CN104577667A - 一种风速仪用四端输出808nm与1319nm与双1064nm波长光纤激光器 - Google Patents

一种风速仪用四端输出808nm与1319nm与双1064nm波长光纤激光器 Download PDF

Info

Publication number
CN104577667A
CN104577667A CN201310507438.4A CN201310507438A CN104577667A CN 104577667 A CN104577667 A CN 104577667A CN 201310507438 A CN201310507438 A CN 201310507438A CN 104577667 A CN104577667 A CN 104577667A
Authority
CN
China
Prior art keywords
optical fiber
wavelength
laser
mirror
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201310507438.4A
Other languages
English (en)
Inventor
王涛
王天泽
李玉翔
王茁
宋庆辉
李雪松
张海龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuxi Jintianyang Laser Electronic Co Ltd
Original Assignee
Wuxi Jintianyang Laser Electronic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuxi Jintianyang Laser Electronic Co Ltd filed Critical Wuxi Jintianyang Laser Electronic Co Ltd
Priority to CN201310507438.4A priority Critical patent/CN104577667A/zh
Publication of CN104577667A publication Critical patent/CN104577667A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Optical Couplings Of Light Guides (AREA)
  • Lasers (AREA)

Abstract

一种风速仪用四端输出808nm与1319nm与双1064nm波长光纤激光器,它由多模泵浦半导体模块组发射808nm泵浦光,耦合到传输光纤中双端输出;右路,泵浦右光纤辐射1064nm光子,在右光纤谐振腔内放大,双端输出1064nm激光,一路经1064nm输出镜输出1064nm激光,同样,另一路也经1064nm输出镜输出1064nmnm激光,形成双1064nm激光;左路,泵浦左光纤辐射1319nm光子,在1319nm光纤谐振腔内放大,产生1319nm激光,一路经输出镜输出波长1319nm,另一路直接输出808nm激光,由此,四端输出808nm与1319nm与双1064nm波长激光。

Description

一种风速仪用四端输出808nm与1319nm与双1064nm波长光纤激光器
技术领域:激光器与风电应用技术领域。
技术背景:
808nm与1319nm与双1064nm波长激光,是用于风速仪用光谱检测、激光源、物化分析等应用的激光,它可作为风速仪用光纤传感器的分析检测等应用光源,它还用于光通讯等激光与光电子领域;不同频段、多波长的激光器产品少,但应用与需求范围不断扩大。
发明内容:
一种风速仪用四端输出808nm与1319nm与双1064nm波长光纤激光器,它由多模泵浦半导体模块组发射808nm泵浦光,耦合到传输光纤中双端输出;右路,泵浦右光纤辐射1064nm光子,在右光纤谐振腔内放大,双端输出1064nm激光,一路经1064nm输出镜输出1064nm激光,同样,另一路也经1064nm输出镜输出1064nmnm激光,形成双1064nm激光;左路,泵浦左光纤辐射1319nm光子,在1319nm光纤谐振腔内放大,产生1319nm激光,一路经输出镜输出波长1319nm,另一路直接输出808nm激光,由此,四端输出808nm与1319nm与双1064nm波长激光。
本发明方案一、一种风速仪用四端输出808nm与1319nm与双1064nm波长光纤激光器结构。
它由半导体模块组发射808nm泵浦光,经光纤耦合器耦合到双端输出单层808nm泵浦光传输光纤中,双端输出单层808nm传输光纤从它的左右两端输出。
右路,808nm泵浦光,经光纤耦合器耦合到双包层Nd3+:YAG单晶光纤的内外包层之间,内包层采用椭圆形结构,外包层采用圆形结构,泵浦光在内包层和外包层之间来回反射,多次穿过单模纤芯被其吸收,单模纤芯Nd3+:离子吸能发生能级跃迁,辐射1064nm光子,它在由左光纤输出端与右光纤输出端构成的激光谐振腔内振荡放大,形成1064nm激光双端输出,一端进入1064nm光纤左1064nm输出镜输出,再经1064nm扩束镜与1064nm聚焦镜输出1064nm激光,另一端进入1064nm光纤右1064nm输出镜输出,再经1064nm光纤扩束镜与1064nm光纤聚焦镜输出1064nm激光。
左路,808nm泵浦光左光纤耦合器,耦合到左双包层Nd3+:YAG单晶光纤输入端,它进入到它进入到左双包层Nd3+:YAG单晶光纤的内外双包层之间,内包层采用椭圆形结构,外包层采用圆形结构,泵浦光在内包层和外包层之间来回反射,多次穿过单模纤芯被其吸收,单模纤芯Nd3+:离子吸能发生能级跃迁,辐射1319nm光子,在左双包层Nd3+:YAG单晶光纤输入端与输出端组成的谐振腔内放大,产生1319nm激光,一端输出1319nm激光,一端进入输出镜输出1319nm,光纤输出端与输出镜组成倍频腔,经1319nm输出镜输出,再经1319nm扩束镜与1319nm聚焦镜输出1319nm激光,另一端输出808nm激光进入808nm扩束镜,808nm输出镜,808nm聚焦镜输出808nm激光,形成输出1319nm激光,与输出808nm激光。
由此形成,左右路四端输出808nm与1319nm与双1064nmmm四波长激光。
本发明方案二、光纤设置方案。
泵浦光纤:采用双端输出单层808nm泵浦光传输光纤,光纤设计为圆环形,其中间端设置耦合器,两端输出。
右路光纤,采用双包层Nd3+:YAG单晶光纤,其玻璃基质分裂形成的非均匀展宽造成吸收带较宽,即玻璃光纤对入射泵浦光的晶体相位匹配范围宽,采用双包层光纤的包层泵浦技术,双包层光纤由四个层次组成:①光纤芯;②内包层;③外包层;④保护层,采用包层泵浦技术如下,采用一组多模泵浦半导体模块组发出泵浦光,经光纤耦合器是耦合到内包层与外包层之间,内包层采用椭圆形结构,外包层采用圆形结构,泵浦光在内包层和外包层之间来回反射,多次穿过单模纤芯被其吸收,单模纤芯Nd3+:离子吸能发生能级跃迁,辐射1064nm光子,右光纤输出端镀对1064nm波长光T=5%反射率膜,光纤输出端镀对1064nm波长光T=6%的反射率膜,光纤两端形成谐振腔,光纤设计为圆环形,其中端部耦合器。
左路光纤,与右路光纤主体相同,区别是,镀膜不同。
本发明方案三、镀膜方案设置。
泵浦光纤:镀808nm高透射率膜。
1064nm光纤输出端镜:镀对1064nm波长光T=6%的反射率膜。
左1064nm输出镜片,镀1064nm波长光的增透膜。
右1064nm输出镜片,镀1064nm波长光的增透膜。
1319nm光纤的左1319nm光纤输出端镜:镀对1319nm波长光T=6%的反射率膜,镀对808nm波长光高反射率膜。
1319nm出镜片,镀1319nm波长光的增透膜,镀对1319nm波长光高反射率膜。
1319nm光纤右808nm光纤输出端镜:镀对808nm波长光T=5%反射率膜,镀对1319nm波长光高反射率膜。
808nm出镜片,镀对808nm波长光高透射率膜。
本发明方案四、应用方案。
左右两端输出激光,实施互为基准、互为信号光、互为种子光,同时输出,避免干涉。
本发明的核心内容:
1.设置半导体模块,由半导体模块电源供电,输出808nm波长泵浦光,在半导体模块上设置耦合器,耦合器之上设置泵浦光纤,由耦合器将808nm波长泵浦光耦合进入泵浦光纤,设置泵浦光纤为环形两侧向上同向双侧输出端镜结构,即泵浦光纤同向双侧输出端镜结构,设置由泵浦光纤右输出端镜与泵浦光纤左输出端镜构成双侧808nm激光输出,在泵浦光纤双侧输出端镜之上,分别设置1064光纤与1319光纤。
右路,在泵浦光纤右输出端镜之上,设置右耦合器,在右耦合器之上设置1064nm波长的光纤,1064nm波长的光纤设置为环形两侧向上同向双侧输出端镜结构,由右耦合器耦合连接泵浦光纤右输出端镜与1064nm波长的光纤,泵浦光808nm激光经左耦合器进入1064nm波长光纤,设置1064nm波长的光纤的右输出端镜与左输出端镜为:发生波长1064nm红外光的光纤谐振腔,即形成1064nm红外光输出,1064nm光纤的左端输出端镜的上边依次设置:1064nm输出镜、1064nm扩束镜扩束与1064nm聚焦镜,经扩束镜扩束与聚焦镜输出1064nm激光,同样,1064nm光纤的右端输出端镜的上边依次设置:1064nm输出镜、1064nm扩束镜扩束与1064nm聚焦镜,经扩束镜扩束与聚焦镜输出1064nm激光,形成双1064nm激光输出。
左路,在泵浦光纤右输出端镜之上,设置左耦合器,在左耦合器之上设置1319nm波长的光纤,1319nm波长的光纤设置为环形两侧向上同向双侧输出端镜结构,由左耦合器耦合连接1319nm波长的光纤,泵浦光808nm激光经左耦合器进入1319nm波长光纤,设置1319nm波长的光纤的右输出端镜与左输出端镜为:发生波长1319nm红外光的光纤谐振腔,即形成1319nm激光,1319nm光纤的左端输出端镜设置为1319nm输出镜,它的上边依次设置:1319nm输出镜、1319nm扩束镜扩束与1319nm聚焦镜,1319nm波长经1319输出镜输出1319nm激光,经扩束镜扩束与聚焦镜输出1319nm激光,1319nm光纤的右端输出端镜设置为808nm输出镜,它的上边依次设置:808nm扩束镜、808nm输出镜、808nm聚焦镜.
右左四路形成808nm、1319nm与双1064nm激光四波长激光输出,亦即形成808nm、1319nm与双1064nm激光四波长光纤激光器。
2.镀膜方案设置。
1064nm光纤光纤输出端镜:镀对1064nm波长光T=6%的反射率膜。
左1064nm输出镜片,镀1064nm波长光的增透膜。
右1064nm输出镜片,镀1064nm波长光的增透膜。
1319nm光纤的左光纤输出端镜:镀对1319nm波长光T=6%的反射率膜,镀对1319nm波长光高反射率膜。
1319nm出镜片,镀1319nm波长光的增透膜,镀对808nm波长光高反射率膜。
1319nm光纤右光纤输出端镜:镀对808nm波长光T=5%反射率膜,镀对1319nm波长光高反射率膜。
808nm出镜片,镀对808nm波长光高透射率膜。
3.右左四路形成808nm、1319nm与双1064nm激光四波长激光输出,它们可以互为基准,可以交叉为信号源,实现同步运转,避免发生干涉。
附图说明:
附图为本发明的结构图,下面结合附图说明一下工作过程。
附图其中为:1、半导体模块,2、耦合器,3、泵浦光纤,4、泵浦光纤右输出端镜,5、右路耦合器,6、1064nm光纤,7、1064nm光纤左输出端镜,8、1064nm光纤右输出端镜,9、1064nm输出镜,10、1064nm扩束镜,11、1064nm聚焦镜,12、1064nm激光输出,13、1064nm扩束镜,14、1064nm聚焦镜,15、1064nm激光输出,16、1064nm输出镜,17、808nm激光输出,18、808聚焦镜,19、808nm输出镜,20、808nm扩束镜,21、1319nm光纤右输出端镜,22、1319nm激光输出,23、1319nm聚焦镜,24、1319nm扩束镜,25、1319nm输出镜,26、1319nm光纤左输出端镜,27、1319nm光纤,风扇,28、左耦合器,29、泵浦光纤左输出端镜,30、风扇,31、半导体模块电源,32、光学轨道及光机具。
具体实施方式:
设置半导体模块1,由半导体模块电源31供电,输出808nm波长泵浦光,在半导体模块1上设置耦合器2,耦合器2之上设置泵浦光纤3,由耦合器2将808nm波长泵浦光耦合进入泵浦光纤3,设置泵浦光纤为环形两侧向上同向双侧输出端镜结构,即泵浦光纤同向双侧输出端镜结构,设置由泵浦光纤右输出端镜与泵浦光纤左输出端镜构成双侧808nm激光输出,在泵浦光纤双侧输出端镜之上,分别设置1064nm光纤6与1319nm光纤27。
右路,在泵浦光纤右输出端镜4之上,设置右耦合器5,在右耦合器5之上设置1064nm光纤6,1064nm光纤6设置为环形两侧向上同向双侧输出端镜结构,由右耦合器5耦合连接泵浦光纤右输出端镜4与1064nm光纤6,泵浦光808nm激光经左耦合器5进入1064nm波长光纤,设置1064nm光纤的右输出端镜7与左输出端镜8为:发生波长1064nm红外光的光纤谐振腔,即形成1064nm红外光输出,1064nm光纤的右输出端镜8的上边依次设置:1064nm输出镜9、1064nm扩束镜10与1064nm聚焦镜11,经扩束镜扩束与聚焦镜输出1064nm激光12,同样,1064nm光纤的左端输出端镜的上边依次设置:1064nm输出镜16、1064nm扩束镜13与1064nm聚焦镜14,经扩束镜扩束与聚焦镜输出1064nm激光15,形成双1064nm激光。
左路,在泵浦光纤右输出端镜之上,设置左耦合器,在左耦合器之上设置1319nm波长的光纤,1319nm波长的光纤设置为环形两侧向上同向双侧输出端镜结构,由左耦合器耦合连接1319nm波长的光纤,泵浦光808nm激光经左耦合器进入1319nm波长光纤,设置1319nm波长的光纤的右输出端镜与左输出端镜为:发生波长1319nm红外光的光纤谐振腔,即形成1319nm红外光输出,1319nm光纤的左端输出端镜26的上边依次设置:1319nm输出镜25、1319nm扩束镜扩束与1319nm聚焦镜,1319nm波长经1319nm输出镜25输出1319nm激光22,经扩束镜扩束与聚焦镜输出1319nm激光22,1319nm光纤的右端输出端镜21设置为808nm输出镜,它的上边依次设置:808nm扩束镜20、808nm输出镜18、808nm聚焦镜18,输出808nm激光输出17.
右左四路形成808nm、1319nm、双1064nm激光四波长激光输出,亦即形成808nm、1319nm双1064nm激光四波长光纤激光器。
除半导体模块组电源外,上述全部器件均装置在光学轨道及光机具32上,由风扇30实施风冷,组成输出808nm、1319nm、双1064nm激光四波长光纤激光器。

Claims (3)

1.一种风速仪用四端输出808nm与1319nm与双1064nm波长光纤激光器,其特征是:设置半导体模块,由半导体模块电源供电,输出808nm波长泵浦光,在半导体模块上设置耦合器,耦合器之上设置泵浦光纤,由耦合器将808nm波长泵浦光耦合进入泵浦光纤,设置泵浦光纤为环形两侧向上同向双侧输出端镜结构,即泵浦光纤同向双侧输出端镜结构,设置由泵浦光纤右输出端镜与泵浦光纤左输出端镜构成双侧808nm激光输出,在泵浦光纤双侧输出端镜之上,分别设置1064光纤与1319光纤。
右路,在泵浦光纤右输出端镜之上,设置右耦合器,在右耦合器之上设置1064nm波长的光纤,1064nm波长的光纤设置为环形两侧向上同向双侧输出端镜结构,由右耦合器耦合连接泵浦光纤右输出端镜与1064nm波长的光纤,泵浦光808nm激光经左耦合器进入1064nm波长光纤,设置1064nm波长的光纤的右输出端镜与左输出端镜为:发生波长1064nm红外光的光纤谐振腔,即形成1064nm红外光输出,1064nm光纤的左端输出端镜的上边依次设置:1064nm输出镜、1064nm扩束镜扩束与1064nm聚焦镜,经扩束镜扩束与聚焦镜输出1064nm激光,同样,1064nm光纤的右端输出端镜的上边依次设置:1064nm输出镜、1064nm扩束镜扩束与1064nm聚焦镜,经扩束镜扩束与聚焦镜输出1064nm激光,形成双1064nm激光输出。
左路,在泵浦光纤右输出端镜之上,设置左耦合器,在左耦合器之上设置1319nm波长的光纤,1319nm波长的光纤设置为环形两侧向上同向双侧输出端镜结构,由左耦合器耦合连接1319nm波长的光纤,泵浦光808nm激光经左耦合器进入1319nm波长光纤,设置1319nm波长的光纤的右输出端镜与左输出端镜为:发生波长1319nm红外光的光纤谐振腔,即形成1319nm激光,1319nm光纤的左端输出端镜设置为1319nm输出镜,它的上边依次设置:1319nm输出镜、1319nm扩束镜扩束与1319nm聚焦镜,1319nm波长经1319输出镜输出1319nm激光,经扩束镜扩束与聚焦镜输出1319nm激光,1319nm光纤的右端输出端镜设置为808nm输出镜,它的上边依次设置:808nm扩束镜、808nm输出镜、808nm聚焦镜.
右左四路形成808nm、1319nm与双1064nm激光四波长激光输出,亦即形成808nm、1319nm与双1064nm激光四波长光纤激光器。
2.根据权利要求1所述,一种风速仪用四端输出808nm与1319nm与双1064nm波长光纤激光器,其特征是:镀膜方案设置:
1064nm光纤光纤输出端镜:镀对1064nm波长光T=6%的反射率膜。
左1064nm输出镜片,镀1064nm波长光的增透膜。
右1064nm输出镜片,镀1064nm波长光的增透膜。
1319nm光纤的左光纤输出端镜:镀对1319nm波长光T=6%的反射率膜,镀对1319nm波长光高反射率膜。
1319nm出镜片,镀1319nm波长光的增透膜,镀对808nm波长光高反射率膜。
1319nm光纤右光纤输出端镜:镀对808nm波长光T=5%反射率膜,镀对1319nm波长光高反射率膜。
808nm出镜片,镀对808nm波长光高透射率膜。
3.根据权利要求1所述,一种风速仪用四端输出808nm与1319nm与双1064nm波长光纤激光器,其特征是:右左四路形成808nm、1319nm与双1064nm激光四波长激光输出,它们可以互为基准,可以交叉为信号源,实现同步运转,避免发生干涉。
CN201310507438.4A 2013-10-22 2013-10-22 一种风速仪用四端输出808nm与1319nm与双1064nm波长光纤激光器 Pending CN104577667A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310507438.4A CN104577667A (zh) 2013-10-22 2013-10-22 一种风速仪用四端输出808nm与1319nm与双1064nm波长光纤激光器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310507438.4A CN104577667A (zh) 2013-10-22 2013-10-22 一种风速仪用四端输出808nm与1319nm与双1064nm波长光纤激光器

Publications (1)

Publication Number Publication Date
CN104577667A true CN104577667A (zh) 2015-04-29

Family

ID=53093158

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310507438.4A Pending CN104577667A (zh) 2013-10-22 2013-10-22 一种风速仪用四端输出808nm与1319nm与双1064nm波长光纤激光器

Country Status (1)

Country Link
CN (1) CN104577667A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5530710A (en) * 1995-05-15 1996-06-25 At&T Corp. High-power pumping of three-level optical fiber laser amplifier
CN1721963A (zh) * 2004-07-16 2006-01-18 中国科学院物理研究所 一种具有红、绿、蓝三基色激光彩色显示装置
CN101820132A (zh) * 2010-04-13 2010-09-01 苏州生物医学工程技术研究所 全固态医用双共振腔内和频黄光激光器
CN203205695U (zh) * 2012-11-14 2013-09-18 无锡津天阳激光电子有限公司 一种双端输出光参量振荡440nm与532nm双波长光纤激光器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5530710A (en) * 1995-05-15 1996-06-25 At&T Corp. High-power pumping of three-level optical fiber laser amplifier
CN1721963A (zh) * 2004-07-16 2006-01-18 中国科学院物理研究所 一种具有红、绿、蓝三基色激光彩色显示装置
CN101820132A (zh) * 2010-04-13 2010-09-01 苏州生物医学工程技术研究所 全固态医用双共振腔内和频黄光激光器
CN203205695U (zh) * 2012-11-14 2013-09-18 无锡津天阳激光电子有限公司 一种双端输出光参量振荡440nm与532nm双波长光纤激光器

Similar Documents

Publication Publication Date Title
CN203014153U (zh) 一种双向输出1319nm波长光纤激光器
CN203491501U (zh) 一种风速仪用四端输出双808nm与532nm与1064nm波长光纤激光器
CN203660265U (zh) 一种风速仪用四端输出808nm与1064nm与双660nm波长光纤激光器
CN203674546U (zh) 一种风速仪用四端输出808nm与1064nm与双1319nm波长光纤激光器
CN203660266U (zh) 一种风速仪用三端输出双1064nm与808nm波长光纤激光器
CN203734122U (zh) 一种风速仪用三端输出双532nm与808nm波长光纤激光器
CN203631960U (zh) 一种物联网用四端输出双束532nm与双束660nm波长光纤激光器
CN203734123U (zh) 一种风速仪用三端输出双660nm与808nm波长光纤激光器
CN203660268U (zh) 一种风速仪用四端输出808nm与660nm与双532nm波长光纤激光器
CN203674545U (zh) 一种物联网用三端输出532nm与660nm与1319nm三波长光纤激光器
CN203734121U (zh) 一种风速仪用三端输出660nm与1319nm与808nm三波长光纤激光器
CN203660267U (zh) 一种风速仪用四端输出808nm与532nm与660nm与1319nm四波长光纤激光器
CN203760834U (zh) 一种风速仪用三端输出532nm与1064nm与808nm三波长光纤激光器
CN203734124U (zh) 一种风速仪用三端输出532nm与660nm与808nm三波长光纤激光器
CN203707557U (zh) 一种风速仪用四端输出808nm、1319nm、双532nm波长光纤激光器
CN104577658A (zh) 一种风速仪用三端输出660nm与1064nm与808nm三波长光纤激光器
CN203536719U (zh) 一种风速仪用四端输出双808nm与660nm与1319nm波长光纤激光器
CN203631961U (zh) 一种物联网用三端输出532nm与660nm与1064nm三波长光纤激光器
CN104577667A (zh) 一种风速仪用四端输出808nm与1319nm与双1064nm波长光纤激光器
CN104518395A (zh) 一种物联网用双端输出532nm与660nm双波长光纤激光器
CN104577665A (zh) 一种风速仪用四端输出808nm与1064nm与双1319nm波长光纤激光器
CN104577668A (zh) 一种风速仪用四端输出808nm与660nm与双1064nm波长光纤激光器
CN104577671A (zh) 一种风速仪用四端输出808nm与532nm与双1319nm波长光纤激光器
CN104577662A (zh) 一种风速仪用三端输出双1319nm与808nm波长光纤激光器
CN104577661A (zh) 一种风速仪用三端输出双1064nm与808nm波长光纤激光器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20150429

WD01 Invention patent application deemed withdrawn after publication