between the user equipment and the base station, and a corresponding power reduction step is formulated.
Accordingly, 3 steps can be summarized for the above scheme
The method comprises the following steps: determining/calculating minimum transmission power of PUSCH without UCI of corresponding macro base stationTo guarantee basic quality of service requirements
Step two: reducing the transmission power of the PUSCH without the UCI corresponding to the macro base station, wherein the formula is as follows:
<math> <mrow> <munder> <mi>&Sigma;</mi> <mrow> <msub> <mi>c</mi> <mi>M</mi> </msub> <mo>&NotEqual;</mo> <msub> <mi>c</mi> <mrow> <mi>M</mi> <mo>,</mo> <mi>l</mi> </mrow> </msub> </mrow> </munder> <msub> <mi>w</mi> <mi>M</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mover> <mi>P</mi> <mo>^</mo> </mover> <mrow> <msub> <mi>PUSCH</mi> <mi>MeNB</mi> </msub> <mo>,</mo> <msub> <mi>c</mi> <mi>M</mi> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>&le;</mo> </mrow> </math>
<math> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <msub> <mover> <mi>P</mi> <mo>^</mo> </mover> <mi>CMAX</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>-</mo> <mrow> <mo>(</mo> <munder> <mi>&Sigma;</mi> <msub> <mi>c</mi> <mrow> <mi>M</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> </munder> <msub> <mi>w</mi> <mi>j</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mover> <mi>P</mi> <mo>^</mo> </mover> <mrow> <msub> <mi>PUCCH</mi> <mi>MeNB</mi> </msub> <mo>,</mo> <msub> <mi>c</mi> <mrow> <mi>M</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>+</mo> <munder> <mi>&Sigma;</mi> <msub> <mi>c</mi> <mrow> <mi>s</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> </munder> <msub> <mi>w</mi> <mi>j</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mover> <mi>P</mi> <mo>^</mo> </mover> <mrow> <mi>PUCC</mi> <msub> <mi>H</mi> <mi>SeNB</mi> </msub> <mo>,</mo> <msub> <mi>c</mi> <mrow> <mi>s</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <mrow> <mo>(</mo> <munder> <mi>&Sigma;</mi> <msub> <mi>c</mi> <mrow> <mi>M</mi> <mo>,</mo> <mi>l</mi> </mrow> </msub> </munder> <msub> <mi>w</mi> <mi>l</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mover> <mi>P</mi> <mo>^</mo> </mover> <mrow> <mi>PUSC</mi> <msub> <mi>H</mi> <mi>MeNB</mi> </msub> <mo>,</mo> <msub> <mi>c</mi> <mrow> <mi>M</mi> <mo>,</mo> <mi>l</mi> </mrow> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>+</mo> <munder> <mi>&Sigma;</mi> <msub> <mi>c</mi> <mrow> <mi>s</mi> <mo>,</mo> <mi>l</mi> </mrow> </msub> </munder> <msub> <mi>w</mi> <mi>l</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mover> <mi>P</mi> <mo>^</mo> </mover> <mrow> <msub> <mi>PUSCH</mi> <mi>SeNB</mi> </msub> <mo>,</mo> <msub> <mi>c</mi> <mrow> <mi>s</mi> <mo>,</mo> <mi>l</mi> </mrow> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>-</mo> <munder> <mi>&Sigma;</mi> <mrow> <msub> <mi>c</mi> <mi>s</mi> </msub> <mo>&NotEqual;</mo> <msub> <mi>c</mi> <mrow> <mi>s</mi> <mo>,</mo> <mi>l</mi> </mrow> </msub> </mrow> </munder> <msub> <mi>w</mi> <mi>S</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mover> <mi>P</mi> <mo>^</mo> </mover> <mrow> <msub> <mi>PUSCH</mi> <mi>SeNB</mi> </msub> <mo>,</mo> <msub> <mi>c</mi> <mi>s</mi> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mover> <mi>P</mi> <mo>^</mo> </mover> <mi>QoS</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> </math>
wherein, ws(i)=wj(i)=wl(i)=1
Step three: if the transmission power of PUSCH without UCI of the corresponding macro base station is reduced toAnd the whole transmission power of the user equipment still exceeds the maximum transmission power allowed by the user equipment, reducing the transmission power of the PUSCH without the UCI corresponding to the small-sized base station.
In addition, since PUSCH without UCI has low primary priority and reduced transmission power is implemented first, w herej(i)=wl(i)=1。
The previous description of the disclosure is provided to enable any person skilled in the art to make or use the present invention. Various modifications to the disclosure will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other variations without departing from the spirit or scope of the disclosure. Thus, the present invention is not intended to be limited to the examples and designs described herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.

Claims (13)

1. A method of reducing transmission power of a user equipment in a dual/multi-connection wireless communication system, the wireless communication system including the user equipment and at least two base stations connected with the user equipment, the at least two base stations including at least one macro base station and at least one small base station, wherein:
setting a main priority for a channel according to the type of the channel and/or data transmitted in the channel;
setting a secondary priority for channels with the same primary priority according to the base station corresponding to the channel and/or a link connected with the base station;
when the whole transmission power of the user equipment exceeds the maximum transmission power allowed by the user equipment, reducing the transmission power of part or all channels according to the primary priority and the secondary priority so as to enable the whole transmission power of the user equipment to be lower than the maximum transmission power allowed by the user equipment.
2. The method of claim 1, wherein:
the transmission power of the channel with low main priority is reduced before the transmission power of the channel with high main priority; wherein,
when the channels with the same main priority are reduced, the transmission power of the channel with the low sub-optimal priority is reduced before the transmission power of the channel with the high sub-optimal priority.
3. The method of claim 2, wherein:
when the transmission power of the channels with low secondary priority is reduced to zero and the whole transmission power of the user equipment still exceeds the maximum transmission power allowed by the user equipment, reducing the transmission power of the channels with the same primary priority and with higher secondary priority;
when the transmission power of the channels with the lower primary priority is reduced to zero and the whole transmission power of the user equipment still exceeds the maximum transmission power allowed by the user equipment, reducing the transmission power of the channels with the higher primary priority.
4. A method according to claim 3, wherein the primary priority of the channel is set according to the type of the channel and/or whether the channel carries control information, the primary priority of a control channel or a data channel carrying control information being high.
5. The method of claim 4, wherein PUCCH has a highest primary priority, PUSCH with UCI has a second highest primary priority, and PUSCH without UCI has a lowest primary priority.
6. The method according to any of claims 4 or 5, wherein the same sub-priorities are set for channels having the same main priority.
7. The method according to any of claims 4 or 5, wherein the same reduction factor is set for channels having the same primary priority and the same secondary priority.
8. The method of claim 5, wherein different reduction factors are set for channels with the same primary priority for the channels connected to the macro base station and for the channels connected to the small base station.
9. The method according to claim 5, wherein a sub-priority is set for the PUSCH without UCI according to the importance degree and/or the requirement of quality of service of the base station corresponding to the PUSCH without UCI, and a sub-priority of the PUSCH without UCI corresponding to the base station with high importance degree and/or high requirement of quality of service is high;
wherein the importance of the base station is determined by the importance of data transmitted between the base station and the user equipment, and the requirement of the service quality of the base station is determined by the requirement of the service quality of the data transmitted between the base station and the user equipment.
10. The method of claim 5, wherein, for channels having the same primary priority, a sub-priority of the channel transmitted to the macro base station is higher than a sub-priority of the channel transmitted to the small base station.
11. The method according to claim 5, wherein the PUSCH without UCI is assigned a sub-priority according to a pathloss value of a link between the user equipment and a base station corresponding to the PUSCH without UCI, and the sub-priority of the PUSCH without UCI corresponding to the link with a high pathloss value is lower than the sub-priority of the PUSCH without UCI corresponding to the link with a low pathloss value.
12. The method of claim 5, wherein when the path loss of the link between the base station with high importance and the user equipment in the wireless communication system is greater than the path loss of the link between the base station with low importance and the user equipment:
calculating the minimum power required for transmitting data to the base station with high importance degree through the PUSCH without UCI, wherein the minimum power can guarantee the requirement of basic service quality for transmitting the data;
reducing a transmission power of the PUSCH without UCI such that an overall transmission power of the user equipment is lower than the maximum transmission power allowed by the user equipment; reducing the transmission power of a PUSCH without UCI for transmitting data to the less important base station when the transmission power of the PUSCH without UCI is reduced to the minimum power and the entire transmission power of the user equipment still exceeds the maximum transmission power allowed by the user equipment;
wherein the importance of the base station is determined by the importance of the data transmitted between the base station and the user equipment.
13. The method of claim 5, wherein when the path loss of the link between the base station with high quality of service requirement and the user in the wireless communication system is greater than the path loss of the link between the base station with low quality of service requirement and the user:
calculating the minimum power required for transmitting data to the base station with high service quality requirement through the PUSCH without UCI, wherein the minimum power can guarantee the requirement of basic service quality for transmitting the data;
reducing a transmission power of the PUSCH without UCI such that an overall transmission power of the user equipment is lower than the maximum transmission power allowed by the user equipment; reducing the transmission power of a PUSCH without UCI for transmitting data to the base station with low quality of service requirement when the transmission power of the PUSCH without UCI is reduced to the minimum power and the entire transmission power of the user equipment still exceeds the maximum transmission power allowed by the user equipment;
wherein the quality of service required by the base station is determined by the quality of service required by data transmitted between the base station and the user equipment.
CN201310473671.5A 2013-10-11 2013-10-11 To the method for the transimission power reduction of user side in multi-connection wireless communication system Active CN104581917B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310473671.5A CN104581917B (en) 2013-10-11 2013-10-11 To the method for the transimission power reduction of user side in multi-connection wireless communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310473671.5A CN104581917B (en) 2013-10-11 2013-10-11 To the method for the transimission power reduction of user side in multi-connection wireless communication system

Publications (2)

Publication Number Publication Date
CN104581917A true CN104581917A (en) 2015-04-29
CN104581917B CN104581917B (en) 2019-02-01

Family

ID=53096861

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310473671.5A Active CN104581917B (en) 2013-10-11 2013-10-11 To the method for the transimission power reduction of user side in multi-connection wireless communication system

Country Status (1)

Country Link
CN (1) CN104581917B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106376068A (en) * 2016-09-30 2017-02-01 海能达通信股份有限公司 Terminal energy saving method, terminal device and narrowband base station
CN107645766A (en) * 2016-07-21 2018-01-30 中兴通讯股份有限公司 Poewr control method and device
CN107710861A (en) * 2015-07-03 2018-02-16 诺基亚通信公司 Segmentation for multi connectivity carries enhancing
CN107979847A (en) * 2016-10-25 2018-05-01 华为技术有限公司 Method, apparatus, user equipment and the base station of data transfer
CN110149687A (en) * 2019-06-24 2019-08-20 京信通信系统(中国)有限公司 Power distribution method, device, computer equipment and storage medium
CN111937471A (en) * 2018-03-28 2020-11-13 诺基亚技术有限公司 URLLC optimized scheduling policy for multi-node connections with data duplication

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010148319A1 (en) * 2009-06-19 2010-12-23 Interdigital Patent Holdings, Inc. Signaling uplink control information in lte-a
CN102300305A (en) * 2011-09-23 2011-12-28 电信科学技术研究院 Method and device for controlling uplink power
CN102348269A (en) * 2011-09-27 2012-02-08 电信科学技术研究院 Method and device of uplink power control
CN102858005A (en) * 2011-06-30 2013-01-02 中兴通讯股份有限公司 Uplink measurement reference signal sending control method and user equipment
WO2013025562A2 (en) * 2011-08-12 2013-02-21 Interdigital Patent Holdings, Inc. Methods, apparatus and systems for power control and timing advance

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010148319A1 (en) * 2009-06-19 2010-12-23 Interdigital Patent Holdings, Inc. Signaling uplink control information in lte-a
CN102858005A (en) * 2011-06-30 2013-01-02 中兴通讯股份有限公司 Uplink measurement reference signal sending control method and user equipment
WO2013025562A2 (en) * 2011-08-12 2013-02-21 Interdigital Patent Holdings, Inc. Methods, apparatus and systems for power control and timing advance
US20130176953A1 (en) * 2011-08-12 2013-07-11 Interdigital Patent Holdings, Inc. Methods, apparatus and systems for power control and timing advance
CN102300305A (en) * 2011-09-23 2011-12-28 电信科学技术研究院 Method and device for controlling uplink power
CN102348269A (en) * 2011-09-27 2012-02-08 电信科学技术研究院 Method and device of uplink power control

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107710861A (en) * 2015-07-03 2018-02-16 诺基亚通信公司 Segmentation for multi connectivity carries enhancing
CN107645766A (en) * 2016-07-21 2018-01-30 中兴通讯股份有限公司 Poewr control method and device
CN107645766B (en) * 2016-07-21 2021-08-27 中兴通讯股份有限公司 Power control method and device
CN106376068A (en) * 2016-09-30 2017-02-01 海能达通信股份有限公司 Terminal energy saving method, terminal device and narrowband base station
CN106376068B (en) * 2016-09-30 2019-05-07 海能达通信股份有限公司 A kind of terminal power-economizing method, terminal device and narrowband base station
CN107979847A (en) * 2016-10-25 2018-05-01 华为技术有限公司 Method, apparatus, user equipment and the base station of data transfer
US10735164B2 (en) 2016-10-25 2020-08-04 Huawei Technologies Co., Ltd. Data transmission method, apparatus, user equipment, and base station
CN107979847B (en) * 2016-10-25 2020-12-15 华为技术有限公司 Data transmission method, device, user equipment and base station
CN111937471A (en) * 2018-03-28 2020-11-13 诺基亚技术有限公司 URLLC optimized scheduling policy for multi-node connections with data duplication
CN110149687A (en) * 2019-06-24 2019-08-20 京信通信系统(中国)有限公司 Power distribution method, device, computer equipment and storage medium

Also Published As

Publication number Publication date
CN104581917B (en) 2019-02-01

Similar Documents

Publication Publication Date Title
US11627532B2 (en) Uplink power control for distributed wireless communication
JP6832825B2 (en) Transmission power control for multiple antenna transmissions on the uplink
US8447345B2 (en) Uplink power control for multiple component carriers
CN104581917B (en) To the method for the transimission power reduction of user side in multi-connection wireless communication system
CN110225523B (en) Method for uplink-downlink interference suppression in heterogeneous networks
US8711722B2 (en) Method for processing power headroom and terminal thereof
US20140269456A1 (en) Method, an Apparatus and a Computer Program Product for Flexible TDD Configuration
WO2017173920A1 (en) Power control method and device
US10772049B2 (en) Method for terminal for reporting power headroom in wireless communication system, and terminal utilizing method
EP2868008A1 (en) Simultaneous transmit and receive
US20140135055A1 (en) Apparatus and method for controlling transmitting power control in carrier aggregation system across the enbs and device
JP5977465B2 (en) Dual connectivity of user equipment to macro cell and small cell in long term evolution system
JP2017513409A (en) Reduction of DL-UL interference
JP2016524404A (en) Method, apparatus and system for performing wireless communication in wireless communication system
US9749969B2 (en) Method and device for multiple-serving-cell connectivity for UE and base station
WO2021014548A1 (en) Terminal and communication method
CN103313368A (en) Power control method for physical uplink control channel and user equipment
JP5630906B2 (en) Transmission power control apparatus and method in wireless communication system
JPWO2006098440A1 (en) Transmission power control method, mobile station, radio base station, and radio network controller
JP6301094B2 (en) User terminal and wireless communication method
WO2021014546A1 (en) Terminal and communication method
CN110677905B (en) Method for controlling uplink transmission power and apparatus therefor
KR102118916B1 (en) Method for cluster-based adaptive joint transmission
WO2011020242A1 (en) Method, device and node for controlling cooperative relay operation

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: Pudong New Area, Pudong Jinqiao Ning Bridge Road, No. 388, No.

Applicant after: Shanghai NOKIA Baer Limited by Share Ltd

Applicant after: Alcatel Optical Networks Israe

Address before: 201206 Shanghai, Pudong Jinqiao Ning Bridge Road, No. 388, No.

Applicant before: Shanghai Alcatel-Lucent Co., Ltd.

Applicant before: Alcatel Optical Networks Israe

GR01 Patent grant
GR01 Patent grant