CN104569913A - High-precision full-lightning positioning method - Google Patents
High-precision full-lightning positioning method Download PDFInfo
- Publication number
- CN104569913A CN104569913A CN201510047616.9A CN201510047616A CN104569913A CN 104569913 A CN104569913 A CN 104569913A CN 201510047616 A CN201510047616 A CN 201510047616A CN 104569913 A CN104569913 A CN 104569913A
- Authority
- CN
- China
- Prior art keywords
- waveform
- time
- lightning
- website
- station
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 31
- 238000001514 detection method Methods 0.000 claims abstract description 16
- 239000011159 matrix material Substances 0.000 claims abstract description 11
- 230000005855 radiation Effects 0.000 claims description 15
- 230000005540 biological transmission Effects 0.000 claims description 13
- 230000004044 response Effects 0.000 claims description 11
- 230000005684 electric field Effects 0.000 claims description 7
- 238000004364 calculation method Methods 0.000 claims description 4
- 230000008569 process Effects 0.000 claims description 2
- 238000012935 Averaging Methods 0.000 claims 1
- 230000015572 biosynthetic process Effects 0.000 claims 1
- 230000001419 dependent effect Effects 0.000 claims 1
- 230000017105 transposition Effects 0.000 claims 1
- 238000005457 optimization Methods 0.000 abstract description 8
- 238000000605 extraction Methods 0.000 abstract description 5
- 241000282414 Homo sapiens Species 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S5/00—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
- G01S5/02—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
- G01S5/06—Position of source determined by co-ordinating a plurality of position lines defined by path-difference measurements
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Position Fixing By Use Of Radio Waves (AREA)
Abstract
本发明涉及一种高精度全闪电定位方法。该方法可用于对闪电的三维定位,既能对云间及云内闪电进行空间位置及高度的高精度定位,也能对地闪进行地面位置高精度定位。该方法采用了五站三维定位算法,将非线性方程组转化为线性矩阵方程可以得到唯一解,采用了时间窗、波形互相关提取时差法和Levenberg–Marquardt(L-M)最小二乘法优化算法,解决了不同探测站点数据波形自动匹配、时间差精确提取、非等平面探测站三维定位优化求解问题,得到精确的闪电三维地理信息和时间信息。
The invention relates to a high-precision full lightning positioning method. This method can be used for three-dimensional positioning of lightning, not only for high-precision positioning of the spatial position and height of lightning between clouds and within clouds, but also for high-precision positioning of ground lightning. This method uses a five-station three-dimensional positioning algorithm, and transforms the nonlinear equations into a linear matrix equation to obtain a unique solution. It uses the time window, waveform cross-correlation extraction time difference method and Levenberg–Marquardt (LM) least squares optimization algorithm to solve the problem. The automatic matching of data waveforms of different detection stations, the accurate extraction of time difference, and the optimization of three-dimensional positioning of non-equal plane detection stations are solved, and the accurate three-dimensional geographical information and time information of lightning are obtained.
Description
技术领域technical field
本发明属于电气领域,尤其是涉及一种高精度全闪电定位方法。The invention belongs to the electrical field, and in particular relates to a high-precision full lightning positioning method.
背景技术Background technique
1987年联合国确定的“国际减灾十年”中,雷电为对人类危害最大的十种灾害之一。长期以来雷电对人类赖以生存的自然资源和人类创造的物质文明构成极大的威胁,尤其是微电子设备广泛应用的今天,雷电造成的直接和间接灾害日益严重,因此对雷电的研究也越来越受到重视,我国运行的雷电定位网络LLS覆盖了我国的大部分地区,能够对地闪进行很好的监测。但是不能提供云闪信息及对云闪等早期雷电电磁辐射发展进程不能观测,影响和限制对于雷暴活动丰富性的认识。为了更好的研究雷电的发生发展机理,需要开展了雷电的三维探测技术研究。In the "International Decade for Disaster Reduction" established by the United Nations in 1987, lightning was one of the ten most harmful disasters to human beings. For a long time, lightning has posed a great threat to the natural resources that human beings depend on for survival and the material civilization created by human beings. Especially today, with the widespread use of microelectronic devices, the direct and indirect disasters caused by lightning are becoming more and more serious. Therefore, the research on lightning is becoming more and more serious. More and more attention has been paid to it. The lightning location network LLS operated in my country covers most areas of our country and can monitor ground lightning very well. However, it cannot provide cloud flash information and cannot observe the development process of early lightning electromagnetic radiation such as cloud flash, which affects and limits the understanding of the richness of thunderstorm activities. In order to better study the occurrence and development mechanism of lightning, it is necessary to carry out research on three-dimensional detection technology of lightning.
雷电的三维探测技术研究的关键技术就是高精度全闪电定位方法的研究。本专利提出了一种高精度三维全闪电定位方法,该方法可用于对闪电的三维定位,对传统地闪可以进行定位,也能够对云闪进行定位。该方法采用了五站三维定位算法,将非线性方程组转化为线性矩阵方程可以得到唯一解,提出了时间窗、波形互相关提取时差法和Levenberg–Marquardt(L-M)最小二乘法优化算法,解决了不同探测站点数据波形自动匹配、时间差精确提取、非等平面探测站三维定位优化求解问题,得到精确的闪电三维地理信息和时间信息。The key technology of lightning three-dimensional detection technology research is the research of high-precision full lightning location method. This patent proposes a high-precision three-dimensional full lightning positioning method, which can be used for three-dimensional positioning of lightning, can locate traditional ground lightning, and can also locate cloud lightning. This method adopts the five-station three-dimensional positioning algorithm, and transforms the nonlinear equations into linear matrix equations to obtain a unique solution. The time window, waveform cross-correlation extraction time difference method and Levenberg–Marquardt (L-M) least squares optimization algorithm are proposed to solve the problem. The automatic matching of data waveforms of different detection stations, the accurate extraction of time difference, and the optimization of three-dimensional positioning of non-equal plane detection stations are solved, and the accurate three-dimensional geographical information and time information of lightning are obtained.
发明内容Contents of the invention
本发明主要是解决现有技术所存在不同探测站点数据波形自动匹配、时间差精确提取、非等平面探测站三维定位优化求解问题;提供了一种可用于对闪电的三维定位,既能对云间及云内闪电进行空间位置及高度的高精度定位,也能对地闪进行地面位置高精度定位的一种高精度全闪电定位方法。The present invention mainly solves the problems of automatic matching of data waveforms of different detection stations, accurate extraction of time difference, and optimization of three-dimensional positioning of non-equal plane detection stations existing in the prior art; it provides a three-dimensional positioning for lightning, which can not only detect lightning between clouds It is a high-precision full lightning positioning method that can perform high-precision positioning of the spatial position and height of the lightning in the cloud and the lightning in the cloud, and can also perform high-precision positioning of the ground position of the ground lightning.
本发明的上述技术问题主要是通过下述技术方案得以解决的:Above-mentioned technical problem of the present invention is mainly solved by following technical scheme:
一种高精度全闪电定位方法,其特征在于,包括下述步骤:A high-precision full lightning positioning method is characterized in that it comprises the following steps:
步骤1:将全闪电定位探测站点的辐射电场波形数字化,对各站点波形采用波形互相关算法精确提取各个站点对于相同闪电放电事件在各站的记录时间差,具体方法如下:Step 1: Digitize the radiated electric field waveforms of all lightning location and detection stations, and use the waveform cross-correlation algorithm to accurately extract the time difference of each station for the same lightning discharge event at each station. The specific method is as follows:
步骤1.1:采用时间窗从时间上甄别波形对相同辐射事件的真实响应,各站同时处于时间窗内的波形才有可能是对同一辐射信号的响应。Step 1.1: Use the time window to identify the real response of the waveform to the same radiation event in time. Only the waveforms of all stations in the time window at the same time may be the response to the same radiation signal.
步骤1.2:将原始电场波形通过Hilbert快速变化为归一化功率波形,消除了各个站点由于距离辐射源距离的不同而导致的波形极性以及幅度的差别Step 1.2: The original electric field waveform is quickly changed into a normalized power waveform by Hilbert, which eliminates the differences in waveform polarity and amplitude caused by the different distances from the radiation source at each site
步骤1.3:计算容许窗内可用站点功率波形的线性相关系数,将相关系数大于规定值的波形作为属于相同事件响应的阈值,取相似度最好、达标最多的组合作为对相同闪电事件波形的初步匹配结果。Step 1.3: Calculate the linear correlation coefficient of the available site power waveform within the allowable window, take the waveform with a correlation coefficient greater than the specified value as the threshold for the same event response, and take the combination with the best similarity and the most standards as the preliminary response to the same lightning event waveform matching results.
步骤1.4:采用互相关法提取各个站点波形时间差,互相关是信号之间的相对时间函数从波形特征反映出的平均时间延时不是具体某个脉冲的绝对时差,因而消除了不同站点环境及传播途径导致波形细小差别。Step 1.4: Use the cross-correlation method to extract the waveform time difference of each station. Cross-correlation is the relative time function between signals. The average time delay reflected from the waveform characteristics is not the absolute time difference of a specific pulse, thus eliminating the environment and propagation of different stations. pathways resulting in small differences in the waveform.
步骤1.5:得到各个站点的时间差后,使用几何模型检测得到的时间差序列是否合理。Step 1.5: After obtaining the time difference of each station, use the geometric model to check whether the obtained time difference sequence is reasonable.
步骤2:将非线性定位距离算法方程组转换为线性矩阵方程组求得初解,具体方法如下:Step 2: Transform the nonlinear positioning distance algorithm equations into linear matrix equations to obtain the initial solution, the specific method is as follows:
步骤2.1:根据波形传输方程,列出每个站点波形传输方程。Step 2.1: According to the waveform transmission equation, list the waveform transmission equation for each site.
其中c是真空中的光速,(xi,yi,zi)为第i个定位站点坐标,ti为闪电到达第i个探测站的时间。Where c is the speed of light in vacuum, (xi , y i , zi ) is the coordinates of the i-th positioning station, and t i is the time when the lightning arrives at the i-th detection station.
步骤2.2:将步骤2.1的传输方程进行移项处理,之后将不同站点的传输方程两两相减,得到线性方程。Step 2.2: Transpose the transmission equation in step 2.1, and then subtract the transmission equations of different stations to obtain a linear equation.
c2(t2+ti 2-2tti)=x2+xi 2-2xxi+y2+yi 2-2yyi+z2+zi 2-2zzi c 2 (t 2 +t i 2 -2tt i )=x 2 +xi 2 -2xx i +y 2 +y i 2 -2yy i +z 2 +z i 2 -2zz i
其中定义:which defines:
ri 2=xi 2+yi 2+zi 2 r i 2 =x i 2 +y i 2 +z i 2
r2=x2+y2+z2 r 2 =x 2 +y 2 +z 2
可得:c2t2+c2ti 2-ri 2=r2-2(xxi+yyi+zzi-c2tti)Can get: c 2 t 2 +c 2 t i 2 -r i 2 =r 2 -2(xx i +yy i +zz i -c 2 tt i )
于第j个站点,同样可得到以下方程:At the jth station, the following equation can also be obtained:
c2t2+c2tj 2-rj 2=r2-2(xxj+yyj+zzj-c2ttj)c 2 t 2 +c 2 t j 2 -r j 2 =r 2 -2(xx j +yy j +zz j -c 2 tt j )
将两式相减可得:Subtract the two equations to get:
c2(ti 2-tj 2)-(ri 2-rj 2)=-2(x(xi-xj)+y(yi-yj)+z(zi-zj)-c2t(ti-tj))c 2 (t i 2 -t j 2 )-(r i 2 -r j 2 )=-2(x( xi -x j )+y(y i -y j )+z(z i -z j )-c 2 t(t i -t j ))
同样定义:Also define:
tij=ti-tj,xij=xi-xj,yij=yi-yj,zij=zi-zj,t ij =t i -t j ,x ij =xi -x j ,y ij =y i -y j ,z ij =z i -z j ,
得到线性方程xxij+yyij+zzij-c2ttij=bij Get the linear equation xx ij +yy ij +zz ij -c 2 tt ij = b ij
tij为i、j两个站点达到的时间差tij is the time difference between the two stations i and j
步骤2.3:对于任意5站或更多站观测值,用其余4站与其中1站相减,可以得到由4个类似步骤2.2的独立线性方程组成的矩阵,其中tij通过步骤1.4中采用互相关法提取各个站点波形时间差tij获得;Step 2.3: For observations of any 5 or more stations, subtract 1 of them from the remaining 4 stations to obtain a matrix composed of 4 independent linear equations similar to step 2.2, where tij is obtained by using cross-correlation in step 1.4 Obtained by extracting the waveform time difference tij of each site by using the method;
步骤2.4:取任意5站线性组合的形成的矩阵方程中计算辐射源三维位置以及时间。Step 2.4: Take Calculate the three-dimensional position and time of the radiation source in the matrix equation formed by the linear combination of any 5 stations.
步骤3:根据得到的初解,采用L-M最小二乘法优化算法计算得到精确定位点,具体方法是:Step 3: According to the obtained initial solution, use the L-M least square method optimization algorithm to calculate the precise positioning point, the specific method is:
步骤3.1:通过步骤2计算得到的辐射源三维位置以及时间,反演闪电放电事件达到各个站点的时间,基于如下公式:Step 3.1: Through the three-dimensional position and time of the radiation source calculated in step 2, invert the time when the lightning discharge event reaches each site, based on the following formula:
是反演在反演位置(xfit,yfit,zfit)的闪电放电事件经过简单路径传输后到达站点i的拟合到达时间。 is the fitted arrival time of the inversion lightning discharge event at the inversion position (x fit , y fit , z fit ) to site i after the simple path transmission.
步骤3.2:确定衡量最优计算因子χ2,5站用步骤2中得到可能的初始估测解析解,冗余站点用于配合非线性迭代约束得到数值解,最终将χ2值最小的解向量当做唯一精确的解向量。Step 3.2: Determine and measure the optimal calculation factor χ 2 , the 5 stations use step 2 to obtain possible initial estimated analytical solutions, redundant stations are used to obtain numerical solutions with nonlinear iteration constraints, and finally the solution vector with the smallest χ 2 value as the only exact solution vector.
其中,N为当前可用站点总数,σ为各探测站数据的标准差,为一固定值,为站点i观测到的到达时间。Among them, N is the total number of currently available stations, σ is the standard deviation of the data of each detection station, which is a fixed value, is the arrival time observed at station i.
因此,本发明具有如下优点:可用于对闪电的三维定位,既能对云间及云内闪电进行空间位置及高度的高精度定位,也能对地闪进行地面位置高精度定位。Therefore, the present invention has the following advantages: it can be used for three-dimensional positioning of lightning, and can not only perform high-precision positioning of spatial position and height of lightning between clouds and within clouds, but also perform high-precision positioning of ground position for ground lightning.
附图说明Description of drawings
图1为本发明的方法流程示意图。Fig. 1 is a schematic flow chart of the method of the present invention.
图2为本发明中涉及的互相关算法提取时间差的方法流程示意图。FIG. 2 is a schematic flowchart of a method for extracting time differences by a cross-correlation algorithm involved in the present invention.
图3为本发明中涉及的将原始电场波形通过Hilbert快速变化为归一化功率波形的示意图。FIG. 3 is a schematic diagram of rapidly changing the original electric field waveform into a normalized power waveform through Hilbert involved in the present invention.
图4为本发明中涉及的使用几何模型检测得到的时间差序列是否合理的检测方法曲线示意图。FIG. 4 is a schematic diagram of a detection method for detecting whether a time difference sequence obtained by using a geometric model detection is reasonable in the present invention.
具体实施方式Detailed ways
下面通过实施例,并结合附图,对本发明的技术方案作进一步具体的说明。The technical solutions of the present invention will be further specifically described below through the embodiments and in conjunction with the accompanying drawings.
实施例:Example:
如图1高精度全闪电定位方法,首先采用波形互相关算法精确提取各个站点对于相同闪电放电事件在各站的记录差;其次采用方程转换将非线性方程组转换为线性矩阵方程组求得初解;最后根据得到的初解,采用L-M最小二乘法优化算法计算得到精确解。As shown in Figure 1, the high-precision full lightning location method first uses the waveform cross-correlation algorithm to accurately extract the record differences of each station for the same lightning discharge event at each station; Finally, according to the obtained initial solution, the exact solution is obtained by using the L-M least squares optimization algorithm.
互相关算法提取时间差法如图2所示:The cross-correlation algorithm to extract the time difference method is shown in Figure 2:
第一步:采用时间窗从时间上甄别波形对相同辐射事件的真实响应,各站同时处于时间窗内的波形才有可能是对同一辐射信号的响应。Step 1: Time windows are used to identify the real response of the waveform to the same radiation event in time. Only the waveforms of all stations in the time window at the same time may be the response to the same radiation signal.
第二步:将原始电场波形通过Hilbert快速变化为归一化功率波形,消除了各个站点由于距离辐射源距离的不同而导致的波形极性以及幅度的差别如图3所示。The second step: the original electric field waveform is quickly changed into a normalized power waveform by Hilbert, eliminating the differences in the polarity and amplitude of the waveform caused by the distance between each site and the radiation source, as shown in Figure 3.
第三步:计算容许窗内可用站点功率波形的线性相关系数,将相关系数大于规定值的波形作为属于相同事件响应的阈值,取相似度最好、达标最多的组合作为对相同闪电事件波形的初步匹配结果。Step 3: Calculate the linear correlation coefficient of the available site power waveform within the allowable window, and use the waveform with a correlation coefficient greater than the specified value as the threshold value belonging to the same event response, and take the combination with the best similarity and the most standards as the response to the same lightning event waveform Preliminary matching results.
第四步:采用互相关法提取各个站点波形时间差,互相关是信号之间的相对时间函数从波形特征反映出的平均时间延时不是具体某个脉冲的绝对时差,因而消除了不同站点环境及传播途径导致波形细小差别。Step 4: Use the cross-correlation method to extract the waveform time difference of each station. The cross-correlation is the relative time function between signals. The average time delay reflected from the waveform characteristics is not the absolute time difference of a specific pulse, thus eliminating the differences between different station environments and Propagation paths cause small differences in waveforms.
第五步:得到各个站点的时间差后,使用几何模型检测得到的时间差序列是否合理。如图4,d1为闪电时间距离Si站点的距离,d2为闪电时间距离Sj站点的距离,d3为Si和Sj两个站点之间的距离。显然,d1-d2<d3,两端同时除以光速c,可得ti-tj<d3/c,即DTOAij<d3/c,因此得到所有站点间的时间差小于相应站间传播时延。Step 5: After obtaining the time difference of each station, use the geometric model to check whether the obtained time difference sequence is reasonable. As shown in Figure 4, d 1 is the distance from the lightning time to the site S i , d 2 is the distance from the lightning time to the S j site, and d 3 is the distance between the two sites S i and S j . Obviously, d 1 -d 2 <d 3 , divide both ends by the speed of light c at the same time, we can get t i -t j <d 3 /c, that is, DTOA ij <d 3 /c, so the time difference between all stations is less than the corresponding Inter-station propagation delay.
采用方程转换将非线性方程组转换为线性矩阵方程组求得初解,包括下述步骤:Using equation conversion to convert the nonlinear equation system into a linear matrix equation system to obtain the initial solution includes the following steps:
步骤1:列出每个站点波形传输方程。Step 1: List the waveform transmission equations for each site.
(其中c是真空中的光速,(xi,yi,zi)为第i个定位站点坐标,ti为闪电到达第i个探测站的时间)。(where c is the speed of light in vacuum, (xi , y i , zi ) is the coordinates of the i-th positioning station, and t i is the time when the lightning arrives at the i-th detection station).
步骤2:将步骤一的传输方程进行移项处理,之后将不同站点的传输方程两两相减,得到线性方程。Step 2: Transpose the transmission equation in step 1, and then subtract the transmission equations of different sites in pairs to obtain a linear equation.
c2(t2+ti 2-2tti)=x2+xi 2-2xxi+y2+yi 2-2yyi+z2+zi 2-2zzi c 2 (t 2 +t i 2 -2tt i )=x 2 +xi 2 -2xx i +y 2 +y i 2 -2yy i +z 2 +z i 2 -2zz i
其中定义:which defines:
ri 2=xi 2+yi 2+zi 2 r i 2 =x i 2 +y i 2 +z i 2
r2=x2+y2+z2 r 2 =x 2 +y 2 +z 2
可得:c2t2+c2ti 2-ri 2=r2-2(xxi+yyi+zzi-c2tti)Can get: c 2 t 2 +c 2 t i 2 -r i 2 =r 2 -2(xx i +yy i +zz i -c 2 tt i )
于第j个站点,同样可得到以下方程:At the jth station, the following equation can also be obtained:
c2t2+c2tj 2-rj 2=r2-2(xxj+yyj+zzj-c2ttj)c 2 t 2 +c 2 t j 2 -r j 2 =r 2 -2(xx j +yy j +zz j -c 2 tt j )
将两式相减可得:Subtract the two equations to get:
c2(ti 2-tj 2)-(ri 2-rj 2)=-2(x(xi-xj)+y(yi-yj)+z(zi-zj)-c2t(ti-tj))c 2 (t i 2 -t j 2 )-(r i 2 -r j 2 )=-2(x( xi -x j )+y(y i -y j )+z(z i -z j )-c 2 t(t i -t j ))
同样定义:Also define:
tij=ti-tj,xij=xi-xj,yij=yi-yj,zij=zi-zj,t ij =t i -t j ,x ij =xi -x j ,y ij =y i -y j ,z ij =z i -z j ,
得到线性方程xxij+yyij+zzij-c2ttij=bij Get the linear equation xx ij +yy ij +zz ij -c 2 tt ij = b ij
tij为i、j两个站点达到的时间差tij is the time difference between the two stations i and j
步骤3:对于任意5站或更多站观测值,用其余4站与其中1站相减,可以得到由4个类似步骤2的独立线性方程组成的矩阵,其中tij通过权利要求2对应的步骤可获得。Step 3: For the observation values of any 5 or more stations, subtract 1 of them from the remaining 4 stations to obtain a matrix composed of 4 independent linear equations similar to step 2, wherein tij passes through the steps corresponding to claim 2 available.
步骤4:取任意5站线性组合的形成的矩阵方程中计算辐射源三维位置以及时间。Step 4: Take Calculate the three-dimensional position and time of the radiation source in the matrix equation formed by the linear combination of any 5 stations.
采用L-M最小二乘法优化算法计算得到精确解,包括下述步骤:The exact solution is obtained by using the L-M least squares optimization algorithm, including the following steps:
步骤1:通过权利要求3中计算得到的辐射源三维位置以及时间。反演闪电放电事件达到各个站点的时间。Step 1: The three-dimensional position and time of the radiation source obtained through the calculation in claim 3. Retrieve the arrival times of lightning discharge events at various sites.
是反演在反演位置(xfit,yfit,zfit)的闪电放电事件经过简单路径传输后到达站点i的拟合到达时间。 is the fitted arrival time of the inversion lightning discharge event at the inversion position (x fit , y fit , z fit ) to site i after the simple path transmission.
步骤2:确定衡量最优计算因子χ2,5站用权利要求3中得到可能的初始估测解析解,冗余站点用于配合非线性迭代约束得到数值解,最终将χ2值最小的解向量当做唯一精确的解向量。Step 2: Determine and measure the optimal calculation factor χ 2 , use claim 3 in 5 stations to obtain a possible initial estimated analytical solution, redundant stations are used to cooperate with nonlinear iteration constraints to obtain a numerical solution, and finally use the solution with the smallest χ 2 value vector as the only exact solution vector.
其中,N为当前可用站点总数,σ为各探测站数据的标准差,为一固定值,为站点i观测到的到达时间。Among them, N is the total number of currently available stations, σ is the standard deviation of the data of each detection station, which is a fixed value, is the arrival time observed at station i.
本文中所描述的具体实施例仅仅是对本发明精神作举例说明。本发明所属技术领域的技术人员可以对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,但并不会偏离本发明的精神或者超越所附权利要求书所定义的范围。9 -->The specific embodiments described herein are merely illustrative of the spirit of the invention. Those skilled in the art to which the present invention belongs can make various modifications or supplements to the described specific embodiments or adopt similar methods to replace them, but they will not deviate from the spirit of the present invention or go beyond the definition of the appended claims range. 9 -->
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510047616.9A CN104569913B (en) | 2015-01-30 | 2015-01-30 | High-precision full-lightning positioning method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510047616.9A CN104569913B (en) | 2015-01-30 | 2015-01-30 | High-precision full-lightning positioning method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104569913A true CN104569913A (en) | 2015-04-29 |
CN104569913B CN104569913B (en) | 2017-04-12 |
Family
ID=53086434
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510047616.9A Active CN104569913B (en) | 2015-01-30 | 2015-01-30 | High-precision full-lightning positioning method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104569913B (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106405253A (en) * | 2016-08-24 | 2017-02-15 | 中国气象科学研究院 | Method and apparatus for positioning object lightning radiation source |
CN107015064A (en) * | 2017-06-20 | 2017-08-04 | 云南电网有限责任公司昆明供电局 | Lightning Location Method based on thunder and lightning multivariate data auto-correlation Shicha algorithm |
CN107037272A (en) * | 2017-06-20 | 2017-08-11 | 云南电网有限责任公司昆明供电局 | Lightning Location Method based on thunder and lightning multivariate data peak-seeking Shicha algorithm |
CN108490393A (en) * | 2018-03-20 | 2018-09-04 | 中国科学院大气物理研究所 | A kind of positioning of marine mobile platform and air navigation aid based on lightning location net |
CN109188359A (en) * | 2018-09-13 | 2019-01-11 | 中国气象科学研究院 | lightning positioning method and device |
CN110426562A (en) * | 2019-06-24 | 2019-11-08 | 乐山师范学院 | The high-precision lightning 3-D positioning method projected based on hierarchical search and metric space |
CN112986698A (en) * | 2020-10-22 | 2021-06-18 | 南京信息工程大学 | Three-dimensional lightning positioning method |
CN113075461A (en) * | 2021-02-21 | 2021-07-06 | 珠海复旦创新研究院 | Ultra-short baseline lightning three-dimensional positioning method based on broadband very high frequency radiation signal detection |
CN113639970A (en) * | 2021-08-19 | 2021-11-12 | 云南电网有限责任公司电力科学研究院 | Method for evaluating ground detection calibration capability of satellite lightning imager |
CN113945769A (en) * | 2021-10-15 | 2022-01-18 | 中国科学院大气物理研究所 | Lightning three-dimensional positioning method based on double-population particle swarm optimization |
CN117473877A (en) * | 2023-12-27 | 2024-01-30 | 青岛市生态与农业气象中心(青岛市气候变化中心) | Lightning three-dimensional radiation source position inversion method based on stationary satellite data |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030187580A1 (en) * | 2002-03-29 | 2003-10-02 | The Tokyo Electric Power Company, Inc. | Lightning strike position locating method, apparatus, system and program |
CN102298097A (en) * | 2011-07-15 | 2011-12-28 | 华中科技大学 | Method for estimating thunder impulse signal Time Difference of Arrival (TDOA) |
JP2012189387A (en) * | 2011-03-09 | 2012-10-04 | Tokyo Electric Power Co Inc:The | Lightning discharge position orientation system |
CN103235284A (en) * | 2013-03-29 | 2013-08-07 | 中国气象科学研究院 | Multi-station lightning VHF (very high frequency) radiation source three-dimensional positioning method and system |
CN103605100A (en) * | 2013-11-22 | 2014-02-26 | 武汉大学 | Positioning error simulation method for lightning detection system |
CN103809156A (en) * | 2014-02-25 | 2014-05-21 | 中国人民解放军理工大学 | Regional high-resolution lightening radiation source locating system |
-
2015
- 2015-01-30 CN CN201510047616.9A patent/CN104569913B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030187580A1 (en) * | 2002-03-29 | 2003-10-02 | The Tokyo Electric Power Company, Inc. | Lightning strike position locating method, apparatus, system and program |
JP2012189387A (en) * | 2011-03-09 | 2012-10-04 | Tokyo Electric Power Co Inc:The | Lightning discharge position orientation system |
CN102298097A (en) * | 2011-07-15 | 2011-12-28 | 华中科技大学 | Method for estimating thunder impulse signal Time Difference of Arrival (TDOA) |
CN103235284A (en) * | 2013-03-29 | 2013-08-07 | 中国气象科学研究院 | Multi-station lightning VHF (very high frequency) radiation source three-dimensional positioning method and system |
CN103605100A (en) * | 2013-11-22 | 2014-02-26 | 武汉大学 | Positioning error simulation method for lightning detection system |
CN103809156A (en) * | 2014-02-25 | 2014-05-21 | 中国人民解放军理工大学 | Regional high-resolution lightening radiation source locating system |
Non-Patent Citations (4)
Title |
---|
Beijing Lightning Network(BLNET) and preliminary location results of lightning;Yu Wang,et al;《2014 International conference on lightning protection》;20141018;第643-646页 * |
YU WANG,ET AL: "Beijing Lightning Network(BLNET) and preliminary location results of lightning", 《2014 INTERNATIONAL CONFERENCE ON LIGHTNING PROTECTION》 * |
胡志祥: "雷电定位算法和误差分析理论研究", 《中国博士学位论文全文数据库 基础科学辑》 * |
雷电定位算法和误差分析理论研究;胡志祥;《中国博士学位论文全文数据库 基础科学辑》;20120815(第08期);全文 * |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106405253A (en) * | 2016-08-24 | 2017-02-15 | 中国气象科学研究院 | Method and apparatus for positioning object lightning radiation source |
CN107015064A (en) * | 2017-06-20 | 2017-08-04 | 云南电网有限责任公司昆明供电局 | Lightning Location Method based on thunder and lightning multivariate data auto-correlation Shicha algorithm |
CN107037272A (en) * | 2017-06-20 | 2017-08-11 | 云南电网有限责任公司昆明供电局 | Lightning Location Method based on thunder and lightning multivariate data peak-seeking Shicha algorithm |
CN108490393A (en) * | 2018-03-20 | 2018-09-04 | 中国科学院大气物理研究所 | A kind of positioning of marine mobile platform and air navigation aid based on lightning location net |
CN109188359A (en) * | 2018-09-13 | 2019-01-11 | 中国气象科学研究院 | lightning positioning method and device |
CN109188359B (en) * | 2018-09-13 | 2020-07-21 | 中国气象科学研究院 | Lightning positioning method and device |
CN110426562A (en) * | 2019-06-24 | 2019-11-08 | 乐山师范学院 | The high-precision lightning 3-D positioning method projected based on hierarchical search and metric space |
CN110426562B (en) * | 2019-06-24 | 2021-06-04 | 乐山师范学院 | High-precision lightning three-dimensional positioning method based on layered search and distance space projection |
CN112986698A (en) * | 2020-10-22 | 2021-06-18 | 南京信息工程大学 | Three-dimensional lightning positioning method |
CN112986698B (en) * | 2020-10-22 | 2022-07-05 | 南京信息工程大学 | Three-dimensional lightning positioning method |
CN113075461A (en) * | 2021-02-21 | 2021-07-06 | 珠海复旦创新研究院 | Ultra-short baseline lightning three-dimensional positioning method based on broadband very high frequency radiation signal detection |
CN113639970A (en) * | 2021-08-19 | 2021-11-12 | 云南电网有限责任公司电力科学研究院 | Method for evaluating ground detection calibration capability of satellite lightning imager |
CN113639970B (en) * | 2021-08-19 | 2023-11-17 | 云南电网有限责任公司电力科学研究院 | Method for evaluating ground calibration detection capability of satellite lightning imager |
CN113945769A (en) * | 2021-10-15 | 2022-01-18 | 中国科学院大气物理研究所 | Lightning three-dimensional positioning method based on double-population particle swarm optimization |
CN113945769B (en) * | 2021-10-15 | 2022-06-10 | 中国科学院大气物理研究所 | Lightning three-dimensional positioning method based on double-population particle swarm optimization |
CN117473877A (en) * | 2023-12-27 | 2024-01-30 | 青岛市生态与农业气象中心(青岛市气候变化中心) | Lightning three-dimensional radiation source position inversion method based on stationary satellite data |
CN117473877B (en) * | 2023-12-27 | 2024-03-22 | 青岛市生态与农业气象中心(青岛市气候变化中心) | Lightning three-dimensional radiation source position inversion method based on stationary satellite data |
Also Published As
Publication number | Publication date |
---|---|
CN104569913B (en) | 2017-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104569913B (en) | High-precision full-lightning positioning method | |
Shi et al. | Low-frequency E-field Detection Array (LFEDA)—Construction and preliminary results | |
Lyu et al. | Insights into high peak current in‐cloud lightning events during thunderstorms | |
Wu et al. | Comparison of positive and negative compact intracloud discharges | |
Lyu et al. | A low‐frequency near‐field interferometric‐TOA 3‐D Lightning Mapping Array | |
Fan et al. | A new method of three‐dimensional location for low‐frequency electric field detection array | |
Liu et al. | Observation of compact intracloud discharges using VHF broadband interferometers | |
Chen et al. | A method of three‐dimensional location for LFEDA combining the time of arrival method and the time reversal technique | |
Lü et al. | Observations of compact intracloud lightning discharges in the northernmost region (51 N) of China | |
CN107085167B (en) | A kind of transmission line failure localization method based on big data | |
CN103135100B (en) | Moving-target parameter estimation method of common-rail bistatic synthetic aperture radar (SAR) | |
CN106019217A (en) | AOA-based two-dimensional wireless sensor network semi-definite programming positioning method | |
CN106405253A (en) | Method and apparatus for positioning object lightning radiation source | |
CN105759311A (en) | Near-real time earthquake source position positioning method | |
CN110658494B (en) | Passive unmanned aerial vehicle positioning method and server | |
CN107124762A (en) | A kind of wireless location method of efficient abatement non-market value | |
CN103675926A (en) | Conductivity-depth conversion method for aviation transient electromagnetic data | |
Yoshida et al. | Three‐dimensional radio images of winter lightning in japan and characteristics of associated charge structure | |
CN113850908A (en) | An optimization method for ground-flashback location data considering path extension factors | |
Burczyk et al. | Voice multilateration system | |
Lapierre et al. | Expanding on the relationship between continuing current and in‐cloud leader growth | |
Vahabi-Mashak et al. | Modeling of time of arrival method for lightning locating systems | |
CN103487784A (en) | Positioning method based on signal arrival time | |
Chen et al. | Properties of “site error” of lightning direction-finder (DF) and its modeling | |
CN118938131A (en) | Wide-area lightning location method and system considering propagation path and lossy soil medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |