CN104576825A - 一种抑制SiC紫外光电探测器暗电流方法 - Google Patents

一种抑制SiC紫外光电探测器暗电流方法 Download PDF

Info

Publication number
CN104576825A
CN104576825A CN201410720879.7A CN201410720879A CN104576825A CN 104576825 A CN104576825 A CN 104576825A CN 201410720879 A CN201410720879 A CN 201410720879A CN 104576825 A CN104576825 A CN 104576825A
Authority
CN
China
Prior art keywords
dark current
sic
dry
photoelectric detector
siox
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410720879.7A
Other languages
English (en)
Inventor
吴正云
李忠东
吴惠忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201410720879.7A priority Critical patent/CN104576825A/zh
Publication of CN104576825A publication Critical patent/CN104576825A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • H01L31/1812Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table including only AIVBIV alloys, e.g. SiGe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/09Devices sensitive to infrared, visible or ultraviolet radiation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

本发明公开了一种抑制SiC紫外光电探测器暗电流方法,根据SiC光电探测器暗电流产生的来源及抑制他们的原理,利用不同生长方法在SiC紫外探测器器件表面制备SiO2和SiN薄膜,分别考虑高低电场条件下各种薄膜对暗电流的抑制能力以及有效减少载流子在器件表面的复合,综合组合多层介质膜结构及生长技术条件,可进一步实现对SiC紫外光电探测器暗电流的抑制,有效提高其探测率。

Description

一种抑制SiC紫外光电探测器暗电流方法
技术领域
本发明涉及一种抑制暗电流的方法,具体地说,涉及一种抑制SiC紫外光电探测器暗电流方法。
背景技术
紫外光电探测器在国防和民用领域有巨大的应用背景,半导体紫外光电探测器是其中重要的产品之一。采用SiC材料制备紫外探测器具有量子效率高,暗电流低,可见光盲等优点。影响SiC紫外探测器的探测率的重要因素是器件的暗电流,目前常用抑制暗电流的方法采用SiO2、SiN或其他介质膜钝化的方式,但是采用的工艺没有考虑器件在实际工作条件下暗电流不同产生机制,对暗电流的抑制效果还有待改善。由于紫外信号源强度一般都比红外信号弱,因此要求具有比红外探测更高性能的探测率才能满足紫外探测需求,需要根据探测器在不同条件下暗电流的产生机制,有针对性的采用不同的工艺手段,进一步抑制暗电流,提高器件的探测率是实现微弱紫外信号探测的重要技术手段。
发明内容
本发明的目的在于克服上述技术存在的缺陷,提供一种抑制SiC紫外光电探测器暗电流方法,根据SiC光电探测器暗电流产生的来源及抑制他们的原理,利用不同生长方法在SiC紫外探测器器件表面制备SiO2和SiN薄膜,分别考虑高低电场条件下各种薄膜对暗电流的抑制能力以及有效减少光生载流子在器件表面的复合,制备组合多层介质膜结构,优化生长技术条件,可进一步实现对SiC紫外光电探测器暗电流的抑制,有效提高其探测率。
其具体技术方案为:
一种抑制SiC紫外光电探测器暗电流方法,包括以下步骤:
步骤1:利用SiC的特点,在材料的Si面上干氧热氧化生长牺牲层,在1000度高温干氧气氛中在SiC表面生长一层SiOx,然后用氢氟酸去除并用热去离子水快速冲洗,可以有效减少器件表面的载流子复合中心密度;
步骤2:用干燥纯氮气快速吹干并立即置入氧化炉中,通过快速升温至1000度,先干氧氧化1小时,然后湿氧氧化4小时,再干氧氧化1小时,形成约60nm后的SiOx层,在炉温不变的条件下,用氮气退火1小时,然后自然降温,在器件表面形成致密度很高的SiOx层;热氧化生成的SiOx膜可以有效抑制在器件边缘高电场下的暗电流并提高其击穿电压;
步骤3:采用PECVD方法在热氧化SiOx薄膜上再生长一层300nm的SiOx层,以抑制低电场下的暗电流;
步骤4:最后再采用PECVD方法生长200nmSiN薄膜,作为钝化层,减小表面的载流子复合引起的暗电流。
与现有技术相比,本发明的有益效果为:
本发明根据SiC光电探测器暗电流产生的来源及抑制他们的原理,利用不同生长方法在SiC紫外探测器器件表面制备SiO2和SiN薄膜,分别考虑高低电场条件下各种薄膜对暗电流的抑制能力以及有效减少光生载流子在器件表面的复合,制备组合多层介质膜结构及优化生长技术条件,可进一步实现对SiC紫外光电探测器暗电流的抑制,有效提高其探测率。
具体实施方式
为了使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合具体实例进一步阐述本发明。
一种抑制SiC紫外光电探测器暗电流方法,包括以下步骤:
步骤1:利用SiC的特点,在材料的Si面上干氧热氧化生长牺牲层,在1000度高温干氧气氛中在SiC表面生长一层SiOx,然后用氢氟酸去除并用热去离子水快速冲洗,可以有效减少器件表面的载流子复合中心密度;
步骤2:用干燥纯氮气快速吹干并立即置入氧化炉中,通过快速升温至1000度,先干氧氧化1小时,然后湿氧氧化4小时,再干氧氧化1小时,形成约60nm后的SiOx层,在炉温不变的条件下,用氮气退火1小时,然后自然降温,在器件表面形成致密度很高的SiOx层;热氧化生成的SiOx膜可以有效抑制在器件边缘高电场下的暗电流并提高其击穿电压;
步骤3:采用PECVD方法在热氧化SiOx薄膜上再生长一层300nm的SiOx层,以抑制低电场下的暗电流;
步骤4:最后再采用PECVD方法生长200nmSiN薄膜,作为钝化层,减小表面的载流子复合引起的暗电流。
本发明在SiC探测器制备过程中,通过对热氧化生长的SiOx膜的氮气退火,改善了SiOx的膜的致密度,在氢氟酸腐蚀实验中,其抗腐蚀能力有所改善,用PECVD生长的SiN薄膜覆盖SiOx薄膜,提高了组合膜的质量。采用本方法,制备了光敏面积约0.04mm2的SiC探测器,测量了器件的暗电流,光谱响应,与常规的钝化保护措施相比,器件的暗电流下降到0.1pA,大约低了一个数量级,反向击穿特性得到改善,光谱响应度提高约3%,紫外可见光响应比也略有提高,结果表明,在SiC紫外探测器制备上采用本方法,可以提高其紫外探测率,也为制备更大光敏面积、雪崩型探测器提供有效的技术支持。
以上所述,仅为本发明最佳实施方式,任何熟悉本技术领域的技术人员在本发明披露的技术范围内,可显而易见地得到的技术方案的简单变化或等效替换均落入本发明的保护范围内。

Claims (1)

1.一种抑制SiC紫外光电探测器暗电流方法,其特征在于,包括以下步骤:
步骤1:利用SiC的特点,在材料的Si面上干氧热氧化生长牺牲层,在1000度高温干氧气氛中在SiC表面生长一层SiOx,然后用氢氟酸去除并用热去离子水快速冲洗;
步骤2:用干燥纯氮气快速吹干并立即置入氧化炉中,通过快速升温至1000度,先干氧氧化1小时,然后湿氧氧化4小时,再干氧氧化1小时,形成60nm后的SiOx层,在炉温不变的条件下,用氮气退火1小时,然后自然降温,在器件表面形成SiOx;
步骤3:采用PECVD方法在热氧化SiOx薄膜上再生长一层300nm的SiOx层;
步骤4:最后再采用PECVD方法生长200nmSiN薄膜,作为钝化层。
CN201410720879.7A 2014-12-03 2014-12-03 一种抑制SiC紫外光电探测器暗电流方法 Pending CN104576825A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410720879.7A CN104576825A (zh) 2014-12-03 2014-12-03 一种抑制SiC紫外光电探测器暗电流方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410720879.7A CN104576825A (zh) 2014-12-03 2014-12-03 一种抑制SiC紫外光电探测器暗电流方法

Publications (1)

Publication Number Publication Date
CN104576825A true CN104576825A (zh) 2015-04-29

Family

ID=53092452

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410720879.7A Pending CN104576825A (zh) 2014-12-03 2014-12-03 一种抑制SiC紫外光电探测器暗电流方法

Country Status (1)

Country Link
CN (1) CN104576825A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109686844A (zh) * 2018-12-10 2019-04-26 宁波大学 一种基于钙钛矿自供电行为的光敏传感器
CN110392184A (zh) * 2018-04-16 2019-10-29 宁波飞芯电子科技有限公司 基于静态门限电压的像素单元与光电调制方法及其应用
CN115000229A (zh) * 2022-06-09 2022-09-02 太原理工大学 一种暗电流抑制的半绝缘型4H-SiC基紫外光电探测器及制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101000936A (zh) * 2006-12-23 2007-07-18 厦门大学 δ掺杂4H-SiC PIN结构紫外光电探测器及其制备方法
CN101030609A (zh) * 2007-04-04 2007-09-05 厦门大学 一种δ掺杂4H-SiC雪崩紫外光电探测器及其制备方法
CN201000897Y (zh) * 2006-12-20 2008-01-02 厦门大学 4H-SiC雪崩光电探测器
CN101335308A (zh) * 2008-07-30 2008-12-31 中国科学院上海技术物理研究所 一种具有内增益的紫外探测器及制备方法
CN102315284A (zh) * 2011-07-04 2012-01-11 常州天合光能有限公司 用叠层膜同时钝化p型和n型掺杂层的电池结构及其方法
CN102386269A (zh) * 2011-11-30 2012-03-21 清华大学 GaN基p-i-p-i-n结构紫外探测器及其制备方法
CN102446991A (zh) * 2011-12-14 2012-05-09 杭州赛昂电力有限公司 基于晶硅的薄膜太阳能电池及其制造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201000897Y (zh) * 2006-12-20 2008-01-02 厦门大学 4H-SiC雪崩光电探测器
CN101000936A (zh) * 2006-12-23 2007-07-18 厦门大学 δ掺杂4H-SiC PIN结构紫外光电探测器及其制备方法
CN101030609A (zh) * 2007-04-04 2007-09-05 厦门大学 一种δ掺杂4H-SiC雪崩紫外光电探测器及其制备方法
CN101335308A (zh) * 2008-07-30 2008-12-31 中国科学院上海技术物理研究所 一种具有内增益的紫外探测器及制备方法
CN102315284A (zh) * 2011-07-04 2012-01-11 常州天合光能有限公司 用叠层膜同时钝化p型和n型掺杂层的电池结构及其方法
CN102386269A (zh) * 2011-11-30 2012-03-21 清华大学 GaN基p-i-p-i-n结构紫外探测器及其制备方法
CN102446991A (zh) * 2011-12-14 2012-05-09 杭州赛昂电力有限公司 基于晶硅的薄膜太阳能电池及其制造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110392184A (zh) * 2018-04-16 2019-10-29 宁波飞芯电子科技有限公司 基于静态门限电压的像素单元与光电调制方法及其应用
CN109686844A (zh) * 2018-12-10 2019-04-26 宁波大学 一种基于钙钛矿自供电行为的光敏传感器
CN115000229A (zh) * 2022-06-09 2022-09-02 太原理工大学 一种暗电流抑制的半绝缘型4H-SiC基紫外光电探测器及制备方法

Similar Documents

Publication Publication Date Title
Li et al. Highly preferred orientation of Ga2O3 films sputtered on SiC substrates for deep UV photodetector application
Guo et al. β-Ga2O3/p-Si heterojunction solar-blind ultraviolet photodetector with enhanced photoelectric responsivity
Qian et al. β-Ga2O3 solar-blind deep-ultraviolet photodetector based on annealed sapphire substrate
Liao et al. Comprehensive investigation of single crystal diamond deep-ultraviolet detectors
Shiau et al. Ultraviolet photodetectors based on MgZnO thin film grown by RF magnetron sputtering
CN103943720A (zh) 一种自驱动式氧锌镁紫外探测器及其制备方法
Goushi et al. Fabrication of pentanary Cu (InGa)(SeS) 2 absorbers by selenization and sulfurization
WO2016068711A4 (en) Back side contacted wafer-based solar cells with in-situ doped crystallized silicon oxide regions
CN102569484A (zh) InAs/GaSb二类超晶格红外探测器
Yang et al. Comparison of chalcopyrite and kesterite thin-film solar cells
CN104576825A (zh) 一种抑制SiC紫外光电探测器暗电流方法
Zhao et al. Ultraviolet photodetector fabricated from metal-organic chemical vapor deposited MgZnO
Hwang et al. Using aluminum-induced polycrystalline silicon to enhance ultraviolet to visible rejection ratio of ZnO/Si heterojunction photodetectors
RU2575972C1 (ru) СПОСОБ ИЗГОТОВЛЕНИЯ ФОТОПРЕОБРАЗОВАТЕЛЯ НА ОСНОВЕ GaSb
Reich et al. Passivation of a Cd 1− x Mg x Te absorber for application in a tandem cell
Chang et al. Improved stability of amorphous silicon solar cells with p-type nanocrystalline silicon carbide window layer
WO2015131881A3 (de) RÜCKSEITENKONTAKTIERTE Si-DÜNNSCHICHT-SOLARZELLE
CN104952961A (zh) 一种n-CdSxSe1-x薄膜/石墨烯肖特基结太阳能电池
Yoon et al. Enhanced surface passivation of epitaxially grown emitters for high-efficiency ultrathin crystalline Si solar cells
Guo et al. High-pressure water-vapor annealing for enhancement of a-Si: H film passivation of silicon surface
Kalygina et al. Influence of White Light on the Photoelectric Characteristics of UV Detectors Based on β-Ga 2 O 3
Ablekimy et al. High efficiency evaporated CdSeTe/CdTe solar cells with and without MgZnO buffer layer
Noda et al. Highly oriented polycrystalline Cu 2 O film formation using RF magnetron sputtering deposition for solar cells
Budhraja Effect of SiO2 and SiNX passivation on CdTe based solar cells
Budhraja et al. Effect of SiO2 passivation on CdTe based solar cells

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20150429

WD01 Invention patent application deemed withdrawn after publication