CN104567993B - 走航式水体探测系统 - Google Patents

走航式水体探测系统 Download PDF

Info

Publication number
CN104567993B
CN104567993B CN201410748933.9A CN201410748933A CN104567993B CN 104567993 B CN104567993 B CN 104567993B CN 201410748933 A CN201410748933 A CN 201410748933A CN 104567993 B CN104567993 B CN 104567993B
Authority
CN
China
Prior art keywords
water
piston body
electromagnet
vertical
water storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410748933.9A
Other languages
English (en)
Other versions
CN104567993A (zh
Inventor
薛彬
郭远明
李铁军
丁跃平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Marine Fisheries Research Institute
Original Assignee
Zhejiang Marine Fisheries Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Marine Fisheries Research Institute filed Critical Zhejiang Marine Fisheries Research Institute
Priority to CN201410748933.9A priority Critical patent/CN104567993B/zh
Publication of CN104567993A publication Critical patent/CN104567993A/zh
Application granted granted Critical
Publication of CN104567993B publication Critical patent/CN104567993B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

本发明公开了一种走航式水体探测系统,旨在提供一种不仅能够有效提高水环境参数测量效率;而且还能够为实验室测量提供检测水样,并且水样采集操作方便、劳动强度低,能够满足高密度采样的实际需要的走航式水体探测系统。它包括机架,水泵,抽水管道,检测管道,连接管道,第一排水管道,第二排水管道,固定设置在机架上的竖直储水筒,设置在竖直储水筒下端的取样进出口,设置在取样进出口正下方的第一活塞体及设置在机架上用于升降第一活塞体的升降执行装置。检测管道上依次设有温度传感器、PH传感器、溶解氧传感器及盐度传感器。

Description

走航式水体探测系统
技术领域
本发明涉及一种探测系统,具体涉及一种用于探测水环境参数特征及采集水样的走航式水体探测系统。
背景技术
水域水体受物质、水流、温度等因素影响会产生分层效应,不同水层的水文、物理、化学、生物等信息是不同的,采集分析处于不同层位水体的差异,是环境科学、海洋科学等学科不可或缺的内容,其广泛应用于水域生态环境评价、污染事故调查等实用领域。
长期以来水环境参数测量方法主要有采样实验室测量、定点原位测量两种。近年来,随着技术的进步定点原位测量设备具备自寄式测量功能,其可采用拖拽式走航测量方式:
采样实验室测量与定点原位测量方式存在测量范围有限,样品空问代表性不足、难以反映自然条件水环境参数特征,测量效率不高等问题;而拖曳式走航测量方式,受到风浪、拖曳缆绳长度等因数的影响,容易出现采样数据空间位置难以还原,采样空间位置分布难以界定等问题;此外,船舶动力对水体的扰动,也会导致测量水体区域中存在大量气泡,干扰设备光路的传输,导致测量结果出现误差。
另一方面,采样实验室测量需要通过采水器进行水样的采集。
目前的一类采水器通常是将采水器挂置在牵引绳上;接着,操作者通过绳索将采水器下放到特定深度的水层,并通过采水器对该深度的水层进行水样采集;再接着,操作者通过绳索将采水器提起。目前的这种采水器需要大量的手工操作,劳动强度大,难以满足高密度采样的实际需要;尤其是在恶劣的天气环境下,更是难以操作。
另一类采水器为水泵抽吸式采水装置,即通过将水管或水泵下放至指定深度的水域内,并通过水泵将指定深度的水域内的水体通过管道抽吸到船上的储水罐内,然后在储水罐内进行水样采集,从而实现水样的采集。这类水泵抽吸式采水装置虽然降低了劳动强度,但由于其水泵抽吸上来的水样,在水样采集过程中不可避免的会与外界空气接触而受到干扰,从而影响采集水样分析结果所代表水域环境的真实性、有效性。
发明内容
本发明的目的是为了克服现有技术中的不足,提供一种走航式水体探测系统,其不仅能够有效提高水环境参数测量效率、测量范围,能够有效反映自然条件水环境参数特征;而且还能够为实验室测量提供检测水样,并且水样采集操作方便、劳动强度低,能够满足高密度采样的实际需要;同时在水样采集过程中可以有效避免海域内采集的水样与外界空气接触而受到干扰,从而提高水样分析结果代表水域环境的真实性、有效性。
本发明的技术方案是:
一种走航式水体探测系统包括机架,水泵,抽水管道,检测管道,连接管道,第一排水管道,第二排水管道,固定设置在机架上的竖直储水筒,设置在竖直储水筒下端的取样进出口,设置在取样进出口正下方的第一活塞体及设置在机架上用于升降第一活塞体的升降执行装置,所述第一活塞体可往上移动至取样进出口内,并封堵取样进出口;所述竖直储水筒的侧面下部设有进水口,竖直储水筒上端设有出水口;
所述抽水管道的一端开口,另一端与水泵的进口相连接;所述检测管道的一端与水泵的出口相连接,另一端与第一排水管道的一端相连接,且检测管道与第一排水管道之间设有第一开关阀门;所述连接管道的一端与检测管道相连通,另一端与竖直储水筒的进水口相连接,并且连接管道与进水口之间设有第二开关阀门;所述第二排水管道的一端与竖直储水筒的出水口相连接;所述检测管道上依次设有温度传感器、PH传感器、溶解氧传感器及盐度传感器,所述温度传感器、PH传感器、溶解氧传感器及盐度传感器用于检测流经检测管道的水体的温度、PH值、溶解氧及盐度;
所述第一活塞体上端面上设有若干封闭式采水装置,封闭式采水装置包括设置在第一活塞体上端面上的安装孔,与安装孔密封连接的竖直安装套,设置在竖直安装套内侧面上部的隔板,设置在隔板顶面中部、并往下凹陷的避让凹槽,设置竖直安装套内、位于隔板下方的第一电磁铁与第二电磁铁及采水器;所述竖直安装套的上下两端开口,所述第一电磁铁位于避让凹槽正下方,且第一电磁铁的上端靠近隔板下表面或抵靠在隔板下表面上;所述第二电磁铁为环形电磁铁,第二电磁铁套设在第一电磁铁上,且第二电磁铁环绕设置在避让凹槽外侧,第二电磁铁的上端靠近隔板下表面或抵靠在隔板下表面上;
所述采水器的浮力大于重力,采水器包括放置在竖直安装套上端口内的采水筒,设置在采水筒内的储水腔,设置在采水筒的上端并与储水腔相通的采水口,设置在采水筒的下端并与储水腔相通的竖直导向孔,可滑动设置在竖直导向孔内的连接导杆及设置在连接导杆上端的第二活塞体;所述竖直导向孔内侧面上、位于竖直导向孔与连接导杆之阿设有密封圈;
所述采水口呈锥形,且采水口的横截面自下而上逐渐减小;所述第二活塞体与采水口相对应的也呈锥形,且第二活塞体可往上移动至采水口内,并封堵采水口;所述连接导杆上、位于第二活塞体与储水腔内底面之间设有可使第二活塞体往上移动至采水口内的压缩弹簧;
所述采水筒的底面抵靠在隔板顶面上,所述连接导杆的下端延伸至避让凹槽内,连接导杆的下端、位于至避让凹槽内设有第一铁板,且第一铁板与避让凹槽底面之间设有间隙,第一铁板位于第一电磁铁正上方;采水筒的底面上设有环形的第二铁板,且第二铁板环绕设置在连接导杆外侧,第二铁板位于第二电磁铁正上方。
本方案的走航式水体探测系统不仅能够有效提高水环境参数测量效率、测量范围,能够有效反映自然条件水环境参数特征;而且还能够为实验室测量提供检测水样。本方案的走航式水体探测系统在为实验室测量提供检测水样的过程中,可以通过走航式水体探测系统来自动取样,从而使水样采集操作方便、劳动强度低,能够满足高密度采样的实际需要。另一方面,在水样采集过程中还可以有效避免海域内采集的水样与外界空气接触而受到干扰,从而提高水样分析结果代表水域环境的真实性、有效性。
作为优选,还包括下水软管,所述第一活塞体上端面上设有贯通第一活塞体上、下端面的下水通孔,所述下水软管位于第一活塞体下方,下水软管的上端与下水通孔相连接,且下水通孔与下水软管的上端之间设有第三开关阀门。
在采水操作完成后可以通过下水通孔及下水软管将竖直储水筒内的水完全排净,避免第一活塞体往下移动至竖直储水筒下方时,竖直储水筒内残留的水滴落,而影响操作环境。
作为优选,第一活塞体上端面上设有下陷凹槽,所述下水通孔设置在下陷凹槽底面上,所述安装孔设置在下陷凹槽底面上。
由于下陷凹槽的设置,这样在第一活塞体往下移动至竖直储水筒下方时,可以进一步避免残留在第一活塞体顶面上的水滴落,而影响操作环境。
作为优选,竖直储水筒内、靠近进水口处设有缓冲挡板,该缓冲挡板固定在竖直储水筒内壁上,且缓冲挡板与进水口正对设置。缓冲挡板的设置可以避免有进水口进入竖直储水筒内的水直接冲击到采水器上,而影响海水取样系统的正常操作。
作为优选,竖直储水筒的下端开口,且竖直储水筒的下端开口构成所述的取样进出口,竖直储水筒内侧面下部、位于进水口正下方设有环形限位凸块。
作为优选,安装孔为螺纹孔,所述竖直安装套外侧面下部设有外螺纹,竖直安装套与安装孔之间通过螺纹连接。本方案结构有利于实际加工、制作。
作为优选,安装孔底面中部设有过线通孔,所述第一及第二电磁铁的电源线穿过所述的过线通孔。
作为优选,竖直安装套内设有支撑板,所述第一及第二电磁铁置于支撑板上,所述竖直安装套内侧面下部、位于支撑板下方设有环形卡槽,环形卡槽内设有挡圈。本方案结构有利于实际加工、制作。
作为优选,机架上、位于第一活塞体正下方设有竖直导套,第一活塞体下端面上设有竖直导杆,且竖直导杆可滑动的设置在竖直导套内;所述升降执行装置为升降气缸。
作为优选,连接管道与检测管道相连通部位靠近第一开关阀门。
本发明的有益效果是:不仅能够有效提高水环境参数测量效率、测量范围,能够有效反映自然条件水环境参数特征;而且还能够为实验室测量提供检测水样,并且水样采集操作方便、劳动强度低,能够满足高密度采样的实际需要;同时在水样采集过程中可以有效避免海域内采集的水样与外界空气接触而受到干扰,从而提高水样分析结果代表水域环境的真实性、有效性。
附图说明
图1是本发明的走航式水体探测系统的一种结构示意图。
图2是图1中A处的局部放大图。
图中:
升降执行装置1,竖直导杆2,第一活塞体3,下陷凹槽4,
封闭式采水装置5、采水器51、采水筒510、采水口511、第二活塞体512、连接导杆513、压缩弹簧514、储水腔515、环形封闭腔体516、第二铁板517、第一铁板518、竖直安装套52、隔板53、避让凹槽54、第二电磁铁55、第一电磁铁56、撑板57、安装孔58,
下水软管6,第三开关阀门7,下水通孔8,
竖直储水筒9、取样进出口91、环形限位凸块92、进水口93、缓冲挡板94、出水口95,
第二排水管道10,第二开关阀门11,第一排水管道12,第一开关阀门13,连接管道14,检测管道15,盐度传感器16,溶解氧传感器17,PH传感器18,温度传感器19,过线通孔20。
具体实施方式
下面结合附图与具体实施方式对本发明作进一步详细描述:
如图1所示,一种走航式水体探测系统包括机架,水泵,抽水管道,检测管道15,连接管道14,第一排水管道12,第二排水管道10,下水软管6,固定设置在机架上的竖直储水筒9,设置在竖直储水筒下端的取样进出口91,设置在取样进出口正下方的第一活塞体3及设置在机架上用于升降第一活塞体的升降执行装置1。竖直储水筒的侧面下部设有进水口93。竖直储水筒上端设有出水口95。抽水管道的一端开口,另一端与水泵的进口相连接。检测管道的一端与水泵的出口相连接,另一端与第一排水管道的一端相连接,且检测管道与第一排水管道之间设有第一开关阀门13。连接管道的一端与检测管道相连通,另一端与竖直储水筒的进水口相连接,并且连接管道与进水口之间设有第二开关阀门11。连接管道与检测管道相连通部位靠近第一开关阀门。第二排水管道的一端与竖直储水筒的出水口相连接。
检测管道上依次设有温度传感器19、PH传感器18、溶解氧传感器17及盐度传感器16。温度传感器、PH传感器、溶解氧传感器及盐度传感器用于检测流经检测管道的水体的温度、PH值、溶解氧及盐度。
竖直储水筒内、靠近进水口处设有缓冲挡板94。该缓冲挡板固定在竖直储水筒内壁上,且缓冲挡板与进水口正对设置。竖直储水筒的下端开口,且竖直储水筒的下端开口构成所述的取样进出口。竖直储水筒内侧面下部、位于进水口正下方设有环形限位凸块92。
第一活塞体上端面上设有下陷凹槽4。第一活塞体上端面上设有贯通第一活塞体上、下端面的下水通孔8,该下水通孔设置在下陷凹槽底面上。第一活塞体上端面上设有贯通第一活塞体上、下端面的下水通孔。下水软管位于第一活塞体下方,下水软管的上端与下水通孔相连接,且下水通孔与下水软管的上端之间设有第二开关阀门7。
机架上、位于第一活塞体正下方设有竖直导套。第一活塞体下端面上设有竖直导杆2,且竖直导杆可滑动的设置在竖直导套内。升降执行装置为升降气缸。第一活塞体可往上移动至取样进出口内,并封堵取样进出口。
如图1、图2所示,第一活塞体上端面上设有若干个封闭式采水装置5,且各封闭式采水装置绕第一活塞体周向均布。封闭式采水装置包括设置在第一活塞体上端面上的安装孔58,与安装孔密封连接的竖直安装套52,设置在竖直安装套内侧面上部的隔板53,设置在隔板顶面中部、并往下凹陷的避让凹槽54,设置竖直安装套内、位于隔板下方的第一电磁铁56与第二电磁铁55及采水器51。安装孔设置在下陷凹槽底面上。安装孔为螺纹孔。竖直安装套外侧面下部设有外螺纹。竖直安装套与安装孔之间通过螺纹连接。安装孔底面中部设有过线通孔20,第一及第二电磁铁的电源线穿过所述的过线通孔。竖直安装套的上下两端开口。第一电磁铁位于避让凹槽正下方,且第一电磁铁的上端靠近隔板下表面或抵靠在隔板下表面上。第二电磁铁为环形电磁铁。第二电磁铁套设在第一电磁铁上,且第二电磁铁环绕设置在避让凹槽外侧。第二电磁铁的上端靠近隔板下表面或抵靠在隔板下表面上。竖直安装套内设有支撑板57。第一及第二电磁铁置于支撑板上。支撑板上还设有穿线孔。第一及第二电磁铁的电源线穿过所述的穿线孔。竖直安装套内侧面下部、位于支撑板下方设有环形卡槽,环形卡槽内设有挡圈。
采水器的浮力大于重力。采水器可依次穿过竖直储水筒的出水口及排水管道,并由排水管道的端口排出。采水器包括放置在竖直安装套上端口内的采水筒510,设置在采水筒内的储水腔515,设置在采水筒的上端并与储水腔相通的采水口511,设置在采水筒的下端并与储水腔相通的竖直导向孔,可滑动设置在竖直导向孔内的连接导杆513及设置在连接导杆上端的第二活塞体512。 采水筒侧壁内设有环形封闭腔体516,该环形封闭腔体为采水器提供足够的浮力,使采水器的浮力大于重力。竖直导向孔内侧面上、位于竖直导向孔与连接导杆之阿设有密封圈。采水口呈锥形,且采水口的横截面自下而上逐渐减小。第二活塞体与采水口相对应的也呈锥形,且第二活塞体可往上移动至采水口内,并封堵采水口。连接导杆上、位于第二活塞体与储水腔内底面之间设有可使第二活塞体往上移动至采水口内的压缩弹簧514。采水筒的储水腔内充满惰性气体。第二活塞体封堵采水口。
采水筒的底面抵靠在隔板顶面上。连接导杆的下端延伸至避让凹槽内。连接导杆的下端、位于至避让凹槽内设有第一铁板518,且第一铁板与避让凹槽底面之间设有间隙。第一铁板水平设置。第一铁板位于第一电磁铁正上方。当第一电磁铁通电时,第一铁板将在第一电磁铁的吸力作用下往下移动,并带动第二活塞体往下移动,开启采水口。采水筒的底面上设有环形的第二铁板517,且第二铁板环绕设置在连接导杆外侧,第二铁板位于第二电磁铁正上方。
本发明的走航式水体探测系统设置在船体内,随船一同航行。
本发明的走航式水体探测系统的具体工作过程如下:
第一,将抽水管道的自由端(开口端)下放至指定位置的水域内(指定的深度),用于实现垂直深度可调的定深水样抽取;
第一开关阀门13开启,第二及第三开关阀门11、7关闭。
第二,开启水泵,将指定深度水域内的水由抽水管道端口抽入,并依次进过抽水管道,水泵,检测管道及第一排水管道,最后由第一排水管道的出口排出(由第一排水管道排出的水可以直接排回到水域内);
在这个过程中温度传感器19、PH传感器18、溶解氧传感器17及盐度传感器16将对流经检测管道的水体的温度、PH值、溶解氧及盐度进行检测;这样不仅能够有效提高水环境参数测量效率、测量范围,能够有效反映自然条件水环境参数特征;而且能够提高水环境参数测量精度。
当需要为实验室测量采集水样时:
A,各封闭式采水装置的第二电磁铁正通电,将第二铁板517吸附在隔板53,从而将整个采水器51吸附、固定在隔板上。
B,通过升降执行装置1带动第一活塞体3往上移动,直至第一活塞体抵靠在环形限位凸块92上,此时,第一活塞体移动至取样进出口内,并封堵取样进出口。
C,第二开关阀门11开启,第一开关阀门13及第三开关阀门7关闭;此时水泵抽入的水依次进过抽水管道,水泵,检测管道,连接管道及进水口进入竖直储水筒9的内腔内;然后,竖直储水筒内的水逐渐上漫,并由出水口95及第二排水管道10排出。由第二排水管道10排出的水可以直接排回到海内。
在水泵接着下来工作的过程中,抽水管道,水泵,检测管道,连接管道及竖直储水筒内腔内的空气被指定深度水域内的水完全排出。(在这个过程中由于第二电磁铁将采水器51吸附、固定在隔板上,可以避免采水器在浮力作用下上浮)
D,其中一个封闭式采水装置的第一电磁铁通电,此时其第一铁板将在第一电磁铁的吸力作用下往下移动,并通过连接导杆513带动第二活塞体512往下移动,从而开启采水口511;此时,采水筒的储水腔内的惰性气体排出(采水筒的储水腔内充满惰性气体),竖直储水筒内的水将自动流入采水筒的储水腔内。
由于此时竖直储水筒内腔的水还未与外界空气接触,因而在水样采集过程中可以有效避免海域内采集的水样与外界空气接触而受到干扰,从而提高水样分析结果代表水域环境的真实性、有效性。
E,该封闭式采水装置的第一电磁铁断电,此时在压缩弹簧的作用下,第二活塞体往上移动至采水口内,并封堵采水口;避免采水筒内的水体与外界空气接触。
F,该封闭式采水装置的第二电磁铁断电,此时该封闭式采水装置的采水器51在浮力作用下上浮,并沿水流依次穿过竖直储水筒的出水口及排水管道,并由排水管道的端口排出;至此完成一个水样的采样过程中;这样在水样的采样过程中可以有效避免海域内采集的水样与外界空气接触而受到干扰,从而提高水样分析结果代表水域环境的真实性、有效性。
G,完成一个水样的采样后;第二开关阀门关闭,第一开关阀门及第三开关阀门开启,此时,竖直储水筒内的水由水通孔及下水软管排出。由于第一活塞体上端面上设有若干个封闭式采水装置,因而在下一次采用只需返回C步操作即可。

Claims (10)

1.一种走航式水体探测系统,其特征是,包括机架,水泵,抽水管道,检测管道(15),连接管道(14),第一排水管道(12),第二排水管道(10),固定设置在机架上的竖直储水筒(9),设置在竖直储水筒下端的取样进出口(91),设置在取样进出口正下方的第一活塞体(3)及设置在机架上用于升降第一活塞体的升降执行装置(1),所述第一活塞体可往上移动至取样进出口内,并封堵取样进出口;所述竖直储水筒的侧面下部设有进水口(93),竖直储水筒上端设有出水口(95);
所述抽水管道的一端开口,另一端与水泵的进口相连接;所述检测管道的一端与水泵的出口相连接,另一端与第一排水管道的一端相连接,且检测管道与第一排水管道之间设有第一开关阀门(13);所述连接管道的一端与检测管道相连通,另一端与竖直储水筒的进水口相连接,并且连接管道与进水口之间设有第二开关阀门(11);所述第二排水管道的一端与竖直储水筒的出水口相连接;所述检测管道上依次设有温度传感器(19)、PH传感器(18)、溶解氧传感器(17)及盐度传感器(16),所述温度传感器、PH传感器、溶解氧传感器及盐度传感器用于检测流经检测管道的水体的温度、PH值、溶解氧及盐度;
所述第一活塞体上端面上设有若干封闭式采水装置(5),封闭式采水装置包括设置在第一活塞体上端面上的安装孔(58),与安装孔密封连接的竖直安装套(52),设置在竖直安装套内侧面上部的隔板(53),设置在隔板顶面中部、并往下凹陷的避让凹槽(54),设置竖直安装套内、位于隔板下方的第一电磁铁(56)与第二电磁铁(55)及采水器(51);所述竖直安装套的上下两端开口,所述第一电磁铁位于避让凹槽正下方,且第一电磁铁的上端靠近隔板下表面或抵靠在隔板下表面上;所述第二电磁铁为环形电磁铁,第二电磁铁套设在第一电磁铁上,且第二电磁铁环绕设置在避让凹槽外侧,第二电磁铁的上端靠近隔板下表面或抵靠在隔板下表面上;
所述采水器的浮力大于重力,采水器包括放置在竖直安装套上端口内的采水筒(510),设置在采水筒内的储水腔,设置在采水筒的上端并与储水腔相通的采水口(511),设置在采水筒的下端并与储水腔相通的竖直导向孔,可滑动设置在竖直导向孔内的连接导杆(513)及设置在连接导杆上端的第二活塞体(512);所述竖直导向孔内侧面上、位于竖直导向孔与连接导杆之间设有密封圈;
所述采水口呈锥形,且采水口的横截面自下而上逐渐减小;所述第二活塞体与采水口相对应的也呈锥形,且第二活塞体可往上移动至采水口内,并封堵采水口;所述连接导杆上、位于第二活塞体与储水腔内底面之间设有可使第二活塞体往上移动至采水口内的压缩弹簧(514);所述采水筒的底面抵靠在隔板顶面上,所述连接导杆的下端延伸至避让凹槽内,连接导杆的下端、位于至避让凹槽内设有第一铁板(518),且第一铁板与避让凹槽底面之间设有间隙,第一铁板位于第一电磁铁正上方;采水筒的底面上设有环形的第二铁板(517),且第二铁板环绕设置在连接导杆外侧,第二铁板位于第二电磁铁正上方。
2.根据权利要求1所述的走航式水体探测系统,其特征是,还包括下水软管(6),所述第一活塞体上端面上设有贯通第一活塞体上、下端面的下水通孔(8),所述下水软管位于第一活塞体下方,下水软管的上端与下水通孔相连接,且下水通孔与下水软管的上端之间设有第三开关阀门(7)。
3.根据权利要求2所述的走航式水体探测系统,其特征是,所述第一活塞体上端面上设有下陷凹槽(4),所述下水通孔设置在下陷凹槽底面上,所述安装孔设置在下陷凹槽底面上。
4.根据权利要求1或2或3所述的走航式水体探测系统,其特征是,所述竖直储水筒内、靠近进水口处设有缓冲挡板(94),该缓冲挡板固定在竖直储水筒内壁上,且缓冲挡板与进水口正对设置。
5.根据权利要求1或2或3所述的走航式水体探测系统,其特征是,所述竖直储水筒的下端开口,且竖直储水筒的下端开口构成所述的取样进出口,竖直储水筒内侧面下部、位于进水口正下方设有环形限位凸块(92)。
6.根据权利要求1或2或3所述的走航式水体探测系统,其特征是,所述安装孔为螺纹孔,所述竖直安装套外侧面下部设有外螺纹,竖直安装套与安装孔之间通过螺纹连接。
7.根据权利要求1或2或3所述的走航式水体探测系统,其特征是,所述安装孔底面中部设有过线通孔,所述第一及第二电磁铁的电源线穿过所述的过线通孔。
8.根据权利要求7所述的走航式水体探测系统,其特征是,所述竖直安装套内设有支撑板,所述第一及第二电磁铁置于支撑板上,所述竖直安装套内侧面下部、位于支撑板下方设有环形卡槽,环形卡槽内设有挡圈。
9.根据权利要求1或2或3所述的走航式水体探测系统,其特征是,所述机架上、位于第一活塞体正下方设有竖直导套,第一活塞体下端面上设有竖直导杆,且竖直导杆可滑动的设置在竖直导套内;所述升降执行装置为升降气缸。
10.根据权利要求1或2或3所述的走航式水体探测系统,其特征是,所述连接管道与检测管道相连通部位靠近第一开关阀门。
CN201410748933.9A 2014-12-09 2014-12-09 走航式水体探测系统 Active CN104567993B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410748933.9A CN104567993B (zh) 2014-12-09 2014-12-09 走航式水体探测系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410748933.9A CN104567993B (zh) 2014-12-09 2014-12-09 走航式水体探测系统

Publications (2)

Publication Number Publication Date
CN104567993A CN104567993A (zh) 2015-04-29
CN104567993B true CN104567993B (zh) 2017-02-22

Family

ID=53084590

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410748933.9A Active CN104567993B (zh) 2014-12-09 2014-12-09 走航式水体探测系统

Country Status (1)

Country Link
CN (1) CN104567993B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106644564B (zh) * 2016-10-12 2019-02-05 中国地质大学(武汉) 深海沉积物重力柱状取样试验台及操作方法
CN107796655B (zh) * 2017-10-27 2021-05-25 梁禄章 智能电磁升降式水样采集设备
CN108622312B (zh) * 2018-04-13 2019-12-13 自然资源部第一海洋研究所 一种对深海表层水连续取样的科考船
CN108548696B (zh) * 2018-04-13 2020-06-23 自然资源部第一海洋研究所 一种海洋表层水连续取样装置
CN108387403B (zh) * 2018-04-13 2020-06-23 自然资源部第一海洋研究所 一种用于对深海表层水连续取样的装置
CN108663235B (zh) * 2018-04-13 2020-06-23 自然资源部第一海洋研究所 实现走航过程对深海表层水连续取样的科考船

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2243658Y (zh) * 1995-05-19 1996-12-25 黄玉霖 走航水质巡测仪
US8312768B2 (en) * 2009-07-10 2012-11-20 Centro De Investigaciones Submarinas S.L. Autonomous and remote-controlled multi-parametric buoy for multi-depth water sampling, monitoring, data collection, transmission, and analysis
CN102928254B (zh) * 2012-10-22 2015-07-22 北京市水产科学研究所 一种智能采水器
CN102967490B (zh) * 2012-11-23 2015-10-28 华东师范大学 一种实时水样采集系统及其采集方法
CN103008276B (zh) * 2012-12-17 2016-10-19 中国水产科学研究院黑龙江水产研究所 池塘水质监测传感器自动清洗装置及清洗、提供水样方法
CN103389363B (zh) * 2013-08-26 2015-08-19 武汉大学 一种船载走航式水环境参数测量系统及方法

Also Published As

Publication number Publication date
CN104567993A (zh) 2015-04-29

Similar Documents

Publication Publication Date Title
CN104567993B (zh) 走航式水体探测系统
CN104502149B (zh) 封闭式海水取样系统
CN104677678B (zh) 一种触发上浮式采水装置
CN109541161B (zh) 一种可移动式水质在线监测及预警装置
CN107132328A (zh) 一种水库水质监测装置
CN202018415U (zh) 一种模拟抽水条件下的含水层参数测试装置
CN208270246U (zh) 一种用于孔内定深度采集水样、量测水位及水温的装置
CN204269640U (zh) 一种海水检测及采集设备
CN105716897B (zh) 一种水利湖泊探测取样设备及其实施方法
CN104677682B (zh) 一种定点触发式底层水保真采集器
CN103698154B (zh) 水下水样原位采集装置及水样采集方法
CN104990765A (zh) 一种用于近岸及河口沉积层孔隙水的监测仪器及监测方法
CN110186834A (zh) 一种密封胶对反渗透膜的渗透性检测装置及检测方法
CN208283123U (zh) 一种岸站用剖面水质测量装置
CN110967462A (zh) 分布式水质自动监测装置、监测船及监测方法
CN208350564U (zh) 一种可精细刻画污染物在含水层中迁移转化的砂槽装置
CN211013652U (zh) 一种地下水监测井用采样装置
CN105300913B (zh) 海底冷泉溶解气体原位测量装置
CN102914454B (zh) 一种钻孔取水器及取水方法
CN105259090B (zh) 土壤入渗仪
CN209311143U (zh) 一种便于控制操作的地下水采样器
CN203758786U (zh) 电动深水采样器
CN103675226B (zh) 一种基于顺序注射的柱状水下原位分析探头
CN210604009U (zh) 一种微扰动定深地下水采集及水位测量装置
CN104677692A (zh) 分层水体收集装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant