CN104567693B - 一种计量型微纳台阶高度测量装置 - Google Patents

一种计量型微纳台阶高度测量装置 Download PDF

Info

Publication number
CN104567693B
CN104567693B CN201510012759.6A CN201510012759A CN104567693B CN 104567693 B CN104567693 B CN 104567693B CN 201510012759 A CN201510012759 A CN 201510012759A CN 104567693 B CN104567693 B CN 104567693B
Authority
CN
China
Prior art keywords
micro
nano
platform
displacement
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510012759.6A
Other languages
English (en)
Other versions
CN104567693A (zh
Inventor
施玉书
高思田
沈飞
王兴旺
李适
李伟
李琪
王鹤群
皮磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Metrology
Original Assignee
National Institute of Metrology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Metrology filed Critical National Institute of Metrology
Priority to CN201510012759.6A priority Critical patent/CN104567693B/zh
Publication of CN104567693A publication Critical patent/CN104567693A/zh
Application granted granted Critical
Publication of CN104567693B publication Critical patent/CN104567693B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明公开了一种计量型微纳台阶高度测量装置,包括支撑系统以及安装在支撑系统上的白光显微测头、位移扫描系统和计量系统。本发明的有益效果为:该计量型微纳台阶高度测量装置主要用来测量微纳台阶的高度或沟槽的深度。系统采用粗细两级位移扫描系统,压电陶瓷驱动的纳米位移台可在微米级扫描范围内实现亚纳米级步进;压电陶瓷驱动的升降台可在毫米级扫描范围内实现亚微米级步进;Z向测量范围最大可达200微米。显微干涉测头采用白光光源(即采用白光显微测头),基于白光干涉原理,可实现0.1nm的Z向分辨率,同时可直接获得被测表面的三维形貌。采用激光干涉仪组成计量系统,将位移直接溯源到国际单位制中米定义的波长基准。

Description

一种计量型微纳台阶高度测量装置
技术领域
本发明涉及微纳台阶高度测量技术领域,具体涉及一种计量型微纳台阶高度测量装置。
背景技术
目前,一般利用触针扫描和显微扫描两种方法测量纳米沟槽深度,但该两种测量方法均存在一定技术缺陷,具体缺陷如下:
利用触针扫描方法测量。测量时,触针与被测表面接触并沿被测表面直线运动,触针的上下位移通过杠杆机构传递给测量传感器,传感器的输出值即为获得被测纳米沟槽的深度或纳米台阶的高度。但是所测得的轮廓是触针和被测表面表面形貌的卷积,触针的形貌会带入轮廓中,引起测量误差;同时触针直径有一定的大小,无法与具有较深的小沟槽、小孔等零件表面直接接触,也会影响表面测量准确度。触针扫描方法采用传感器测量位移,其基于电感或激光原理,无法实现位移量值溯源,必须进行校准之后才能进行测量。触针扫描方法单次测量只能得到一条轮廓线,无法实现快速三维扫描。
利用显微扫描方法测量。测量时,压电陶瓷驱动显微测头垂直于样品表面扫描,采集纳米沟槽或台阶上下表面干涉图像,拟合出上下表面三维图像,图像上下表面间距即为被测纳米沟槽的深度或纳米台阶的高度。显微扫描方法虽然可以得到三维图像,但是其纵向位移都来自于光栅尺,依然需要校准之后才能进行测量。
综上所述,目前还没有一台能够实现量值直接溯源的,具有毫米级测量范围,纳米级测量准确度的,可以直接得到三维图像的沟槽深度(台阶高度)测量仪器设备。
发明内容
为解决现有技术中还没有一台能够实现量值直接溯源的,具有毫米级测量范围,纳米级测量准确度的,可以直接得到三维图像的纳米沟槽深度测量装置的技术缺陷,本发明设计出一种实现了量值直接溯源、具有毫米级测量范围、纳米级测量准确度的,可以直接得到三维图像的计量型微纳台阶高度测量装置。
为实现上述目的,本发明采用的技术方案为:
一种计量型微纳台阶高度测量装置,包括支撑系统以及安装在支撑系统上的白光显微测头、位移扫描系统和计量系统,支撑系统包括底板以及固接在底板上的“[”形立柱;白光显微测头包括光源模块、照明模块、CCD模块、管镜模块以及干涉物镜模块,光源模块与照明模块通过第一光纤连接,CCD模块与管镜模块以及干涉物镜模块与照明模块之间均通过螺纹连接,管镜模块与照明模块之间通过卡口卡接;位移扫描系统包括安装在“[”形立柱内壁的升降台、固接在升降台侧壁的升降载板以及安装在升降载板上的纳米位移台和可调倾斜载物台,可调倾斜载物台固接在纳米位移台上方,升降载板通过直线轴承结构与“[”形立柱滑动连接;计量系统包括固接在升降载板底部的激光干涉仪,参考反射镜以及测量反射镜,其中激光干涉仪包括干涉头和激光光源,干涉头通过第二光纤与激光光源相连接;干涉头上开设有测量光束进出口和参考光束进出口,参考反射镜固接在干涉头表面且垂直于参考光束;位移扫描系统底端固接有倾斜调节结构,测量反射镜固接在倾斜调节结构底端面上且垂直于测量光束;白光显微测头的光轴与激光干涉仪的光轴同轴。
该计量型微纳台阶高度测量装置主要用来测量纳米台阶的高度或沟槽的深度。系统采用粗细两级位移扫描系统,压电陶瓷驱动的纳米位移台可在微米级扫描范围内实现亚纳米级步进;压电陶瓷驱动的升降台可在毫米级扫描范围内实现亚微米级步进;Z向测量范围最大可达200微米。显微干涉测头采用白光光源(即采用白光显微测头),白光干涉图像具有零级干涉条纹比两侧的次级干涉条纹幅值大的特点,根据这个特点采用零级干涉条纹中心定位被测对象上下表面位置,可实现0.1nm的Z向分辨率,同时可直接获得被测表面的三维形貌。光源模块和照明模块之间采用第一光纤传导,减小了光源发热带来的热误差;此外,该设计也使得更换光源灯泡比光源照明一体型结构更简便。
进一步的,底板与“[”形立柱之间安装有弧面座。“[”形立柱的左右两侧以及背面均安装有走线盒,走线盒上开设有供第一光纤通过的钣金线槽。
进一步的,“[”形立柱的左右两侧以及背面均安装有走线盒,走线盒上开设有供第一光纤通过的钣金线槽。
进一步的,升降载板上设置有上肋板和下肋板,且升降载板为一体成型结构。升降载板采用上下肋板结构,可以分散纳米位移台和可调倾斜载物台的压力以及增强升降台的运动平稳性。
进一步的,可调倾斜载物台与纳米位移台之间安装有转接板;纳米位移台中部开设有通孔,倾斜调节结构由螺栓固定到转接板底端并通过纳米位移台的通孔。
进一步的,倾斜调节结构采用柔性铰链结构。
进一步的,纳米位移台与升降台的扫描方向与光轴平行,并且纳米位移台和升降台均竖直放置/水平放置。
优选的,测量反射镜与参考反射镜之间的距离为3mm-5mm。可减小激光干涉仪的死光程误差。
进一步的,直线轴承结构包括两组结构相同的滑动组件,每组滑动组件均包括导轴座以及固接在导轴座顶端的导轴,导轴底端通过两个配套的半圆锁紧件与导轴座固定连接,顶端向上延伸至伸出升降载板并穿过固接在升降载板上方的轴承。该直线轴承结构有效减小了升降载板的侧应力。
本发明的有益效果为:1、光源模块和照明模块之间采用第一光纤传导,减小了光源发热带来的热误差;此外,该设计也使得更换光源灯泡比光源照明一体型结构更简便。2、白光显微测头采用Mirau型干涉物镜,参考镜及分光镜位于内部,光束受外界影响较小;此处的Mirau型干涉物镜也可简便的更换为Michelson和Linnik干涉物镜,实现不同类型样品的测量。3、系统采用粗细两级位移扫描系统,压电陶瓷驱动的纳米位移台可在微米级扫描范围内实现亚纳米级步进;压电陶瓷驱动的升降台可在毫米级扫描范围内实现亚微米级步进;Z向测量范围最大可达到200微米。4、采用测头不动,载物台扫描方式,可使白光显微干涉系统不受运动结构振动的影响,稳定可靠。5、“[”形立柱及底板采用重量很大、不易产生变形的大理石制作而成,机械性能稳定可靠。6、白光显微测头的重心位于大理石底座的台面内,因大理石重量较大,可以保证测头的机械稳定性。7、位移扫描系统采用直线轴承结构支撑,有效保证了位移扫描系统的单向移动,减小了运动轴与测量轴不同轴带来的阿贝误差。8、白光显微测头的光轴与激光干涉仪的光轴同轴减小了阿贝误差和余弦误差。9、采用激光干涉仪、参考反射镜和测量反射镜构成计量系统,可以将位移直接溯源到国际单位制中米定义的波长基准。10、测量反射镜与参考反射镜的反射面平行且纵向距离为3mm-5mm,可减小激光干涉仪的死光程误差。
附图说明
图1为本发明所述计量型微纳台阶高度测量装置的结构示意图;
图2为本发明所述白光显微测头的结构示意图;
图3为本发明所述白光显微测头的光路设计框图;
图4为本发明所述位移扫描系统(包括“[”形立柱)的结构示意图;
图5为图4A处的局部放大图;
图6为图4B处的局部放大图;
图7为本发明所述计量系统的结构示意图;
图8为本发明所述干涉头的结构示意图;
图9为本发明所述倾斜调节结构的结构示意图。
图中,
1、支撑系统;11、底板;12、“[”形立柱;121、走线盒;122、钣金线槽;13、弧面座;2、白光显微测头;21、壳体;22、光源模块;23、照明模块;24、CCD模块;25、管镜模块;26、干涉物镜模块;27、第一光纤;28、被测样品;3、位移扫描系统;31、升降台;32、升降载板;321、上肋板;322、下肋板;33、纳米位移台;34、可调倾斜载物台;35、直线轴承结构;351、导轴座;352、导轴;353、半圆锁紧件;354、轴承;37、倾斜调节结构;38、转接板;4、计量系统;41、干涉头;411、测量光束进出口;412、参考光束进出口;42、参考反射镜;421、第二光纤;422、激光光源;43、测量反射镜。
具体实施方式
下面结合附图对本发明的结构进行详细解释说明。
如图1-9所示,本发明提供的一种计量型微纳台阶高度测量装置,包括支撑系统1以及安装在支撑系统上的白光显微测头2、位移扫描系统3和计量系统4,支撑系统包括底板11以及固接在底板上的“[”形立柱12;白光显微测头包括光源模块22、照明模块23、CCD模块24、管镜模块25以及干涉物镜模块26,光源模块与照明模块通过第一光纤27连接,CCD模块与管镜模块以及干涉物镜模块与照明模块之间均通过螺纹连接,管镜模块与照明模块之间通过卡口卡接;位移扫描系统包括安装在“[”形立柱内壁的升降台31、固接在升降台侧壁的升降载板32以及安装在升降载板上的纳米位移台33和可调倾斜载物台34,可调倾斜载物台固接在纳米位移台上方,升降载板通过直线轴承结构35与“[”形立柱滑动连接;计量系统包括固接在升降载板底部的激光干涉仪,参考反射镜42以及测量反射镜43,其中激光干涉仪包括干涉头41和激光光源423,干涉头通过第二光纤422与激光光源相连接;干涉头上开设有测量光束进出口411和参考光束进出口412,参考反射镜固接在干涉头表面且垂直于参考光束;位移扫描系统底端固接有倾斜调节结构37,测量反射镜固接在倾斜调节结构底端面上且垂直于测量光束;白光显微测头的光轴与激光干涉仪的光轴同轴,位移扫描系统扫描方向与光轴平行。测量反射镜与参考反射镜之间的距离达毫米级,优选3mm-5mm。
本发明提供的一种计量型微纳台阶高度测量装置,底板与“[”形立柱之间安装有弧面座13。
本发明提供的一种计量型微纳台阶高度测量装置,“[”形立柱的左右两侧以及背面均安装有走线盒121,走线盒上开设有供第一光纤通过的钣金线槽122。
本发明提供的一种计量型微纳台阶高度测量装置,升降载板上设置有上肋板321和下肋板322,且升降载板为一体成型结构。升降载板采用上下肋板结构,可以分散纳米位移台和可调倾斜载物台的压力以及增强升降台的运动平稳性。
本发明提供的一种计量型微纳台阶高度测量装置,可调倾斜载物台与纳米位移台之间安装有转接板38;纳米位移台中部开设有通孔,倾斜调节结构由螺栓固定到转接板底端并通过纳米位移台的通孔。倾斜调节结构采用柔性铰链结构。纳米位移台与升降台的扫描方向应与光轴垂直,其放置姿态因产品而异,可竖直放置/水平放置。纳米位移台通过四个螺栓固定到升降载板上,可调倾斜载物台通过转接板固定到纳米位移台上。倾斜调节结构采用柔性铰链结构,可调节X,Y两个方向的倾斜角度,激光干涉仪初次安装时,利用此倾斜调节结构调整测量反射镜的倾斜角度,可使测量光束处于最佳位置。
本发明提供的一种计量型微纳台阶高度测量装置,白光显微测头可采用Mirau型干涉物镜,也可采用Michelson和Linnik型干涉物镜。
本发明提供的一种计量型微纳台阶高度测量装置,激光干涉仪的干涉头411与激光光源413之间可用光纤导入激光,也可用反射镜导入激光。
本发明提供的一种计量型微纳台阶高度测量装置,直线轴承结构包括两组结构相同的滑动组件,每组滑动组件均包括导轴座351以及固接在导轴座顶端的导轴352,导轴底端通过两个配套的半圆锁紧件353与导轴座固定连接,顶端向上延伸至伸出升降载板并穿过固接在升降载板上方的轴承354。该直线轴承结构有效减小了升降载板的侧应力。
本发明提供的一种计量型微纳台阶高度测量装置,白光显微测头还包括用于容置照明模块、管镜模块以及干涉物镜模块的壳体21。
本发明提供的一种计量型微纳台阶高度测量装置,主要由安装在支撑系统上的白光显微测头、位移扫描系统和计量系统三部分组成,测量时,位移扫描系统带动被测纳米沟槽或台阶上下扫描,白光显微测头采集被测对象上下表面的干涉条纹,计量系统监测位移扫描系统中纳米位移台的位移。通过专用软件分析干涉条纹找到上下表面所在位置,与计量系统测量到的位移相对应,其位移差值即为纳米沟槽的深度或台阶的高度值。
本发明提供的一种计量型微纳台阶高度测量装置,白光显微测头的具体结构及工作原理如下:光源模块采用白光光源模块,白光光源模块发出的光线,通过照明模块后进入干涉物镜模块被分成两束,一束照射到被测样品28上,一束照射到干涉物镜模块中的反射镜上,两束光最终都被反射回来通过管镜模块进入CCD模块中并在其中产生干涉。光源模块和照明模块之间采用光纤传导,减小了光源发热带来的热误差;此外,该设计也使得更换光源灯泡比光源照明一体型结构更简便。
本发明提供的一种计量型微纳台阶高度测量装置,位移扫描系统的具体结构及工作原理如下:升降台带动升降载板及位于其上的纳米位移台和可调倾斜载物台沿着直线轴承结构的导轴从下至上扫描,寻找到可调倾斜载物台上被测纳米沟槽或台阶上下表面干涉条纹出现的位置后,将升降台调整到沟槽或台阶下表面干涉条纹出现之前的位置,锁紧升降台,纳米位移台带动可调倾斜载物台从下至上扫描。升降台使用四个螺栓固定到大理石的“[”立柱上,升降载板通过六个螺栓固定到升降台上。纳米位移台通过四个螺栓固定到升降载板上,可调倾斜载物台通过转接板固定到纳米位移台上。
本发明提供的一种计量型微纳台阶高度测量装置,计量系统的具体结构及工作原理如下:激光干涉仪左边的测量光束进出口与白光显微测头中干涉物镜同轴,纳米位移台上下扫描时,激光干涉仪可监测其位移值,将位移溯源到米的定义。干涉头直接固定到升降载板底部,参考反射镜用胶水粘黏到干涉头的两个参考光束孔位置。测量反射镜安装到倾斜调节结构上,倾斜调节结构通过螺栓固定到可调倾斜载物台底部的转接板上。倾斜调节结构采用柔性铰链结构,可调节X,Y两个方向的倾斜角度,干涉头初次安装时,利用此结构调整测量反射镜倾斜角度,使测量光束处于最佳位置。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明实质内容上所作的任何修改、等同替换和简单改进等,均应包含在本发明的保护范围之内。

Claims (5)

1.一种计量型微纳台阶高度测量装置,包括支撑系统(1)以及安装在支撑系统上的白光显微测头(2)、位移扫描系统(3)和计量系统(4);其中,支撑系统包括底板(11)以及固接在底板上的“[”形立柱(12);白光显微测头包括光源模块(22)、照明模块(23)、CCD模块(24)、管镜模块(25)以及干涉物镜模块(26),光源模块与照明模块通过第一光纤(27)连接,CCD模块与管镜模块以及干涉物镜模块与照明模块之间均通过螺纹连接,管镜模块与照明模块之间通过卡口卡接;位移扫描系统包括安装在“[”形立柱内壁的升降台(31)、固接在升降台侧壁的升降载板(32)以及安装在升降载板上的纳米位移台(33)和可调倾斜载物台(34),可调倾斜载物台固接在纳米位移台上方,升降载板通过直线轴承结构(35)与“[”形立柱滑动连接;计量系统包括固接在升降载板底部的激光干涉仪,参考反射镜(42)以及测量反射镜(43),其中激光干涉仪包括干涉头(41)和激光光源(422),干涉头通过第二光纤(421)与激光光源相连接;干涉头上开设有测量光束进出口(411)和参考光束进出口(412),参考反射镜固接在干涉头表面且垂直于参考光束;位移扫描系统底端固接有倾斜调节结构(37),测量反射镜固接在倾斜调节结构底端面上且垂直于测量光束;其特征在于,所述升降载板上设置有上肋板(321)和下肋板(322),且升降载板为一体成型结构;所述可调倾斜载物台与纳米位移台之间安装有转接板(38),纳米位移台中部开设有通孔,倾斜调节结构由螺栓固定到转接板底端并通过纳米位移台的通孔;所述直线轴承结构包括两组结构相同的滑动组件,每组滑动组件均包括导轴座(351)以及固接在导轴座顶端的导轴(352),导轴底端通过两个配套的半圆锁紧件(353)与导轴座固定连接,顶端向上延伸至伸出升降载板并穿过固接在升降载板上方的轴承(354);所述的计量型微纳台阶高度测量装置采用白光显微测头不动,位移扫描系统带动被测纳米沟槽或台阶上下扫描的方式;纳米位移台上下扫描时,激光干涉仪可监测其位移值,将位移溯源到米的定义,所述干涉头直接固定到升降载板底部,参考反射镜固定到干涉头的两个参考光束孔位置,测量反射镜安装到倾斜调节结构上,倾斜调节结构固定到可调倾斜载物台底部的转接板上。
2.根据权利要求1所述的计量型微纳台阶高度测量装置,其特征在于,底板与“[”形立柱之间安装有弧面座(13)。
3.根据权利要求2所述的计量型微纳台阶高度测量装置,其特征在于,“[”形立柱的左右两侧以及背面均安装有走线盒(121),走线盒上开设有供第一光纤通过的钣金线槽(122)。
4.根据权利要求1所述的计量型微纳台阶高度测量装置,其特征在于,倾斜调节结构采用柔性铰链结构。
5.根据权利要求1所述的计量型微纳台阶高度测量装置,其特征在于,纳米位移台与升降台的扫描方向与光轴平行,并且纳米位移台和升降台均竖直放置/水平放置。
CN201510012759.6A 2015-01-09 2015-01-09 一种计量型微纳台阶高度测量装置 Active CN104567693B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510012759.6A CN104567693B (zh) 2015-01-09 2015-01-09 一种计量型微纳台阶高度测量装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510012759.6A CN104567693B (zh) 2015-01-09 2015-01-09 一种计量型微纳台阶高度测量装置

Publications (2)

Publication Number Publication Date
CN104567693A CN104567693A (zh) 2015-04-29
CN104567693B true CN104567693B (zh) 2018-05-01

Family

ID=53084319

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510012759.6A Active CN104567693B (zh) 2015-01-09 2015-01-09 一种计量型微纳台阶高度测量装置

Country Status (1)

Country Link
CN (1) CN104567693B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104864813A (zh) * 2015-05-18 2015-08-26 苏州阿特斯阳光电力科技有限公司 一种晶体硅太阳能电池片栅线高度和宽度的测量方法
CN108363870B (zh) * 2018-02-11 2021-05-25 宁波大学 一种基于深度学习的数控机床主轴热误差建模方法
CN108844469B (zh) * 2018-06-14 2020-03-24 电子科技大学 一种基于激光测试工件台阶高度的方法及系统
CN108981577A (zh) * 2018-06-25 2018-12-11 苏州健雄职业技术学院 一种压电陶瓷压电微位移测量方法
CN111521130B (zh) * 2020-05-09 2022-02-18 南京理工大学 一种快速判断并消除蝙蝠翼效应的微结构光学检测方法
CN114739320A (zh) * 2022-04-29 2022-07-12 哈尔滨工业大学 一种硬脆材料冲击刻划自动调平和原位检测装置及方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101625231B (zh) * 2009-04-14 2010-12-08 华中科技大学 一种白光干涉光学轮廓仪
CN101975559B (zh) * 2010-09-07 2012-01-11 天津大学 基于纳米测量与倾斜扫描白光干涉微结构测试系统及方法
CN102878933B (zh) * 2012-09-07 2015-03-11 华中科技大学 一种基于白光干涉定位原理的比较仪及其检测方法
CN204346373U (zh) * 2015-01-09 2015-05-20 中国计量科学研究院 一种计量型微纳台阶高度测量装置

Also Published As

Publication number Publication date
CN104567693A (zh) 2015-04-29

Similar Documents

Publication Publication Date Title
CN104567693B (zh) 一种计量型微纳台阶高度测量装置
CN204346373U (zh) 一种计量型微纳台阶高度测量装置
CN110954026B (zh) 测量钢轨几何轮廓的在线检测装置
CN101419044B (zh) 微纳米级三维测量“331”系统及其测量方法
CN110440723A (zh) 一种异型结构零件内曲面表面粗糙度测量装置及测量方法
CN101571374A (zh) 微型高精度三坐标测量机误差检定系统
CN113405462B (zh) 一种集成共焦法与三角法的探路式测头装置及其测量方法
CN102004027A (zh) 一种激光两坐标装置
CN101504273B (zh) 物体平面微、纳米尺寸的测量装置及其测量方法
CN108153234A (zh) 机床直线运动运行态的全自由度精度检测装置
CN207742559U (zh) 机床直线运动运行态的全自由度精度检测装置
CN105547184B (zh) 一种平面度误差测量装置及其二维扫描工作台
CN207300157U (zh) 一种3d曲面玻璃的快速测量装置
CN105890547B (zh) 三维轮廓测量仪
CN101216290A (zh) 高精度六轴激光测量装置及测量方法
Wang et al. Development of an on-machine measurement system with chromatic confocal probe for measuring the profile error of off-axis biconical free-form optics in ultra-precision grinding
CN2506976Y (zh) 微轮廓测量仪
CN203337459U (zh) 一种金属丝长度形变测量装置
CN110986792B (zh) 一种一维球或锥窝阵列的高精度检测装置及检测方法
CN113916129B (zh) 一种三坐标测量机及标定方法
CN209559128U (zh) 基于光学劈尖干涉的纳米分辨率位移测量装置
CN206944950U (zh) 多轴联动的视觉、激光复合式非接触式测量装置
CN105910521A (zh) 三坐标测量装置
CN216283314U (zh) 一种二维导轨直线度和垂直度测试装置
CN206556570U (zh) 一种角度测量装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant