CN104568140B - Penetrating Fog haze imaging system based on multispectral section of full polarization - Google Patents
Penetrating Fog haze imaging system based on multispectral section of full polarization Download PDFInfo
- Publication number
- CN104568140B CN104568140B CN201410814085.7A CN201410814085A CN104568140B CN 104568140 B CN104568140 B CN 104568140B CN 201410814085 A CN201410814085 A CN 201410814085A CN 104568140 B CN104568140 B CN 104568140B
- Authority
- CN
- China
- Prior art keywords
- imaging
- unit
- wave infrared
- image
- subsystem
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000003384 imaging method Methods 0.000 title claims abstract description 103
- 230000010287 polarization Effects 0.000 title claims abstract description 59
- 230000000149 penetrating effect Effects 0.000 title claims 5
- 238000003331 infrared imaging Methods 0.000 claims abstract description 72
- 230000010365 information processing Effects 0.000 claims abstract description 31
- 230000003287 optical effect Effects 0.000 claims description 68
- 230000004927 fusion Effects 0.000 claims description 5
- 238000000034 method Methods 0.000 claims description 4
- 230000000007 visual effect Effects 0.000 claims 4
- 230000005611 electricity Effects 0.000 claims 3
- 230000015572 biosynthetic process Effects 0.000 claims 1
- 238000001228 spectrum Methods 0.000 abstract description 8
- 238000001514 detection method Methods 0.000 abstract description 7
- 230000009286 beneficial effect Effects 0.000 abstract description 4
- 238000005516 engineering process Methods 0.000 abstract description 4
- 239000013589 supplement Substances 0.000 abstract description 3
- 230000003595 spectral effect Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 2
- 101001056473 Homo sapiens Keratin, type II cytoskeletal 5 Proteins 0.000 description 1
- 102100025756 Keratin, type II cytoskeletal 5 Human genes 0.000 description 1
- 235000008331 Pinus X rigitaeda Nutrition 0.000 description 1
- 235000011613 Pinus brutia Nutrition 0.000 description 1
- 241000018646 Pinus brutia Species 0.000 description 1
- 238000000701 chemical imaging Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
Landscapes
- Studio Devices (AREA)
Abstract
基于多谱段全偏振的透雾霾成像系统,属于光电成像技术领域,包括可见光或短波红外成像子系统、中波或长波红外成像子系统、信息处理或图像显示子系统以及跟踪转台子系统,可见光或短波红外成像子系统、中波或长波红外成像子系统、信息处理或图像显示子系统共同放置在跟踪转台子系统上;可见光或短波红外成像子系统与中波或长波红外成像子系统光轴平行,并联排列;所述信息处理或图像显示子系统与跟踪转台子系统电学连接;本发明将光的强度信息、光谱信息和偏振信息有机组合,可实现强度、光谱、偏振成像三个功能,是对传统成像探测的有益补充,可穿透雾霾,提高成像的图像对比度,从而提高工作距离。
The haze-penetrating imaging system based on multi-spectrum and full polarization belongs to the field of photoelectric imaging technology, including visible light or short-wave infrared imaging subsystems, medium-wave or long-wave infrared imaging subsystems, information processing or image display subsystems, and tracking turntable subsystems. The visible light or short-wave infrared imaging subsystem, the medium-wave or long-wave infrared imaging subsystem, and the information processing or image display subsystem are placed together on the tracking turntable subsystem; the visible light or short-wave infrared imaging subsystem and the medium-wave or long-wave infrared imaging subsystem light The axes are parallel and arranged in parallel; the information processing or image display subsystem is electrically connected to the tracking turntable subsystem; the present invention organically combines the intensity information, spectrum information and polarization information of light to realize three functions of intensity, spectrum and polarization imaging , is a beneficial supplement to traditional imaging detection, can penetrate haze, improve the image contrast of imaging, thereby increasing the working distance.
Description
技术领域technical field
本发明属于光电成像技术领域,特别是涉及到一种全偏振透雾霾成像系统。The invention belongs to the technical field of photoelectric imaging, and in particular relates to a fully polarized haze-transmitting imaging system.
背景技术Background technique
由于雾霾天对光的遮蔽作用导致场景能见度下降,使公路和民航交通受阻,给国民经济造成不利影响。现有的穿透雾霾的成像系统多为红外系统,但随着雾霾天气日益严重,仅采用红外技术的穿透雾霾的成像系统性能受到限制,本专利将全偏振成像和多谱段技术相结合,提出了一种基于多谱段全偏振的透雾霾成像系统。国内在光谱、偏振探测这两个方面虽然开展了初步的光谱成像、偏振成像技术研究,但主要应用在气象探测、空间环境和地球科学等领域,尚未开展基于多谱段全偏振的透雾霾成像系统。因此现有技术当中亟需要一种新型的技术方案来解决这一问题。Due to the shading effect of light on hazy days, the visibility of the scene is reduced, and the highway and civil aviation traffic are blocked, which has a negative impact on the national economy. Most of the existing imaging systems that penetrate fog and haze are infrared systems, but as the haze weather becomes more and more serious, the performance of imaging systems that only use infrared technology to penetrate fog and haze is limited. This patent combines full polarization imaging and multispectral Combining technologies, a haze-penetrating imaging system based on multi-spectral full polarization is proposed. Although preliminary spectral imaging and polarization imaging technology research has been carried out in the two aspects of spectrum and polarization detection in China, they are mainly used in the fields of meteorological detection, space environment and earth science, and haze penetration based on multi-spectral full polarization has not yet been carried out. imaging system. Therefore, there is an urgent need for a novel technical solution in the prior art to solve this problem.
发明内容Contents of the invention
本发明所要解决的技术问题是:提供一种多谱段全偏振的透雾霾成像系统,将光的强度信息、光谱信息和偏振信息有机组合,可实现强度、光谱、偏振成像三个功能,是对传统成像探测的有益补充,可穿透雾霾,提高成像的图像对比度,从而提高工作距离。The technical problem to be solved by the present invention is to provide a multi-spectral and fully polarized haze-permeable imaging system, which can organically combine the intensity information, spectral information and polarization information of light to realize the three functions of intensity, spectrum and polarization imaging. It is a beneficial supplement to traditional imaging detection, which can penetrate haze and improve the image contrast of imaging, thereby increasing the working distance.
基于多谱段全偏振的透雾霾成像系统,其特征是:包括可见光或短波红外成像子系统、中波或长波红外成像子系统、信息处理或图像显示子系统以及跟踪转台子系统,其中可见光或短波红外成像子系统、中波或长波红外成像子系统、信息处理或图像显示子系统共同放置在跟踪转台子系统上;所述可见光或短波红外成像子系统与信息处理或图像显示子系统电学连接,所述中波或长波红外成像子系统与信息处理或图像显示子系统电学连接,可见光或短波红外成像子系统与中波或长波红外成像子系统光轴平行,且并联排列;所述信息处理或图像显示子系统与跟踪转台子系统电学连接;The fog and haze imaging system based on multi-spectral full polarization is characterized by: including visible light or short-wave infrared imaging subsystem, medium-wave or long-wave infrared imaging subsystem, information processing or image display subsystem and tracking turntable subsystem, wherein visible light Or the short-wave infrared imaging subsystem, the medium-wave or long-wave infrared imaging subsystem, and the information processing or image display subsystem are placed together on the tracking turntable subsystem; the visible light or short-wave infrared imaging subsystem and the information processing or image display subsystem are electrically connection, the medium-wave or long-wave infrared imaging subsystem is electrically connected to the information processing or image display subsystem, and the visible light or short-wave infrared imaging subsystem is parallel to the optical axis of the medium-wave or long-wave infrared imaging subsystem and arranged in parallel; the information The processing or image display subsystem is electrically connected to the tracking turntable subsystem;
所述可见光或短波红外成像子系统包括望远光学单元Ⅰ、分光单元Ⅰ、全偏振成像光学单元Ⅰ、短波红外成像单元、全偏振成像光学单元Ⅱ以及可见光成像单元;所述望远光学单元Ⅰ、分光单元Ⅰ、全偏振成像光学单元Ⅰ、短波红外成像单元同光轴,且串联排列;光线依次经过望远光学单元Ⅰ、分光单元Ⅰ、全偏振成像光学单元Ⅰ后,在短波红外成像单元上完成短波红外偏振成像;所述全偏振成像光学单元Ⅱ和可见光成像单元放在分光单元Ⅰ的反射方向上,光线依次经过望远光学单元Ⅰ、分光单元Ⅰ、全偏振成像光学单元Ⅱ后,在可见光成像单元完成可见光偏振成像;The visible light or short-wave infrared imaging subsystem includes a telescopic optical unit I, a spectroscopic unit I, a full-polarization imaging optical unit I, a short-wave infrared imaging unit, a full-polarization imaging optical unit II, and a visible light imaging unit; the telescopic optical unit I , spectroscopic unit I, full-polarization imaging optical unit I, and short-wave infrared imaging unit are arranged in series on the same optical axis; after the light passes through telescopic optical unit I, spectroscopic unit I, and full-polarization imaging optical unit I, it passes through the short-wave infrared imaging unit The short-wave infrared polarization imaging is completed; the full-polarization imaging optical unit II and the visible light imaging unit are placed in the reflection direction of the spectroscopic unit I, and the light passes through the telescopic optical unit I, the spectroscopic unit I, and the full-polarization imaging optical unit II in sequence. Visible light polarization imaging is completed in the visible light imaging unit;
所述中波或长波红外成像子系统包括望远光学单元Ⅱ、分光单元Ⅱ、全偏振成像光学单元Ⅲ、中波红外成像单元、全偏振成像光学单元Ⅳ以及长波红外成像单元;望远光学单元Ⅱ、分光单元Ⅱ、全偏振成像光学单元Ⅲ以及中波红外成像单元同光轴,且串联排列;光线依次经过望远光学单元Ⅱ、分光单元以及全偏振成像光学单元Ⅲ后,在中波红外成像单元上完成中波红外偏振成像;全偏振成像光学单元Ⅳ、长波红外成像单元放在分光单元Ⅱ的反射方向上,光线依次经过望远光学单元Ⅱ、分光单元Ⅱ、全偏振成像光学单元Ⅳ后,在长波红外成像单元完成可见光偏振成像;The medium-wave or long-wave infrared imaging subsystem includes a telescopic optical unit II, a spectroscopic unit II, a full-polarization imaging optical unit III, a mid-wave infrared imaging unit, a full-polarization imaging optical unit IV, and a long-wave infrared imaging unit; the telescopic optical unit II, spectroscopic unit II, full-polarization imaging optical unit III and mid-wave infrared imaging unit are arranged on the same optical axis and arranged in series; The mid-wave infrared polarization imaging is completed on the imaging unit; the full-polarization imaging optical unit IV and the long-wave infrared imaging unit are placed in the reflection direction of the light-splitting unit II, and the light passes through the telescopic optical unit II, the light-splitting unit II, and the full-polarization imaging optical unit IV in sequence Finally, visible light polarization imaging is completed in the long-wave infrared imaging unit;
所述的信息处理或图像显示子系统包括信息处理单元和图像显示单元;短波红外成像单元、可见光成像单元、中波红外成像单元、长波红外成像单元四个成像单元获得的图像信息由信息处理单元进行信息融合,信息处理单元将进行信息融合后的图像传给图像显示单元,并根据获取的图像脱靶量信息来控制跟踪转台子系统工作;图像显示单元将最终的图像显示出来。The information processing or image display subsystem includes an information processing unit and an image display unit; the image information obtained by the four imaging units of short-wave infrared imaging unit, visible light imaging unit, mid-wave infrared imaging unit and long-wave infrared imaging unit is obtained by the information processing unit For information fusion, the information processing unit transmits the image after information fusion to the image display unit, and controls the work of the tracking turntable subsystem according to the acquired image miss-target information; the image display unit displays the final image.
所述可见光或短波红外成像子系统完成可见光和短波红外的偏振成像。The visible light or short-wave infrared imaging subsystem completes polarization imaging of visible light and short-wave infrared.
所述中波或长波红外成像子系统完成中波和长波红外的偏振成像。The medium-wave or long-wave infrared imaging subsystem completes polarization imaging of medium-wave and long-wave infrared.
所述信息处理或图像显示子系统进行信息处理和图像显示,并且根据获取的图像脱靶量信息来控制跟踪转台子系统工作;跟踪转台子系统实现空间目标的跟踪。The information processing or image display subsystem performs information processing and image display, and controls the work of the tracking turntable subsystem according to the acquired image miss-target information; the tracking turntable subsystem realizes the tracking of space targets.
通过上述设计方案,本发明可以带来如下有益效果:基于多谱段全偏振的透雾霾成像系统,将光的强度信息、光谱信息和偏振信息有机组合,可实现强度、光谱、偏振成像三个功能,是对传统成像探测的有益补充,可穿透雾霾,提高成像的图像对比度,从而提高工作距离。其中强度信息反映了探测距离、目标形状以及目标尺寸等;光谱信息反映了空间目标的材料组份以及表面形态等;偏振信息反映了目标的材质、粗糙度以及与背景的对比度;将强度、光谱和偏振三维信息联合应用,图像对比度可以提高2~3倍,从而提高工作距离30%,有助于提高目标探测概率,从而更加有效地实现穿透雾霾成像。Through the above-mentioned design scheme, the present invention can bring the following beneficial effects: based on the multi-spectrum full-polarization haze-permeable imaging system, the intensity information, spectral information and polarization information of light can be organically combined to realize three-dimensional imaging of intensity, spectrum and polarization. This function is a beneficial supplement to traditional imaging detection, which can penetrate the haze and improve the image contrast of imaging, thereby increasing the working distance. The intensity information reflects the detection distance, target shape and target size, etc.; the spectral information reflects the material composition and surface morphology of the space target; the polarization information reflects the material, roughness and contrast with the background of the target; the intensity, spectrum Combined with the three-dimensional polarization information, the image contrast can be increased by 2 to 3 times, thereby increasing the working distance by 30%, which helps to improve the probability of target detection, so as to achieve more effective imaging through fog and haze.
附图说明Description of drawings
以下结合附图和具体实施方式对本发明作进一步的说明:The present invention will be further described below in conjunction with accompanying drawing and specific embodiment:
图1为本发明基于多谱段全偏振的透雾霾成像系统组成示意框图。Fig. 1 is a schematic block diagram of the present invention based on multi-spectral full polarization imaging system through fog and haze.
其中,1-可见光或短波红外成像系统、11-望远光学单元Ⅰ、12-分光单元Ⅰ、13-全偏振成像光学单元Ⅰ、14-短波红外成像单元、15-全偏振成像光学单元Ⅱ、16-可见光成像单元、2-中波或长波红外成像子系统、21-望远光学单元Ⅱ、22-分光单元Ⅱ、23-全偏振成像光学单元Ⅲ、24-中波红外成像单元、25-全偏振成像光学单元Ⅳ、26-长波红外成像单元、3-信息处理或图像显示子系统、31-信息处理单元、32-图像显示单元、4-跟踪转台子系统。Among them, 1-visible light or short-wave infrared imaging system, 11-telescopic optical unit I, 12-light splitting unit I, 13-full polarization imaging optical unit I, 14-short wave infrared imaging unit, 15-full polarization imaging optical unit II, 16-Visible light imaging unit, 2-Mid-wave or long-wave infrared imaging subsystem, 21-Telescopic optical unit II, 22-Spectroscopic unit II, 23-Full polarization imaging optical unit III, 24-Mid-wave infrared imaging unit, 25- Full polarization imaging optical unit IV, 26-long-wave infrared imaging unit, 3-information processing or image display subsystem, 31-information processing unit, 32-image display unit, 4-tracking turntable subsystem.
具体实施方式detailed description
以下结合附图对本发明进行进一步说明,如图1所示的基于多谱段全偏振的透雾霾成像系统,包括可见光或短波红外成像子系统1、中波或长波红外成像子系统2、信息处理或图像显示子系统3以及跟踪转台子系统4,其中可见光或短波红外成像子系统1、中波或长波红外成像子系统2、信息处理或图像显示子系统3共同放置在跟踪转台子系统4上;所述可见光或短波红外成像子系统1与信息处理或图像显示子系统3电学连接,所述中波或长波红外成像子系统2与信息处理或图像显示子系统3电学连接,可见光或短波红外成像子系统1与中波或长波红外成像子系统2光轴平行,且并联排列;所述信息处理或图像显示子系统3与跟踪转台子系统4电学连接。Below in conjunction with accompanying drawing, the present invention is further described, as shown in Figure 1, based on multi-spectral full-polarized haze imaging system, including visible light or short-wave infrared imaging subsystem 1, medium-wave or long-wave infrared imaging subsystem 2, information The processing or image display subsystem 3 and the tracking turntable subsystem 4, wherein the visible light or short-wave infrared imaging subsystem 1, the medium-wave or long-wave infrared imaging subsystem 2, and the information processing or image display subsystem 3 are jointly placed on the tracking turntable subsystem 4 Above; the visible light or short-wave infrared imaging subsystem 1 is electrically connected to the information processing or image display subsystem 3, and the medium-wave or long-wave infrared imaging subsystem 2 is electrically connected to the information processing or image display subsystem 3, visible light or short-wave The infrared imaging subsystem 1 is parallel to the optical axis of the medium-wave or long-wave infrared imaging subsystem 2 and arranged in parallel; the information processing or image display subsystem 3 is electrically connected with the tracking turntable subsystem 4 .
可见光或短波红外成像子系统1完成可见光和短波红外的偏振成像;中波或长波红外成像子系统2完成中波和长波红外的偏振成像;信息处理或图像显示子系统3进行信息处理和图像显示,并且根据获取的图像脱靶量信息来控制跟踪转台子系统4工作;跟踪转台子系统4实现空间目标的跟踪。Visible light or short-wave infrared imaging subsystem 1 completes polarization imaging of visible light and short-wave infrared; mid-wave or long-wave infrared imaging subsystem 2 completes polarization imaging of mid-wave and long-wave infrared; information processing or image display subsystem 3 performs information processing and image display , and control the work of the tracking turntable subsystem 4 according to the acquired image miss-target amount information; the tracking turntable subsystem 4 realizes the tracking of space targets.
可见光或短波红外成像子系统1由Thorlabs公司的EB02-05-B型号望远光学单元Ⅰ11,Thorlabs公司的SL-800M型号分光单元Ⅰ12,Fluxdata公司的FD1665P型号全偏振成像光学单元Ⅰ13,Thorlabs公司的ML1550G40型号短波红外成像单元14,Fluxdata公司的FD1665P型号全偏振成像光学单元Ⅱ15,Thorlabs公司的PDA8GS型号可见光成像单元16组成。望远光学单元Ⅰ11,分光单元Ⅰ12,全偏振成像光学单元Ⅰ13,短波红外成像单元14同光轴串联排列,光线依次经过望远光学单元Ⅰ11,分光单元Ⅰ12,全偏振成像光学单元Ⅰ13后,在短波红外成像单元14上完成短波红外偏振成像;全偏振成像光学单元Ⅱ15,可见光成像单元16放在分光单元Ⅰ12的反射方向上,光线依次经过望远光学单元Ⅰ11,分光单元Ⅰ12,全偏振成像光学单元Ⅱ15后,在可见光成像单元16完成可见光偏振成像。Visible light or short-wave infrared imaging subsystem 1 consists of EB02-05-B telescopic optical unit I11 of Thorlabs, SL-800M spectroscopic unit I12 of Thorlabs, FD1665P full polarization imaging optical unit I13 of Fluxdata, and Thorlabs ML1550G40 model short-wave infrared imaging unit 14, Fluxdata company FD1665P model full polarization imaging optical unit II 15, Thorlabs company PDA8GS model visible light imaging unit 16. The telescopic optical unit I11, the spectroscopic unit I12, the full polarization imaging optical unit I13, and the shortwave infrared imaging unit 14 are arranged in series with the optical axis. The short-wave infrared polarization imaging is completed on the short-wave infrared imaging unit 14; the full-polarization imaging optical unit II15 and the visible light imaging unit 16 are placed in the reflection direction of the spectroscopic unit I12, and the light passes through the telephoto optical unit I11, the spectroscopic unit I12, and the full-polarization imaging optical unit in turn. After unit II15, visible light polarization imaging is completed in the visible light imaging unit 16.
所述的中波或长波红外成像子系统2由Thorlabs公司的EB02-05-C望远光学单元Ⅱ21,Thorlabs公司的EBS2型号分光单元Ⅱ22,Fluxdata公司的FD1665P型号全偏振成像光学单元Ⅲ23,HAMAMATSU滨松公司的C12495-111L型号中波红外成像单元24,Fluxdata公司的FD1665P型号全偏振成像光学单元Ⅳ25,HAMAMATSU滨松公司的P9697-01型号长波红外成像单元26组成。望远光学单元Ⅱ21,分光单元Ⅱ22,全偏振成像光学单元Ⅲ23,中波红外成像单元24同光轴串联排列,光线依次经过望远光学单元Ⅱ21,分光单元Ⅱ22,全偏振成像光学单元Ⅲ23后,在中波红外成像单元24上完成中波红外偏振成像;全偏振成像光学单元Ⅳ25,长波红外成像单元26放在分光单元Ⅱ22的反射方向上,光线依次经过望远光学单元Ⅱ21,分光单元Ⅱ22,全偏振成像光学单元Ⅳ25后,在长波红外成像单元26完成可见光偏振成像。The medium-wave or long-wave infrared imaging subsystem 2 consists of the EB02-05-C telescopic optical unit II 21 of Thorlabs, the EBS2 model spectroscopic unit II 22 of Thorlabs, the FD1665P model full polarization imaging optical unit III 23 of Fluxdata, and the HAMAMATSU bin The C12495-111L model mid-wave infrared imaging unit 24 of Pine Corporation, the FD1665P model FD1665P full polarization imaging optical unit IV 25 of Fluxdata Company, and the P9697-01 model long-wave infrared imaging unit 26 of HAMAMATSU Hamamatsu Company. The telescopic optical unit II21, the spectroscopic unit II22, the full polarization imaging optical unit III23, and the mid-wave infrared imaging unit 24 are arranged in series with the optical axis. The mid-wave infrared polarization imaging is completed on the mid-wave infrared imaging unit 24; the full-polarization imaging optical unit IV 25, the long-wave infrared imaging unit 26 is placed in the reflection direction of the spectroscopic unit II 22, and the light passes through the telescopic optical unit II 21, spectroscopic unit II 22, After the full polarization imaging optical unit IV 25 , visible light polarization imaging is completed in the long-wave infrared imaging unit 26 .
所述的信息处理或图像显示子系统3由PerkinElmer公司的inFormTM型号信息处理单元31,Dell公司的Noteone型号图像显示单元32组成。短波红外成像单元14、可见光成像单元16、中波红外成像单元24、长波红外成像单元26四个成像单元获得的图像信息由信息处理单元31进行信息融合,信息处理单元31一方面根据获取的图像脱靶量信息来控制跟踪转台子系统4工作,另一方面则进行信息融合后将图像传给图像显示单元32,图像显示单元32将最终的图像显示出来。The information processing or image display subsystem 3 is composed of an information processing unit 31 of the inForm TM model of PerkinElmer and an image display unit 32 of the Noteone model of Dell. The image information obtained by the four imaging units of the short-wave infrared imaging unit 14, the visible light imaging unit 16, the mid-wave infrared imaging unit 24, and the long-wave infrared imaging unit 26 is fused by the information processing unit 31. The missing amount information is used to control the work of the tracking turntable subsystem 4, and on the other hand, after information fusion, the image is transmitted to the image display unit 32, and the image display unit 32 displays the final image.
本发明的工作过程如下:首先望远光学单元收集目标与背景的可见光、短波红外、中波红外和长波红外光,经过分光单元、偏振成像单元后,分别到达可见光成像单元16、短波红外成像单元14、中波红外成像单元24和长波红外成像单元26,获得相应的可见光、短波红外、中波红外和长波红外图像。将图像传给信息处理或图像显示子系统3,信息处理单元31一方面根据获取的脱靶量信息来控制跟踪转台子系统4工作,另一方面则进行信息融合,将融合图像传给图像显示单元32显示。跟踪转台子系统4根据信息处理单元给出的脱靶量信息对空间目标进行跟踪,以便稳定成像。The working process of the present invention is as follows: first, the visible light, short-wave infrared, mid-wave infrared and long-wave infrared light of the target and the background are collected by the telescopic optical unit, and after passing through the spectroscopic unit and the polarization imaging unit, they respectively arrive at the visible light imaging unit 16 and the short-wave infrared imaging unit 14. The mid-wave infrared imaging unit 24 and the long-wave infrared imaging unit 26 obtain corresponding visible light, short-wave infrared, mid-wave infrared, and long-wave infrared images. The image is transmitted to the information processing or image display subsystem 3. On the one hand, the information processing unit 31 controls the work of the tracking turntable subsystem 4 according to the obtained miss-target information, and on the other hand, it performs information fusion and transmits the fused image to the image display unit. 32 display. The tracking turntable subsystem 4 tracks the space target according to the miss information given by the information processing unit, so as to stabilize the imaging.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410814085.7A CN104568140B (en) | 2014-12-23 | 2014-12-23 | Penetrating Fog haze imaging system based on multispectral section of full polarization |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410814085.7A CN104568140B (en) | 2014-12-23 | 2014-12-23 | Penetrating Fog haze imaging system based on multispectral section of full polarization |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104568140A CN104568140A (en) | 2015-04-29 |
CN104568140B true CN104568140B (en) | 2016-05-11 |
Family
ID=53084732
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410814085.7A Active CN104568140B (en) | 2014-12-23 | 2014-12-23 | Penetrating Fog haze imaging system based on multispectral section of full polarization |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104568140B (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106060364A (en) * | 2016-07-28 | 2016-10-26 | 浙江宇视科技有限公司 | Optical fog-penetrating color image acquisition method and camera |
CN109471199A (en) * | 2018-12-13 | 2019-03-15 | 长春理工大学 | A Visible Light and Infrared Multi-dimensional Zoom Polarization Imaging Evidence Search System |
CN113447127B (en) * | 2021-06-24 | 2022-10-04 | 长春理工大学 | Device and method for testing multi-spectral polarized light transmission characteristics based on passive imaging |
CN113701885B (en) * | 2021-08-27 | 2023-04-25 | 长春理工大学 | An off-axis three-mirror full-spectrum polarization spectrum imaging detection device |
CN113739913B (en) * | 2021-08-27 | 2022-03-11 | 长春理工大学 | An intelligent haze-penetrating optical imaging detection device and using method thereof |
CN115412664B (en) * | 2022-11-01 | 2023-01-20 | 长春理工大学 | Intelligent target polarization imaging device and method |
CN116380256B (en) * | 2023-06-07 | 2023-08-01 | 长春理工大学 | Short-wave infrared full-polarization imaging device and method based on haze attenuation coefficient |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102323670A (en) * | 2011-09-06 | 2012-01-18 | 中国科学院长春光学精密机械与物理研究所 | Ultraviolet, visible light and near-infrared three-band optical imaging system |
CN102495473A (en) * | 2011-11-15 | 2012-06-13 | 天津理工大学 | Visible light and infrared light splitting system |
CN202486267U (en) * | 2011-12-14 | 2012-10-10 | 武汉市兑尔科技有限公司 | Corona detection apparatus based on UV narrow band spectrum |
CN103471716A (en) * | 2013-09-18 | 2013-12-25 | 中南大学 | Interface full-spectrum imaging analytical instrument system |
CN203720447U (en) * | 2014-01-27 | 2014-07-16 | 杭州科汀光学技术有限公司 | Colored night vision system with intensified color splitting |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001255208A (en) * | 2000-03-09 | 2001-09-21 | Fuji Photo Film Co Ltd | Device for generating light with arbitrary spectral distribution |
CA2550692C (en) * | 2005-06-30 | 2012-01-24 | James Plant | Method and apparatus for real-time polarization difference imaging (pdi) video |
-
2014
- 2014-12-23 CN CN201410814085.7A patent/CN104568140B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102323670A (en) * | 2011-09-06 | 2012-01-18 | 中国科学院长春光学精密机械与物理研究所 | Ultraviolet, visible light and near-infrared three-band optical imaging system |
CN102495473A (en) * | 2011-11-15 | 2012-06-13 | 天津理工大学 | Visible light and infrared light splitting system |
CN202486267U (en) * | 2011-12-14 | 2012-10-10 | 武汉市兑尔科技有限公司 | Corona detection apparatus based on UV narrow band spectrum |
CN103471716A (en) * | 2013-09-18 | 2013-12-25 | 中南大学 | Interface full-spectrum imaging analytical instrument system |
CN203720447U (en) * | 2014-01-27 | 2014-07-16 | 杭州科汀光学技术有限公司 | Colored night vision system with intensified color splitting |
Also Published As
Publication number | Publication date |
---|---|
CN104568140A (en) | 2015-04-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104568140B (en) | Penetrating Fog haze imaging system based on multispectral section of full polarization | |
CN113739913B (en) | An intelligent haze-penetrating optical imaging detection device and using method thereof | |
CN204368421U (en) | A kind of novel four rotor wing unmanned aerial vehicles | |
CN104601953A (en) | Video image fusion-processing system | |
CN105425967A (en) | Sight tracking and human eye region-of-interest positioning system | |
CN103402044A (en) | Target recognition and tracking system based on multi-source video integration | |
CN103888751A (en) | Embedded type panoramic three-dimensional spherical visual image acquisition system based on DSP | |
CN205017403U (en) | Video mist elimination reinforcing system based on infrared light and visible light | |
CN102478711A (en) | Optical digital display device | |
CN107147877A (en) | All-weather color video imaging system and its construction method under night fog conditions in a fixed area | |
CN106965939A (en) | A kind of polyphaser image collecting device based on the residual ice detection of near infrared multispectral | |
CN111161197A (en) | Image registration fusion method of handheld observation instrument | |
CN206440933U (en) | A kind of non-coplanar image collecting device | |
CN204594469U (en) | A kind of drift scanning camera synchronization satellite orbit determination in real time device | |
CN204808349U (en) | Many cameras authentication system for mobile internet | |
CN203708336U (en) | High efficiency infrared light collecting apparatus matched with infrared camera | |
CN203550789U (en) | Transparent window sight device | |
CN105242375A (en) | Long-focal-length iris identification object lens | |
CN204613421U (en) | A kind of Photodetection system general round the clock based on Graphene sun-generated electric power | |
CN204964859U (en) | Long -focus iris discernment objective | |
CN105371825A (en) | Mapping system for traffic accident scene | |
CN205080303U (en) | Optical system for high -magnification telescope | |
Wang et al. | System design of DPVS | |
CN107845078A (en) | A kind of unmanned plane image multithreading clarification method of metadata auxiliary | |
Kasliwal et al. | LIGO/Virgo G268556: iPTF Optical Transient Candidates |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |