CN104573232A - 基于能量梯度理论的分流叶片进口偏置度确定方法 - Google Patents

基于能量梯度理论的分流叶片进口偏置度确定方法 Download PDF

Info

Publication number
CN104573232A
CN104573232A CN201510005904.8A CN201510005904A CN104573232A CN 104573232 A CN104573232 A CN 104573232A CN 201510005904 A CN201510005904 A CN 201510005904A CN 104573232 A CN104573232 A CN 104573232A
Authority
CN
China
Prior art keywords
partiald
energy gradient
centrifugal pump
splitterr vanes
offset degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510005904.8A
Other languages
English (en)
Other versions
CN104573232B (zh
Inventor
窦华书
郑路路
陈小平
蒋威
马晓阳
牛琳
贲安庆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN201510005904.8A priority Critical patent/CN104573232B/zh
Publication of CN104573232A publication Critical patent/CN104573232A/zh
Application granted granted Critical
Publication of CN104573232B publication Critical patent/CN104573232B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

本发明提出了一种基于能量梯度理论的分流叶片进口偏置度确定方法。本发明包括如下步骤:步骤(1).模拟离心泵内的流动物理参数;步骤(2).计算整个流场的能量梯度函数<i>K</i>;步骤(3).改变分流叶片进口偏置度,计算获得整个流场的能量梯度函数<i>K</i>值;步骤(4).对比不同分流叶片进口偏置度,确定最优分流叶片进口偏置度。本发明利用CFD技术和能量梯度理论,通过对比不同分流叶片进口偏置度下能量梯度函数<i>K</i>值的大小,来确定最优的分流叶片进口偏置度。得到最优的分流叶片进口偏置度的离心泵,可以减小部分工况条件下离心泵叶轮内的不稳定现象,进而提高离心泵的稳定性。

Description

基于能量梯度理论的分流叶片进口偏置度确定方法
技术领域
本发明属于叶轮机械领域,涉及离心泵,具体涉及一种基于能量梯度理论的分流叶片进口偏置度确定方法。
背景技术
离心泵作为当代最主要的动力装置之一,广泛应用于国民经济的各部门以及航空航天等尖端技术领域。提高离心泵的效率,可以充分利用有限能源,提高的经济效益。因此,提高离心泵的研究和设计水平,对国民经济发展、节约能源和环境保护有重要的影响。叶轮机械主要是指采用液体作为介质的工作机,主要是离心泵。泵是叶轮机械的一种,也是应用非常广泛的通用机械,可以说凡是有液体流动的领域,就有泵的工作。随着科学技术的发展,泵的应用领域正在迅速扩大,据不同国家统计,泵的耗电量都约占各国总发电量的1/5,可见泵的耗能巨大,因而提高泵技术水平对节约能源具有重要意义。
在离心泵的应用中,经常会添加分流叶片,采用长、短叶片间隔布置,可以有效的改善叶轮内流场分布,提高叶轮压比,提高运行的稳定性。分流叶片的设计中有很多需要考虑的地方,其中分流叶片进口偏置度就是设计中的一项。适当的分流叶片的进口偏置度可以有效的改善叶轮出口的射流-尾迹结构,提高离心泵的性能。因此分流叶片进口偏置度θsi对离心泵运行的稳定性以及整体性能都有着重要的影响。
发明内容
本发明的目的是针对现有研究的不足,提供一种基于能量梯度理论的分流叶片进口偏置度确定方法,以能量梯度函数K值的分布作为选择合适分流叶片进口偏置度的依据,以叶轮K较大区域最小的分流叶片进口偏置度θsi作为离心泵分流叶片的最优进口偏置度,优选后的离心泵叶轮部分的流动不稳定情况有所改善,流动情况得到明显的提高。
本发明解决其技术问题所采用的技术方案如下:
步骤(1).模拟离心泵内的流动物理参数;
利用CFD技术模拟离心泵内的流动,得到整个流场的物理参数。所述的物理参数包括速度、压强、流线等参数,具体获取如下:
针对任一工况条件下的离心泵,采用CFD技术对离心泵内部流动进行数值模拟,控制方程采用三维不可压缩的雷诺平均纳维-斯托克斯方程,并利用有限体积法对控制方程在空间上进行离散;时间推进采用半隐式的格式;然后,在计算域上施加边界条件,分别在给定的几何参数和不同的流动条件下,进行模拟计算,并获得流场物理参数,包括速度、压强和流线分布。
步骤(2).计算整个流场的能量梯度函数K;
根据能量梯度理论,离心泵内的能量梯度函数K的计算公式为:
K = &PartialD; E / &PartialD; n &PartialD; H / &PartialD; s = &PartialD; p &PartialD; n + &rho;U &PartialD; U &PartialD; n &mu; t U ( &PartialD; U &PartialD; n ) 2 - 2 &mu; t &rho;U 2 &CenterDot; &PartialD; U &PartialD; n &CenterDot; &PartialD; p &PartialD; n + &mu; t &rho; 2 U 3 &CenterDot; ( &PartialD; p &PartialD; n ) 2 - - - ( 1 )
式(1)中为流体总压,H为流体的能量损失,U为速度大小,p为流体静压,μt为湍流粘度,ρ为流体密度;n为流体流动的法线方向,s为流体流动的流线方向。K值是一个无因次的流场函数,表示的是法向能量梯度与流向能量损失的比值。当流场中的扰动变化不大时,层流状态下,K值越大的位置,流动越容易发生失稳,越容易向湍流转捩;湍流状态下,K值越大的位置,湍流强度越高。
步骤(3).改变分流叶片进口偏置度,计算获得整个流场的能量梯度函数K值;
针对离心泵内流动情况,改变分流叶片的进口直径,分流叶片的进口偏置度用θsi表示,后利用CFD技术模拟离心泵内部流体的流动,得到整个流场的物理参数。
步骤(4).对比不同分流叶片进口偏置度,确定最优分流叶片进口偏置度;
根据能量梯度函数K值的分布,判断流动离心泵叶轮部分流动的稳定性情况,判断的标准是K值越大,流动越不稳定,K值较大的区域越大,流动的稳定性越差。
本发明的有益效果
本发明利用CFD技术和能量梯度理论,通过对比不同分流叶片进口偏置度θsi下能量梯度函数K值的大小,来确定最优的分流叶片进口偏置度。得到最优的离心泵其扬程和效率都有一定的改善,且部分工况条件下离心泵叶轮内的不稳定现象也有所改善,进而提高离心泵的稳定性。
附图说明
图1为分流叶片进口偏置度确定方法流程图。
图2为分流叶片进口偏置度θsi=0°叶轮剖面图。
图3为分流叶片进口偏置度θsi=5°叶轮剖面图。
图4为分流叶片进口偏置度θsi=-5°叶轮剖面图。
具体实施方式
下面结合附图对本发明做进一步说明。
如图1所示,一种基于能量梯度理论的分流叶片进口偏置度确定方法,具体包括如下步骤:
步骤(1).模拟原型离心泵内的流动物理参数
1-1.利用CFD技术模拟离心泵内的流动,得到整个流场的物理参数;
所述的物理参数包括速度、压强、流线以及扬程和效率,具体获取如下:
针对任一工况条件下的离心泵,采用CFD技术对离心泵内的非定常流动进行数值模拟,控制方程采用三维不可压缩的雷诺平均纳维-斯托克斯方程,并利用有限体积法对非结构化网格下的控制方程在空间上进行离散;时间推进采用半隐式的格式;然后,在计算域上施加边界条件,分别在给定的几何参数和不同的流动条件下,进行模拟计算,并获得流场物理参数,包括速度、压强和流线分布。
步骤(2).计算整个流场的能量梯度函数K具体如下:
2-1.根据窦华书教授的能量梯度理论,推导出应用于离心泵内部流动的能量梯度函数公式;
根据能量梯度理论,离心泵内的能量梯度函数K的计算公式为:
K = &PartialD; E / &PartialD; n &PartialD; H / &PartialD; s = &PartialD; p &PartialD; n + &rho;U &PartialD; U &PartialD; n &mu; t U ( &PartialD; U &PartialD; n ) 2 - 2 &mu; t &rho;U 2 &CenterDot; &PartialD; U &PartialD; n &CenterDot; &PartialD; p &PartialD; n + &mu; t &rho; 2 U 3 &CenterDot; ( &PartialD; p &PartialD; n ) 2 - - - ( 1 )
式(1)中为流体总压,H为流体的能量损失,U为速度大小,p为流体静压,μt为湍流粘度,ρ为流体密度;n为流体流动的法线方向,s为流体流动的流线方向。K值是一个无因次的流场函数,表示的是法向能量梯度与流向能量损失的比值。当流场中的扰动变化不大时,层流状态下,K值越大的位置,流动越容易发生失稳,越容易向湍流转捩;湍流状态下,K值越大的位置,湍流强度越高。
步骤(3).改变分流叶片进口偏置度,计算获得整个流场的能量梯度函数K值具体如下:
3-1.针对离心泵内流动情况,改变分流叶片的进口直径,分流叶片的进口偏置度用θsi表示,如图2所示原型离心泵分流叶片的进口直径为θsi=0°,改变后叶轮叶片的进口直径分别为θsi=5°(如图3所示,以旋转方向为正方向)、θsi=-5°(如图4所示)。然后利用CFD技术模拟离心泵内部流体的流动,得到整个流场的物理参数;
步骤(4).所述的对比不同分流叶片进口偏置度下能量梯度函数K值分布,找到最优分流叶片进口偏置度具体如下:
4-1.根据能量梯度函数K值的分布,判断流动离心泵叶轮部分流动的稳定性情况,判断的标准是K值越大,流动越不稳定,K值较大的区域越大,流动的稳定性越差。
适当的分流叶片的进口偏置度可以有效的改善叶轮出口的射流-尾迹结构,提高离心泵的性能。如图4所示当分流叶片的进口偏置度θsi=-5°时,流道内的流线的分布变得极不均匀,流道内的流动情况比较差,且叶轮出口的射流-尾迹结构没有得到改善。如图2所示当分流叶片的进口偏置度θsi=0°时,流道内的流线分布有所改善,但流动情况并没有得到明显的改善。如图3所示当分流叶片的进口偏置度θsi=5°时,即偏向选择方向,流道内流线分布相对比较均匀,叶轮出口的射流-尾迹结构相比有所改善,流动情况得到提高。当分流叶片的进口偏置度从θsi=-5°增加至θsi=5°时,流道中K值较大的趋势在逐渐减小,流场也变得均匀。因此,分流叶片的最佳进口偏置度为θsi=5°。

Claims (4)

1.基于能量梯度理论的分流叶片进口偏置度确定方法;其特征在于包括如下步骤:
步骤(1).模拟离心泵内的流动物理参数;
步骤(2).计算整个流场的能量梯度函数K;
步骤(3).改变分流叶片进口偏置度,计算获得整个流场的能量梯度函数K值;
步骤(4).对比不同分流叶片进口偏置度,确定最优分流叶片进口偏置度。
2.如权利要求1所述的基于能量梯度理论的分流叶片进口偏置度确定方法;其特征在于步骤(1)所述的模拟离心泵内的流动物理参数具体如下:
2-1.利用CFD技术模拟离心泵内的流动,得到整个流场的物理参数;
所述的物理参数包括水流速度、压强分布、流线分布具体获取如下:
针对任一工况条件下的离心泵,采用CFD技术对离心泵内部流动进行三维数值模拟,模拟过程中控制方程采用三维不可压缩的平均雷诺纳维-斯托克斯方程和连续性方程模拟离心泵内的流体流动,并利用有限体积法对控制方程在空间上进行离散;时间推进采用半隐式的格式;然后,在计算域上施加边界条件,分别在给定的几何参数和不同的流动条件下,进行模拟计算,并获得流场物理参数,包括水流速度、压强和流线分布。
3.如权利要求1所述的基于能量梯度理论的分流叶片进口偏置度确定方法;其特征在于步骤(2)所述的计算整个流场的能量梯度函数K具体如下:
3-1.根据窦华书教授的能量梯度理论,推导出应用于离心泵内部流动的能量梯度函数公式;
根据能量梯度理论,离心泵内的能量梯度函数K的计算公式为:
K = &PartialD; E / &PartialD; n &PartialD; H / &PartialD; s = &PartialD; p &PartialD; n + &rho;U &PartialD; U &PartialD; n &mu; t U ( &PartialD; U &PartialD; n ) 2 - 2 &mu; t &rho;U 2 &CenterDot; &PartialD; U &PartialD; n &CenterDot; &PartialD; p &PartialD; n + &mu; t &rho; 2 U 3 &CenterDot; ( &PartialD; p &PartialD; n ) 2 - - - ( 1 )
式(1)中为流体总压,H为流体的能量损失,U为速度大小,p为流体静压,μt为湍流粘度,ρ为流体密度;n为流体流动的法线方向,s为流体流动的流线方向;K值是一个无因次的流场函数,表示的是法向能量梯度与流向能量损失的比值;当流场中的扰动变化不大时,层流状态下,K值越大的位置,流动越容易发生失稳,越容易向湍流转捩;湍流状态下,K值越大的位置,湍流强度越高。
4.如权利要求1所述的基于能量梯度理论的分流叶片进口偏置度确定方法;其特征在于:所述的对比不同分流叶片进口偏置度,确定最优分流叶片进口位置具体如下:
4-1.根据能量梯度函数K值的分布,判断流动离心泵叶轮部分流动的稳定性情况,判断的标准是K值越大,流动越不稳定,K值较大的区域越大,流动的稳定性越差。
CN201510005904.8A 2015-01-06 2015-01-06 基于能量梯度理论的分流叶片进口偏置度确定方法 Expired - Fee Related CN104573232B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510005904.8A CN104573232B (zh) 2015-01-06 2015-01-06 基于能量梯度理论的分流叶片进口偏置度确定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510005904.8A CN104573232B (zh) 2015-01-06 2015-01-06 基于能量梯度理论的分流叶片进口偏置度确定方法

Publications (2)

Publication Number Publication Date
CN104573232A true CN104573232A (zh) 2015-04-29
CN104573232B CN104573232B (zh) 2018-02-16

Family

ID=53089286

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510005904.8A Expired - Fee Related CN104573232B (zh) 2015-01-06 2015-01-06 基于能量梯度理论的分流叶片进口偏置度确定方法

Country Status (1)

Country Link
CN (1) CN104573232B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105971931A (zh) * 2016-06-07 2016-09-28 江苏大学 一种离心式叶轮分流叶片的设计方法
CN106202795A (zh) * 2016-07-21 2016-12-07 浙江理工大学 基于熵产和叶片载荷联合约束的离心泵叶轮及其设计方法
CN108520123A (zh) * 2018-03-28 2018-09-11 浙江理工大学 基于全流场计算的大功率离心泵转子动力特性分析方法
CN109882446A (zh) * 2019-01-09 2019-06-14 江苏大学 一种低比速离心泵叶轮分流叶片的设计方法
CN111188793A (zh) * 2020-01-17 2020-05-22 湘潭大学 一种离心压气机叶轮分流叶片周向角设计方法及离心压气机叶轮
CN112879341A (zh) * 2021-01-22 2021-06-01 兰州理工大学 一种高抗空化进口后掠及分流偏置式螺旋离心式叶轮
CN113792432A (zh) * 2021-09-15 2021-12-14 沈阳飞机设计研究所扬州协同创新研究院有限公司 基于改进型fvm-lbfs方法的流场计算方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102562651A (zh) * 2012-03-08 2012-07-11 江苏大学 一种高效风能离心泵叶轮
US20120253103A1 (en) * 2011-03-30 2012-10-04 Robert Jarvik Md Centrifugal blood pumps with reverse flow washout
CN103631992A (zh) * 2013-11-07 2014-03-12 华南理工大学 一种自吸泵自吸过程流动模拟的计算方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120253103A1 (en) * 2011-03-30 2012-10-04 Robert Jarvik Md Centrifugal blood pumps with reverse flow washout
CN102562651A (zh) * 2012-03-08 2012-07-11 江苏大学 一种高效风能离心泵叶轮
CN103631992A (zh) * 2013-11-07 2014-03-12 华南理工大学 一种自吸泵自吸过程流动模拟的计算方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUA-SHU DOU: "Mechanism of flowinstability and transition to turbulence", 《INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS》 *
窦华书 等: "基于能量梯度理论的离心泵内流动不稳定研究", 《农业机械学报》 *
陈松山 等: "长短叶片离心泵正交试验研究", 《扬州大学学报(自然科学版)》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105971931A (zh) * 2016-06-07 2016-09-28 江苏大学 一种离心式叶轮分流叶片的设计方法
CN105971931B (zh) * 2016-06-07 2018-04-17 江苏大学 一种离心式叶轮分流叶片的设计方法
CN106202795A (zh) * 2016-07-21 2016-12-07 浙江理工大学 基于熵产和叶片载荷联合约束的离心泵叶轮及其设计方法
CN108520123A (zh) * 2018-03-28 2018-09-11 浙江理工大学 基于全流场计算的大功率离心泵转子动力特性分析方法
CN108520123B (zh) * 2018-03-28 2021-07-16 浙江理工大学 基于全流场计算的大功率离心泵转子动力特性分析方法
CN109882446A (zh) * 2019-01-09 2019-06-14 江苏大学 一种低比速离心泵叶轮分流叶片的设计方法
CN111188793A (zh) * 2020-01-17 2020-05-22 湘潭大学 一种离心压气机叶轮分流叶片周向角设计方法及离心压气机叶轮
CN112879341A (zh) * 2021-01-22 2021-06-01 兰州理工大学 一种高抗空化进口后掠及分流偏置式螺旋离心式叶轮
CN113792432A (zh) * 2021-09-15 2021-12-14 沈阳飞机设计研究所扬州协同创新研究院有限公司 基于改进型fvm-lbfs方法的流场计算方法

Also Published As

Publication number Publication date
CN104573232B (zh) 2018-02-16

Similar Documents

Publication Publication Date Title
CN104573232A (zh) 基于能量梯度理论的分流叶片进口偏置度确定方法
Tao et al. Improving the cavitation inception performance of a reversible pump-turbine in pump mode by blade profile redesign: Design concept, method and applications
Jintao et al. Three dimensional flow simulation of load rejection of a prototype pump-turbine
CN102141064A (zh) 空间过滤法建立湍流模型的构建方法
CN105485049A (zh) 一种稳流离心泵及其设计方法
CN102141464A (zh) 一种Reynolds时均法建立湍流模型的构建方法
Zhao et al. Combined experimental and numerical analysis of cavitating flow characteristics in an axial flow waterjet pump
Chen et al. On the hydrodynamics of hydraulic machinery and flow control
Alemi et al. Development of new “multivolute casing” geometries for radial force reduction in centrifugal pumps
Yang et al. Numerical investigation of tip clearance effects on the performance and flow pattern within a sewage pump
Tao et al. A comparative assessment of Spalart-Shur rotation/curvature correction in RANS simulations in a centrifugal pump impeller
CN104598674A (zh) 基于能量梯度理论的分流叶片进口直径确定方法
Meng et al. Study on the pressure pulsation inside runner with splitter blades in ultra-high head turbine
Neary et al. US Department of Energy (DOE) National Lab Activities in Marine Hydrokinetics: Scaled Model Testing of DOE Reference Turbines.
CN105508307A (zh) 防产生汽蚀的旋涡泵
Bunea et al. Aspects concerning the quality of aeration for environmental friendly turbines
Qu et al. Effects of impeller trimming methods on performances of centrifugal pump
Xu et al. Numerical simulation of the impact of unit commitment optimization and divergence angle on the flow pattern of forebay
CN105465038A (zh) 一种v形切口叶片稳流离心泵及其设计方法
CN104564716A (zh) 一种离心泵稳流叶轮的改进方法
Singh et al. Cavitation characteristics of a pump-turbine model by CFD analysis
Sun et al. Analysis of Transient Characteristics of Submersible Tubular Pump During Runaway Transition
CN110985435A (zh) 一种抑制混流泵叶片空化的装置
Zhang et al. Effect of bionic groove surface blade on cavitation characteristics of centrifugal pump
Hu et al. Computation of stress distribution in a mixed flow pump based on fluid-structure interaction analysis

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180216

Termination date: 20190106