CN104569154A - 快速无损水果质地的检测方法及装置 - Google Patents

快速无损水果质地的检测方法及装置 Download PDF

Info

Publication number
CN104569154A
CN104569154A CN201510002972.9A CN201510002972A CN104569154A CN 104569154 A CN104569154 A CN 104569154A CN 201510002972 A CN201510002972 A CN 201510002972A CN 104569154 A CN104569154 A CN 104569154A
Authority
CN
China
Prior art keywords
fruit
quality
vibration
vibrating
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510002972.9A
Other languages
English (en)
Other versions
CN104569154B (zh
Inventor
应义斌
张文
崔笛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou nuotian Intelligent Technology Co.,Ltd.
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201510002972.9A priority Critical patent/CN104569154B/zh
Publication of CN104569154A publication Critical patent/CN104569154A/zh
Application granted granted Critical
Publication of CN104569154B publication Critical patent/CN104569154B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明公开了一种快速无损水果质地的检测方法及装置。本发明检测方法包括步骤:采集建模样品集;测定质量;测定果形系数;采集振动响应数据;提取振动特征参数;振动特征参数降维;测定质地指标值;建立质地预测模型并进行测量。其检测装置包括振动控制系统和振动信号采集系统。本发明通过采用冲击振动的方式,大大缩短了激光多普勒测振技术用于检测水果质地的时间;同时,采用多振动特征参数结合水果质量和果形作为预测模型的输入参数,提高了模型的预测精度和适应性。

Description

快速无损水果质地的检测方法及装置
技术领域
本发明涉及一种水果检测方法及装置,尤其涉及一种快速无损水果质地的检测方法及装置。
背景技术
我国是一个农业大国,每年水果产量巨大,但是由于水果产后的检测与分级技术仍然比较落后,因此水果的出口率依然很低。同时,随着我国的发展,人民生活水平不断提高,人们对水果的内部品质要求也越来越高。质地作为评判水果口感和成熟度的一项关键指标,被广泛运用在了水果种植、采后保存、采后加工以及食用评估等方面。
传统的水果质地检测方法采用的是穿刺法,其主要步骤是采用一个手持式硬度计,将压头插入果实一定的深度,该过程中最大的力则记为果实的硬度。但是,该方法存在不易校准、受人为因素影响大、不可重复并且是有损检测等缺点,因此我们需要找到一种快速无损检测的方式来实现水果质地的检测。声学振动法是目前最常用且有效的水果质地无损检测方法之一。
在声学振动法中,检测振动的传感器包括接触式传感器和非接触式传感器。接触式传感器由于会影响被测物体的自由振动而无法准确测量水果的振动特性。非接触式传感器主要包括了麦克风和激光多普勒传感器。但是,麦克风的缺点在于容易受环境噪声的影响,应用局限性较大。激光多普勒测振技术作为一种光学的检测方式,具有不影响被测物体自由振动和不受环境噪声影响等独到的优势,因此十分适合用于声学振动法检测水果的质地。现有的基于激光多普勒测振检测水果质地的技术中,均是采用扫频信号作为水果的激励信号,该方式的缺点是检测速度慢,频率需要逐渐增大或减小以寻找水果的共振频率,因此无法满足在线检测或者消费者现场使用的需求。
发明内容
为了解决现有激光多普勒测振技术用于水果质地检测耗时的问题,本发明目的在于提供一种快速无损水果质地的检测方法及装置,基于激光多普勒测振技术,采用冲击振动的方式用于快速获取水果的振动信息,同时结合相应的信号处理方法和化学计量学方法,建立水果的质地预测模型,实现水果质地的快速无损检测。
本发明采用的技术方案是:
一、一种快速无损水果质地的检测方法:
步骤1)采集建模样品集:选择与待测水果同一批次的同种水果作为试验样本,试验样本的水果依次进行步骤2)~步骤8);
步骤2)测定质量m:用电子天平逐一称重;
步骤3)测定果形系数SI:分别沿水果赤道和“果梗-果萼”方向均匀间隔120°测量水果的直径d和高h各3次,取平均值作为水果的直径和高,用高和直径的比值作为果形系数SI:
SI = h ‾ / d ‾
步骤4)采集振动响应信号:将各个水果置于振动台中心位置,振动台在激励信号的控制下进行振动,用激光多普勒测振仪测量得到水果的振动响应数据;
步骤5)提取振动特征参数:采集到的振动响应数据进行快速傅里叶变换处理,得到时域数据和频域数据,分别对时域数据和频域数据提取振动特征参数;
步骤6)振动特征参数降维:采用数据降维方法,把从步骤6)提取得到的振动特征参数进行降维,得到降维后的振动参数;
步骤7)测定质地指标值:对试验样本的水果,利用质构仪并采用质地测试方法,在水果赤道处均匀选取a个待测点,相邻待测点之间的间隔为360/a度,测量各个待测点的质地指标,将所有待测点的质地指标的平均值作为试验样本的质地指标值;
步骤8)建立质地预测模型:将上述试验样本由步骤2)得到的质量m、步骤3)得到的果形系数SI和步骤6)得到降维后的振动参数作为输入参数,质地指标值作为输出参数,采用化学计量学方法建立用于预测质地指标的质地预测模型;
步骤9)将待测水果依次进行步骤2)~步骤6)得到质量m、果形系数SI和降维后的振动参数,然后输入质地预测模型得到待测水果对应的质地指标值,完成快速无损检测。
所述的步骤1)中的试验样本包括至少30个水果。
所述步骤4)中,所述的激励信号指由信号发生器发出通过振动控制器输出,并经功率放大器放大后控制振动发生机工作的信号,该激励信号是脉冲信号。
所述步骤4)中,所述的用激光多普勒测振仪测量水果的振动响应信号的具体方式为:激光探头竖直向下固定于三脚架上,调节激光探测头使激光束聚焦于水果上表面顶部,反射回的激光由激光探测头接收,经激光多普勒测振控制器处理后获得水果的振动响应数据。
所述步骤7)中,所述的质地测试方法选自但不限于以下方法:穿刺试验方法、压缩试验方法或者蠕变试验方法。
所述步骤5)中,所述的振动特征参数包括时域特征参数和频域特征参数,时域特征参数包含但不限于以下参数的一个或多个:平均值、方差、最大值、最小值、信号持续时间、整流平均值、波形面积、均方根、偏度、峰度、峰峰值、峰值因子、脉冲因子、波形因子和裕度因子;频域特征参数包含但不限于以下参数:频率段所对应的幅频响应曲线的面积。
所述步骤7)中,所述的数据降维方法选自但不限于以下方法:主成分分析法、相关系数法或者逐步多元线性回归法;当数据降维方法采用相关系数法,其中选择振动特征参数与质地指标值之间所有相关系数中大于0.5的相关系数所对应的振动特征参数。
所述步骤8)中,所述的化学计量学方法选自但不限于以下方法:多元线性回归方法、人工神经网络方法或者支持向量机方法。
二、一种快速无损水果质地的检测装置:
包括信号发生器、振动控制器、功率放大器、振动发生机、扩展台和IEPE加速度传感器、激光多普勒测振模块、数据采集卡和三脚架;振动控制器的输入端与信号发生器连接,振动控制器的输出端经功率放大器与振动发生机连接,振动发生机与扩展台刚性连接,扩展台上固定安装有IEPE加速度传感器,水果放置在扩展台上,IEPE加速度传感器与振动控制器连接,激光多普勒测振模块由激光探测头以及与激光探测头连接的激光多普勒测振控制器组成;激光探测头竖直向下安装在三脚架上,激光探测头的激光束垂直于扩展台面并投射到水果上表面顶部处,数据采集卡的两路输入端分别与激光多普勒测振控制器和IEPE加速度传感器的输出端连接,数据采集卡的输出端与数据存储模块连接。
所述的激光探测头的聚焦镜头与水果上表面顶部的垂直距离大于激光探测头最小工作距离。
所述的信号发生器发出激励信号至振动控制器,并经功率放大器放大后控制振动发生机工作,该激励信号是脉冲信号。
与背景技术相比,本发明具有的有益效果是:
本发明通过采用冲击振动的方式,大大缩短了激光多普勒测振技术用于检测水果质地的时间;同时,采用多振动特征参数结合水果质量和果形作为预测模型的输入参数,提高了模型的预测精度和适应性。
附图说明
图1是本发明的方法流程图。
图2是本发明的装置结构示意图。
图3是本发明实施例中一个激励梨振动的典型半正弦脉冲信号。
图4是本发明实施例中一个典型的梨振动响应信号。
图中:1、信号发生器;2、振动控制器;3、功率放大器;4、振动发生机;5、扩展台;6、IEPE加速度传感器;7、水果;8、激光探测头;9、激光多普勒测振控制器;10、数据采集卡;11、数据存储模块。
具体实施方式
下面结合附图和实施例对本发明作进一步说明。
如图1所示,本发明检测方法包括以下步骤:
步骤1)采集建模样品集:选择与待测水果同一批次的同种水果作为试验样本,试验样本的水果依次采用以下所有步骤进行测量;步骤1)中的试验样本包括至少30个水果。
步骤2)测定质量m:用电子天平逐一称重;
步骤3)测定果形系数SI:分别沿水果赤道和“果梗-果萼”方向均匀间隔120°测量水果的直径d和高h各3次,取平均值作为水果的直径和高用高和直径的比值作为果形系数SI:
SI = h ‾ / d ‾
步骤4)采集振动响应信号:将各个水果置于振动台中心位置,振动台在激励信号的控制下进行振动,用激光多普勒测振仪测量得到水果的振动响应数据;
该激励信号指由信号发生器发出通过振动控制器输出,并经功率放大器放大后控制振动发生机工作的信号,该激励信号是脉冲信号。
用激光多普勒测振仪测量水果的振动响应信号的具体方式为:激光探头竖直向下固定于三脚架上,调节激光探测头使激光束聚焦于水果上表面顶部,反射回的激光由激光探测头接收,经激光多普勒测振控制器处理后获得水果的振动响应数据。
步骤5)提取振动特征参数:采集到的振动响应数据进行快速傅里叶变换处理,得到时域数据和频域数据,分别对时域数据和频域数据提取振动特征参数;
其振动特征参数包括时域特征参数和频域特征参数,时域特征参数包含但不限于以下参数的一个或多个:平均值、方差、最大值、最小值、信号持续时间、整流平均值、波形面积、均方根、偏度、峰度、峰峰值、峰值因子、脉冲因子、波形因子和裕度因子;频域特征参数包含但不限于以下参数:两个频率之间频率段所对应的幅频响应曲线的面积。
步骤6)振动特征参数降维:采用数据降维方法,把从步骤6)提取得到的振动特征参数进行降维,得到降维后的振动参数;
步骤7)测定质地指标值:对试验样本的水果,利用质构仪并采用质地测试方法,在水果赤道处均匀选取a个待测点,相邻待测点之间的间隔为360/a度,其中a=2~4,测量各个待测点的质地指标,将所有待测点的质地指标的平均值作为试验样本的质地指标值;
其质地测试方法选自但不限于以下方法:穿刺试验方法、压缩试验方法或者蠕变试验方法等力学测试方法。
其数据降维方法选自但不限于以下方法:主成分分析法、相关系数法或者逐步多元线性回归法;当数据降维方法采用相关系数法,其中选择振动特征参数与质地指标值之间所有相关系数中大于0.5的相关系数所对应的振动特征参数。
步骤8)建立质地预测模型:将上述试验样本由步骤2)得到的质量m、步骤3)得到的果形系数SI和步骤6)得到降维后的振动参数作为输入参数,质地指标值作为输出参数,采用化学计量学方法建立用于预测质地指标的质地预测模型;
其化学计量学方法选自但不限于以下方法:多元线性回归方法、人工神经网络方法或者支持向量机方法。
步骤9)将待测水果依次进行步骤2)~步骤6)得到质量m、果形系数SI和降维后的振动参数,然后输入质地预测模型得到待测水果对应的质地指标值,完成快速无损检测。
如图2所示,本发明装置包括振动控制系统和振动信号采集系统,具体包括信号发生器1、振动控制器2、功率放大器3、振动发生机4、扩展台5和IEPE加速度传感器6、激光多普勒测振模块、数据采集卡10和三脚架;振动控制器2的输入端与信号发生器1连接,振动控制器2的输出端经功率放大器3与振动发生机4连接,振动发生机4与扩展台5刚性连接,扩展台5上固定安装有IEPE加速度传感器6,水果放置在扩展台5上,IEPE加速度传感器6与振动控制器2连接,激光多普勒测振模块由激光探测头8以及与激光探测头连接的激光多普勒测振控制器9组成;激光探测头8竖直向下安装在三脚架上,激光探测头8的激光束垂直于扩展台面并投射到水果上表面顶部处,数据采集卡10的两路输入端分别与激光多普勒测振控制器9和IEPE加速度传感器6的输出端连接,数据采集卡10的输出端与数据存储模块11连接。
激光探测头8的聚焦镜头与水果上表面顶部的垂直距离大于激光探测头8最小工作距离。
信号发生器1发出激励信号至振动控制器2,并经功率放大器3放大后控制振动发生机4工作,该激励信号是脉冲信号。
本发明装置中,振动控制和振动信号采集均采用同一个IEPE加速度传感器,IEPE加速度传感器可用安装螺钉固定在扩展台上,输出信号经三通同轴电缆分接头一分为二,一路与振动控制器连接,一路与数据采集卡连接。
本发明的实施例及实施工作过程如下:
本发明对水果质地的检测具有通用性,以梨为例,介绍本发明无损检测梨质地的实施过程,其它水果可参照该实施例的方法,建立相应的质地预测模型,即可对不同水果的质地进行无损检测。
首先搭建检测装置:
振动控制系统:功率放大器3可采用PA-1200,振动发生机4可采用ES-05,IEPE加速度传感器6可采用Endevco 752A12,扩展台5通过以圆周阵列形式均布的6个螺钉刚性地连接在振动发生机4上,振动控制器2的输出端经功率放大器3与振动发生机4连接;信号发生器1发出半正弦脉冲信号至振动控制器2,并经功率放大器3放大后激励振动发生机4工作,放置在扩展台5上的水果7随之振动,同时IEPE加速度传感器6将测得的实际振动加速度信号反馈给振动控制器2形成闭环控制;
振动信号采集系统:数据采集卡11的型号可采用NI USB-4431,激光探测头8可采用LV-S01,激光探测头8竖直向下安放在三脚架上,激光束垂直于扩展台面投射在水果7上表面顶点处,聚焦镜头与水果7上表面顶点的垂直距离大于激光探测头8最小工作距离40cm,数据采集卡10的两路输入端分别与激光多普勒测振控制器9和IEPE加速度传感器6的输出端连接,数据采集卡10的输出端与信号采集模块11连接;
激光多普勒测振模块测得的水果振动速度信号送到数据采集卡10的通道2,IEPE加速度传感器6测得的扩展台5振动加速度信号送到数据采集卡10的通道1;最后由数据采集卡10将采集到的两路振动信号送至数据存储模块保存。
本发明方法的实施例具体如下:
1、采集建模样品集
挑选同一批次的丰水梨121个,其中包括试验样本和待测样本,试验样本用于建立质地预测模型,待测样本用于验证质地预测模型。将所有挑选的丰水梨依次进行步骤2~步骤7。
2、测定质量m
用电子天平对丰水梨逐一称重。
3、测定果形系数SI
分别沿水果赤道和“果梗-果萼”方向均匀间隔120°测量水果的直径d和高h各3次,取平均值作为被测样本的直径和高用高和直径的比值作为丰水梨的果形系数SI:
SI = h ‾ / d ‾
挑选的121个丰水梨的质量与果形的统计信息如表1所示。
表1 丰水梨的质量与果形(n=121)
质量(m,g) 高(h,mm) 直径(d,mm) 果形系数(SI)
平均值 313.65 86.15 72.61 0.84
最大值 417.33 94.64 83.74 0.97
最小值 246.85 79.01 65.26 0.78
标准差 33.37 3.20 3.32 0.03
4、采集振动响应信号
信号发生器1发出半正弦脉冲信号至振动控制器2,并经功率放大器3放大后控制振动发生机4工作。激励信号是半正弦脉冲信号,脉冲幅值为2g,脉冲宽度11ms,如图3所示。丰水梨置于振动扩展台5的中心位置,振动扩展台5在激励信号的控制下进行振动。激光探测头8竖直向下固定于三脚架上,调节激光探测头8,使激光束聚焦于丰水梨上表面顶部,反射回的激光由激光探测头8接收,经激光多普勒测振控制器9处理后获得丰水梨上表面振动响应数据,如图4所示。激光多普勒测振仪采集到的振动响应数据通过数据采集卡10采集并送至数据存储模块11保存。采样频率为5120Hz。
5、提取振动特征参数
采集到的振动响应数据进行快速傅里叶变换处理,分别对时域数据和频域数据提取振动特征参数。
其中,时域特征参数包括平均值、方差、最大值、最小值、信号持续时间、整流平均值、波形面积、均方根、偏度、峰度、峰峰值、峰值因子、脉冲因子、波形因子和裕度因子,频域特征参数包括0-20,20-40,40-80,80-160,160-320,320-640,640-1280和1280-2560Hz的8个频率段对应的幅频响应曲线面积。
6、振动特征参数降维
采用主成分分析法,把从步骤6)提取的振动特征参数进行主成分提取,前10个主成分的累计方差贡献率如表2所示。最终,提取前6个主成分(累计方差贡献率为86.06%);
表2 振动特征参数前10个主成分的累计方差贡献率
主成分个数 1 2 3 4 5 6 7 8 9 10
累计方差贡献率(%) 35.29 58.08 70.20 76.75 82.26 86.06 89.49 92.25 94.29 96.21
7、测定质地指标值
进行穿刺试验,在水果赤道处均匀选取4个待测点,点与点之间间隔90度,将4个点的质地指标的平均值作为被测样本的质地指标值。在所选待测点处,用直径为5mm的圆柱形探头以1mm/s的速度压入果肉8mm,得到该点的“力-位移”曲线。质地指标选择为破裂点后力的平均值,即果肉硬度。
8、建立质地预测模型
将121个丰水梨样本按果肉硬度大小进行排序,其中果肉硬度最大值和最小值的样本作为校正集样本(试验样本),其余样本按顺序每4个选一个作为验证集样本(待测样本),其它作为校正集样本。校正集和验证集的果肉硬度统计值如表3所示。
表3 校正集与验证集样本的果肉硬度指标统计值
样本集 样本数量 果肉硬度范围(N) 果肉硬度均值(N) 果肉硬度标准差(N)
校正集 91 7.91-16.55 12.59 1.76
验证集 30 8.40-15.73 12.57 1.72
基于校正集采用BP神经网络建立质地预测模型。输入层节点为步骤2)得到的质量m,步骤3)得到的果形系数SI和步骤7)得到6个主成分,输出层节点为果肉硬度,隐含层为一层并通过调整隐含层的节点数来优化网络结构。各层采用S型(Sigmoid)传递函数。以训练误差和预测误差最小为原则,通过多次试算,得到当隐含层为5个节点时,训练误差和预测误差均较小。
基于验证集对质地预测模型进行验证。将待测样本的质量m、果形系数SI和降维后的振动参数输入质地预测模型,得到待测水果对应的质地指标值,并与通过步骤7实测得到的质地指标值进行比较。
BP神经网络对丰水梨果肉硬度的建模结果见表4。建模结果表明,该方法能够用于丰水梨果肉硬度的无损检测。同时,输入层节点加入质量和果形系数后,预测结果有了明显的提升:校正集中果肉硬度预测值与实际值的相关系数r从0.833上升至0.855,校正均方根误差RMSEC从0.976N下降至0.919N;验证集中相关系数r从0.794上升至0.840,预测均方根误差RMSEP从1.253N降低至0.959N。
表4 BP神经网络对丰水梨果肉硬度的建模结果
由此,本发明通过采用冲击振动的方式,缩短了激光多普勒测振技术用于检测水果质地的时间;同时,采用多振动特征参数结合水果质量和果形作为预测模型的输入参数,提高了模型的预测精度和适应性,具有显著的技术效果。
上述具体实施方式用来解释说明本发明,而不是对本发明进行限制,在本发明的精神和权利要求的保护范围内,对本发明作出的任何修改和改变,都落入本发明的保护范围。

Claims (10)

1.一种快速无损水果质地的检测方法,其特征在于包括以下步骤:
步骤1)采集建模样品集:选择与待测水果同一批次的同种水果作为试验样本,试验样本的水果依次进行步骤2)~步骤8);
步骤2)测定质量m:用电子天平逐一称重;
步骤3)测定果形系数SI:分别沿水果赤道和“果梗-果萼”方向均匀间隔120°测量水果的直径d和高h各3次,取平均值作为水果的直径d和高h,用高和直径的比值作为果形系数SI:
SI = h ‾ / d ‾
步骤4)采集振动响应信号:将各个水果置于振动台中心位置,振动台在激励信号的控制下进行振动,用激光多普勒测振仪测量得到水果的振动响应数据;
步骤5)提取振动特征参数:采集到的振动响应数据进行快速傅里叶变换处理,得到时域数据和频域数据,分别对时域数据和频域数据提取振动特征参数;
步骤6)振动特征参数降维:采用数据降维方法,把从步骤6)提取得到的振动特征参数进行降维,得到降维后的振动参数;
步骤7)测定质地指标值:对试验样本的水果,利用质构仪并采用质地测试方法,在水果赤道处均匀选取a个待测点,相邻待测点之间的间隔为360/a度,测量各个待测点的质地指标,将所有待测点的质地指标的平均值作为试验样本的质地指标值;
步骤8)建立质地预测模型:将上述试验样本由步骤2)得到的质量m、步骤3)得到的果形系数SI和步骤6)得到降维后的振动参数作为输入参数,质地指标值作为输出参数,采用化学计量学方法建立用于预测质地指标的质地预测模型;
步骤9)将待测水果依次进行步骤2)~步骤6)得到质量m、果形系数SI和降维后的振动参数,然后输入质地预测模型得到待测水果对应的质地指标值,完成快速无损检测。
所述的步骤1)中的试验样本包括至少30个水果。
2.根据权利要求1所述的一种快速无损水果质地的检测方法,其特征在于:所述步骤4)中,所述的激励信号指由信号发生器发出通过振动控制器输出,并经功率放大器放大后控制振动发生机工作的信号,该激励信号是脉冲信号。
3.根据权利要求1所述的一种快速无损水果质地的检测方法,其特征在于:所述步骤4)中,所述的用激光多普勒测振仪测量水果的振动响应信号的具体方式为:激光探头竖直向下固定于三脚架上,调节激光探测头使激光束聚焦于水果上表面顶部,反射回的激光由激光探测头接收,经激光多普勒测振控制器处理后获得水果的振动响应数据。
4.根据权利要求1所述的一种快速无损水果质地的检测方法,其特征在于:所述步骤7)中,所述的质地测试方法选自但不限于以下方法:穿刺试验方法、压缩试验方法或者蠕变试验方法。
5.根据权利要求1所述的一种快速无损水果质地的检测方法,其特征在于:所述步骤5)中,所述的振动特征参数包括时域特征参数和频域特征参数,时域特征参数包含但不限于以下参数的一个或多个:平均值、方差、最大值、最小值、信号持续时间、整流平均值、波形面积、均方根、偏度、峰度、峰峰值、峰值因子、脉冲因子、波形因子和裕度因子;频域特征参数包含但不限于以下参数:频率段所对应的幅频响应曲线的面积。
6.根据权利要求1所述的一种快速无损水果质地的检测方法,其特征在于:所述步骤7)中,所述的数据降维方法选自但不限于以下方法:主成分分析法、相关系数法或者逐步多元线性回归法;当数据降维方法采用相关系数法,其中选择振动特征参数与质地指标值之间所有相关系数中大于0.5的相关系数所对应的振动特征参数。
7.根据权利要求1所述的一种快速无损水果质地的检测方法,其特征在于:所述步骤8)中,所述的化学计量学方法选自但不限于以下方法:多元线性回归方法、人工神经网络方法或者支持向量机方法。
8.根据权利要求1所述方法的一种快速无损水果质地的检测装置,其特征在于:包括信号发生器(1)、振动控制器(2)、功率放大器(3)、振动发生机(4)、扩展台(5)和IEPE加速度传感器(6)、激光多普勒测振模块、数据采集卡(10)和三脚架;振动控制器(2)的输入端与信号发生器(1)连接,振动控制器(2)的输出端经功率放大器(3)与振动发生机(4)连接,振动发生机(4)与扩展台(5)刚性连接,扩展台(5)上固定安装有IEPE加速度传感器(6),水果放置在扩展台(5)上,IEPE加速度传感器(6)与振动控制器(2)连接,激光多普勒测振模块由激光探测头(8)以及与激光探测头连接的激光多普勒测振控制器(9)组成;激光探测头(8)竖直向下安装在三脚架上,激光探测头(8)的激光束垂直于扩展台面并投射到水果上表面顶部处,数据采集卡(10)的两路输入端分别与激光多普勒测振控制器(9)和IEPE加速度传感器(6)的输出端连接,数据采集卡(10)的输出端与数据存储模块(11)连接。
9.根据权利要求1所述方法的一种快速无损水果质地的检测装置,其特征在于:所述的激光探测头(8)的聚焦镜头与水果上表面顶部的垂直距离大于激光探测头(8)最小工作距离。
10.根据权利要求1所述方法的一种快速无损水果质地的检测装置,其特征在于:所述的信号发生器(1)发出激励信号至振动控制器(2),并经功率放大器(3)放大后控制振动发生机(4)工作,该激励信号是脉冲信号。
CN201510002972.9A 2015-01-04 2015-01-04 快速无损水果质地的检测方法及装置 Active CN104569154B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510002972.9A CN104569154B (zh) 2015-01-04 2015-01-04 快速无损水果质地的检测方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510002972.9A CN104569154B (zh) 2015-01-04 2015-01-04 快速无损水果质地的检测方法及装置

Publications (2)

Publication Number Publication Date
CN104569154A true CN104569154A (zh) 2015-04-29
CN104569154B CN104569154B (zh) 2017-06-13

Family

ID=53085715

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510002972.9A Active CN104569154B (zh) 2015-01-04 2015-01-04 快速无损水果质地的检测方法及装置

Country Status (1)

Country Link
CN (1) CN104569154B (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104897671A (zh) * 2015-05-07 2015-09-09 北京农业智能装备技术研究中心 一种水果果梗花萼的识别系统
CN106198730A (zh) * 2016-07-17 2016-12-07 江南大学 一种自动趋近检测机构
CN107247957A (zh) * 2016-12-16 2017-10-13 广州中国科学院先进技术研究所 一种基于深度学习和云计算的智能农产品分类方法及系统
CN107314854A (zh) * 2017-07-07 2017-11-03 北京工业大学 一种实时测量振动环境下螺栓夹紧力衰减的装置及方法
CN108007866A (zh) * 2017-11-28 2018-05-08 河南工业大学 一种水果的流变参数检测方法及系统
CN109541031A (zh) * 2019-01-25 2019-03-29 山东农业大学 基于声学和振动特性的水果硬度检测方法
CN109632960A (zh) * 2019-01-21 2019-04-16 深圳市优仪科技有限公司 一种振动测量装置及铝铸件无损测量方法
CN109827971A (zh) * 2019-03-19 2019-05-31 湖州灵粮生态农业有限公司 一种无损检测水果表面缺陷的方法
CN110865158A (zh) * 2019-12-10 2020-03-06 浙江大学 水果内部品质无损检测装置及方法
CN111044457A (zh) * 2019-12-13 2020-04-21 浙江大学 一种农产品内部光分布及内部品质检测多功能装置
CN111855800A (zh) * 2020-07-17 2020-10-30 西南科技大学 声学振动快速无损测定水果货架期或最佳食用期的方法
CN114563347A (zh) * 2022-01-20 2022-05-31 浙江大学 一种西瓜空心的无损检测系统和方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1262740A (zh) * 1998-03-31 2000-08-09 松下电器产业株式会社 蔬菜水果的成熟度和质地的测定方法及测定装置
CN103175895A (zh) * 2013-02-28 2013-06-26 浙江大学 基于激光多普勒测振的水果硬度无损检测方法及装置
CN103713051A (zh) * 2013-12-17 2014-04-09 浙江大学 一种球形水果质地预测模型的建模方法
CN204359750U (zh) * 2015-01-04 2015-05-27 浙江大学 一种快速无损水果质地的检测装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1262740A (zh) * 1998-03-31 2000-08-09 松下电器产业株式会社 蔬菜水果的成熟度和质地的测定方法及测定装置
CN103175895A (zh) * 2013-02-28 2013-06-26 浙江大学 基于激光多普勒测振的水果硬度无损检测方法及装置
CN103713051A (zh) * 2013-12-17 2014-04-09 浙江大学 一种球形水果质地预测模型的建模方法
CN204359750U (zh) * 2015-01-04 2015-05-27 浙江大学 一种快速无损水果质地的检测装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
H.MANSOUR ET AL.: "A comparison of vibration analysis techniques applied to the Persian setar", 《PROCEEDINGS OF THE ACOUSTICS 2012 NANTES CONFERENCE》 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104897671A (zh) * 2015-05-07 2015-09-09 北京农业智能装备技术研究中心 一种水果果梗花萼的识别系统
CN106198730A (zh) * 2016-07-17 2016-12-07 江南大学 一种自动趋近检测机构
CN107247957A (zh) * 2016-12-16 2017-10-13 广州中国科学院先进技术研究所 一种基于深度学习和云计算的智能农产品分类方法及系统
CN107314854A (zh) * 2017-07-07 2017-11-03 北京工业大学 一种实时测量振动环境下螺栓夹紧力衰减的装置及方法
CN108007866A (zh) * 2017-11-28 2018-05-08 河南工业大学 一种水果的流变参数检测方法及系统
CN109632960A (zh) * 2019-01-21 2019-04-16 深圳市优仪科技有限公司 一种振动测量装置及铝铸件无损测量方法
CN109632960B (zh) * 2019-01-21 2021-08-10 深圳市优仪科技有限公司 一种振动测量装置及铝铸件无损测量方法
CN109541031A (zh) * 2019-01-25 2019-03-29 山东农业大学 基于声学和振动特性的水果硬度检测方法
CN109827971A (zh) * 2019-03-19 2019-05-31 湖州灵粮生态农业有限公司 一种无损检测水果表面缺陷的方法
CN110865158A (zh) * 2019-12-10 2020-03-06 浙江大学 水果内部品质无损检测装置及方法
CN110865158B (zh) * 2019-12-10 2023-08-18 浙江大学 水果内部品质无损检测装置及方法
CN111044457A (zh) * 2019-12-13 2020-04-21 浙江大学 一种农产品内部光分布及内部品质检测多功能装置
CN111855800A (zh) * 2020-07-17 2020-10-30 西南科技大学 声学振动快速无损测定水果货架期或最佳食用期的方法
CN111855800B (zh) * 2020-07-17 2022-04-01 西南科技大学 声学振动快速无损测定水果货架期或最佳食用期的方法
CN114563347A (zh) * 2022-01-20 2022-05-31 浙江大学 一种西瓜空心的无损检测系统和方法

Also Published As

Publication number Publication date
CN104569154B (zh) 2017-06-13

Similar Documents

Publication Publication Date Title
CN104569154B (zh) 快速无损水果质地的检测方法及装置
CN204359750U (zh) 一种快速无损水果质地的检测装置
CN203133033U (zh) 一种基于激光多普勒测振的水果硬度无损检测装置
EP1793225B1 (en) Internal tree nondestructive inspection method and apparatus using acoustic tomography
Mao et al. Firmness prediction and modeling by optimizing acoustic device for watermelons
CN103175895A (zh) 基于激光多普勒测振的水果硬度无损检测方法及装置
JPH05504840A (ja) 共振超音波分光学
CN101846594A (zh) 基于波束形成声像模式识别的故障检测装置及其检测方法
Ding et al. Acoustic vibration technology: Toward a promising fruit quality detection method
CN111811617B (zh) 一种基于短时傅里叶变换和卷积神经网络的液位预测方法
CN104316277B (zh) 基于声检测与盲信号分离的气密性监测方法
CN109932333B (zh) 声学振动和近红外光谱融合的水果坚实度测量系统和方法
CN105675720B (zh) 一种水果坚实度信息在线采集系统和方法
CN105699491A (zh) 一种水果坚实度在线无损检测装置及检测方法
CN103852523A (zh) 基于声发射技术判别预应力混凝土梁结构损伤类型的系统及方法
CN103713051B (zh) 一种球形水果质地预测模型的建模方法
CN106949861A (zh) 一种非线性超声在线监测金属材料应变变化的方法
Tian et al. Firmness measurement of kiwifruit using a self-designed device based on acoustic vibration technology
Hou et al. Prediction of firmness and pH for “golden delicious” apple based on elasticity index from modal analysis
Nourain et al. Firmness evaluation of melon using its vibration characteristic and finite element analysis
CN108593769B (zh) 利用多通道控制弹性波的归一化信号激振无损检测方法
WO2023138247A1 (zh) 一种水果内部缺陷的无损检测系统和方法
Wang et al. Acoustic impulse response for measuring the firmness of mandarin during storage
CN205720100U (zh) 一种水果坚实度在线无损检测装置
WO2017121338A1 (zh) 一种判断产品是否结晶的方法、装置以及检测设备

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20210526

Address after: 310012 room 1102, block B, Lishui digital building, 153 Lianchuang street, Wuchang Street, Yuhang District, Hangzhou City, Zhejiang Province

Patentee after: Hangzhou nuotian Intelligent Technology Co.,Ltd.

Address before: 310058 Yuhang Tang Road, Xihu District, Hangzhou, Zhejiang 866

Patentee before: ZHEJIANG University