CN104560842A - 一种重组大肠杆菌利用甘油生产1,2-丙二醇的方法 - Google Patents

一种重组大肠杆菌利用甘油生产1,2-丙二醇的方法 Download PDF

Info

Publication number
CN104560842A
CN104560842A CN201310488513.7A CN201310488513A CN104560842A CN 104560842 A CN104560842 A CN 104560842A CN 201310488513 A CN201310488513 A CN 201310488513A CN 104560842 A CN104560842 A CN 104560842A
Authority
CN
China
Prior art keywords
substratum
propanediol
utilize
fermentation
genetic engineering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201310488513.7A
Other languages
English (en)
Inventor
刘立栋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou Qiuhong Biotechnology Co Ltd
Original Assignee
Changzhou Qiuhong Biotechnology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou Qiuhong Biotechnology Co Ltd filed Critical Changzhou Qiuhong Biotechnology Co Ltd
Priority to CN201310488513.7A priority Critical patent/CN104560842A/zh
Publication of CN104560842A publication Critical patent/CN104560842A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/52Cytokines; Lymphokines; Interferons
    • C07K14/521Chemokines
    • C07K14/522Alpha-chemokines, e.g. NAP-2, ENA-78, GRO-alpha/MGSA/NAP-3, GRO-beta/MIP-2alpha, GRO-gamma/MIP-2beta, IP-10, GCP-2, MIG, PBSF, PF-4, KC
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/18Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic polyhydric
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01006Glycerol dehydrogenase (1.1.1.6)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Gastroenterology & Hepatology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本发明涉及一种使用重组大肠杆菌利用甘油生产1,2-丙二醇的方法。具有如下步骤:1)克隆参与1,2-丙二醇生物合成的基因mgsA,gldA和fucO,2)将这些基因与大肠杆菌高拷贝载体pUC19连接以构建含有1,2-丙二醇生物合成所需蛋白的编码基因的重组载体,3)将重组质粒转入大肠杆菌BW25141中,通过氨苄青霉素的筛选标记,从而获得了大肠杆菌高产1,2-丙二醇的菌株,4)通过发酵生产1,2-丙二醇,并从发酵液中回收1,2-丙二醇。该方法具有环保,高效,稳定,价格低廉等优点。

Description

一种重组大肠杆菌利用甘油生产1,2-丙二醇的方法
技术领域:
本发明属于微生物基因工程领域,具体地说将参与1,2-丙二醇生物合成的三个基因克隆并与大肠杆菌高拷贝载体pUC19连接,将重组质粒转入大肠杆菌中,使用氨苄青霉素作为筛选标记,以加强这三个基因在大肠杆菌中的表达量,使1,2-丙二醇可以在大肠杆菌中大量合成。 
背景技术:
1,2-丙二醇(1,2-propanediol)是一种无色粘稠的吸水性液体,与水、乙醇及多种有机溶剂混溶。沸点187.3℃。熔点-60℃。分子式为:C3H8O2,结构式如下所示。1,2-丙二醇是重要的化工原料和中间体,广泛应用于化工、食品、燃料等领域,可用作不饱和聚酯树脂的原料,也可用于生产增塑剂、表面活性剂、乳化剂和破乳剂,其本身可以用作防霉剂、水果催熟剂、防腐剂、防冻剂及烟草保湿剂。 
由于1,2-丙二醇的广泛用途及高价值,1,2-丙二醇的生产得到了广泛的关注,目前,研究的热点集中在化学合成法和微生物发酵法两种方法上。但是由于化学合成法合成1,2-丙二醇必须使用高温,高压及贵重金属催化剂。且副产物较多,给下游分离纯化带来困难,且合成成本较高,限制了化学合成法的发展。 
因此微生物发酵法成为研究的重中之重,自然界中很多微生物可以合成1,2-丙二醇,如克雷伯杆菌属(Klebsiella),柠檬酸菌属(Citrobacter)和梭状芽胞杆菌属(Clostridium)等,这些细菌利用碳源的种类、发酵生产1,2-丙二醇的产量、生成的1,2-丙二醇异构体均有差异。并且这些菌生产1,2-丙二醇时产生较多的副产物,如:乙酸,乙醇,丁酸,2,3-丁二醇等,这些底物均能在不同程 度上抑制细菌的生长和生产,因此挑选一株副产物较少,但是1,2-丙二醇耐受度较高的菌株是当务之急。在培养基的碳源选择部分,目前,研究热点都在于以糖质作为原料生产1,2-丙二醇,但是,粮食资源日益紧张的今天,开发以廉价的非粮糖质为原料发酵生产1,2-丙二醇具有很好的发展前景。因此,我们使用了可以利用甘油的大肠杆菌作为生产菌株。大肠杆菌具有生物量较大,发酵周期短,生物背景明确,并且产生较少或者不产乙醇,丁酸等副产物,可以利用甘油这一非糖质底物等优点。由于现代工业在通过植物油和动物脂肪生产石油的过程中产生大量的废弃甘油,这些废弃甘油的比重高达10%,因此,使用大肠杆菌以甘油为底物生产1,2-丙二醇可以使原料成本降低,并且可以保护环境。 
发明内容
本发明的目的是获得一种使用甘油为底物高产1,2-丙二醇的大肠杆菌菌株的制备方法。本发明的另一目的是公开了高产1,2-丙二醇的基因工程菌的发酵方法。 
本发明以大肠杆菌BW25141(美国E.coli Genetic Resources at Yale,The Coli Genetic Stock Center)为出发菌株,将三个与合成1,2-丙二醇有关的基因通过大肠杆菌高拷贝载体pUC19(美国New England BioLabs公司)转入大肠杆菌中,从而获得高产1,2-丙二醇的基因工程菌PPO16178。得到的菌株可以用甘油作为碳源生产1,2-丙二醇。 
本发明的上述目的是通过以下技术方案达到的: 
一种使用甘油为底物高产1,2-丙二醇的大肠杆菌菌株的制备方法,其步骤如下: 
1)基因片段的克隆 
利用引物序列1 
GGGAAAGGTACCatgGCACTTATAATGAATAGTAAAA 
引物序列2 
GGGAAAGCATGCttaAAAATTGTCTTTTCTAATTTTT 
PCR扩增基因片段mgsA 
atgGCACTTA TAATGAATAG TAAAAAAAAG ATAGCCTTAG TTGCACATGA CAATAGAAAA 
AAAGCTTTGATTAGCTGGTGTGAGGCAAAT TCGGAAGTTT TAAGTAATCA CAGCCTTTGT 
GGTACAGGCA CTACTGCAAA GCTTATAAAA GAGGCAACAG GACTTGAGGT TTTTCCATAT 
AAAAGCGGAC CTATGGGGGG AGATCAACAA ATAGGAGCTG CTATAGTAAA TGAAGATATA 
GATTTTATGA TTTTTTTCTG GGATCCACTT ACAGCTCAGC CACATGATCC TGATGTAAAG 
GCACTTCTTA GGATTTCTGT ACTTTATGAT ATTCCAATAG CAATGAATGA ATCTACAGCA 
GAGTTTTTAA TTAAGTCACC TATTATGAAG GAGCAGCATG AAAGGCACAT CATAGATTAT 
TACCAAAAAA TTAGAAAAGA CAATTTTtaa 
PCR扩增条件为: 
95℃30S,62℃20S,72℃30S,进行30个循环,72℃延伸10min; 
利用引物序列3 
GGGAAAGCATGCatgGACCGCATTATTCAATCACCGG 
引物序列4 
GGGAAAGTCGACttaTTCCCACTCTTGCAGGAAACGC 
PCR扩增基因片段gldA 
atgGACCGCA TTATTCAATC ACCGGGTAAA TACATCCAGG GCGCTGATGT GATTAATCGT 
CTGGGCGAAT ACCTGAAGCC GCTGGCAGAA CGCTGGTTAG TGGTGGGTGA CAAATTTGTT 
TTAGGTTTTG CTCAATCCAC TGTCGAGAAA AGCTTTAAAG ATGCTGGACT GGTAGTAGAA 
ATTGCGCCGT TTGGCGGTGA ATGTTCGCAA AATGAGATCG ACCGTCTGCG TGGCATCGCG 
GAGACTGCGC AGTGTGGCGC AATTCTCGGT ATCGGTGGCG GAAAAACCCT CGATACTGCC 
AAAGCACTGG CACATTTCAT GGGTGTTCCG GTAGCGATCG CACCGACTAT CGCCTCTACC 
GATGCACCGT GCAGCGCATT GTCTGTTATC TACACCGATG AGGGTGAGTT TGACCGCTAT 
CTGCTGTTGC CAAATAACCC GAATATGGTC ATTGTCGACA CCAAAATCGT CGCTGGCGCA 
CCTGCACGTC TGTTAGCGGC GGGTATCGGC GATGCGCTGG CAACCTGGTT TGAAGCGCGT 
GCCTGCTCTC GTAGCGGCGC GACCACCATG GCGGGCGGCA AGTGCACCCA GGCTGCGCTG 
GCACTGGCTG AACTGTGCTA CAACACCCTG CTGGAAGAAG GCGAAAAAGC GATGCTTGCT 
GCCGAACAGC ATGTAGTGAC TCCGGCGCTG GAGCGCGTGA TTGAAGCGAA CACCTATTTG 
AGCGGTGTTG GTTTTGAAAG TGGTGGTCTG GCTGCGGCGC ACGCAGTGCA TAACGGCCTG 
ACCGCTATCC CGGACGCGCA TCACTATTAT CACGGTGAAA AAGTGGCATT CGGTACGCTG 
ACGCAGCTGG TTCTGGAAAA TGCGCCGGTG GAGGAAATCG AAACCGTAGC TGCCCTTAGC 
CATGCGGTAG GTTTGCCAAT AACTCTCGCT CAACTGGATA TTAAAGAAGA TGTCCCGGCG 
AAAATGCGAA TTGTGGCAGA AGCGGCATGT GCAGAAGGTG AAACCATTCA CAACATGCCT 
GGCGGCGCGA CGCCAGATCA GGTTTACGCC GCTCTGCTGG TAGCCGACCA GTACGGTCAG 
CGTTTCCTGC AAGAGTGGGA Ataa 
PCR扩增条件为: 
95℃30S,62℃20S,72℃60S,进行30个循环,72℃延伸10min; 
利用引物序列5 
GGGAAAGTCGACatgGCTAACAGAATGATTCTGAACG 
引物序列6 
GGGAAATCTAGAttaCCAGGCGGTATGGTAAAGCTCT 
PCR扩增基因片段fucO 
atgGCTAACA GAATGATTCT GAACGAAACG GCATGGTTTG GTCGGGGTGC TGTTGGGGCT 
TTAACCGATG AGGTGAAACG CCGTGGTTAT CAGAAGGCGC TGATCGTCAC CGATAAAACG 
CTGGTGCAAT GCGGCGTGGT GGCGAAAGTG ACCGATAAGA TGGATGCTGC AGGGCTGGCA 
TGGGCGATTT ACGACGGCGT AGTGCCCAAC CCAACAATTA CTGTCGTCAA AGAAGGGCTC 
GGTGTATTCC AGAATAGCGG CGCGGATTAC CTGATCGCTA TTGGTGGTGG TTCTCCACAG 
GATACTTGTA AAGCGATTGG CATTATCAGC AACAACCCGG AGTTTGCCGA TGTGCGTAGC 
CTGGAAGGGC TTTCCCCGAC CAATAAACCC AGTGTACCGA TTCTGGCAAT TCCTACCACA 
GCAGGTACTG CGGCAGAAGT GACCATTAAC TACGTGATCA CTGACGAAGA GAAACGGCGC 
AAGTTTGTTT GCGTTGATCC GCATGATATC CCGCAGGTGG CGTTTATTGA CGCTGACATG 
ATGGATGGTA TGCCTCCAGC GCTGAAAGCT GCGACGGGTG TCGATGCGCT CACTCATGCT 
ATTGAGGGGT ATATTACCCG TGGCGCGTGG GCGCTAACCG ATGCACTGCA CATTAAAGCG 
ATTGAAATCA TTGCTGGGGC GCTGCGAGGA TCGGTTGCTG GTGATAAGGA TGCCGGAGAA 
GAAATGGCGC TCGGGCAGTA TGTTGCGGGT ATGGGCTTCT CGAATGTTGG GTTAGGGTTG 
GTGCATGGTA TGGCGCATCC ACTGGGCGCG TTTTATAACA CTCCACACGG TGTTGCGAAC 
GCCATCCTGT TACCGCATGT CATGCGTTAT AACGCTGACT TTACCGGTGA GAAGTACCGC 
GATATCGCGC GCGTTATGGG CGTGAAAGTG GAAGGTATGA GCCTGGAAGA GGCGCGTAAT 
GCCGCTGTTG AAGCGGTGTT TGCTCTCAAC CGTGATGTCG GTATTCCGCC ACATTTGCGT 
GATGTTGGTG TACGCAAGGA AGACATTCCG GCACTGGCGC AGGCGGCACT GGATGATGTT 
TGTACCGGTG GCAACCCGCG TGAAGCAACG CTTGAGGATA TTGTAGAGCT TTACCATACC 
GCCTGGtaa 
PCR扩增条件为: 
95℃30S,62℃20S,72℃60S,进行30个循环,72℃延伸10min; 
2)质粒的构建 
将扩增后基因片段mgsA,用不同的限制性内切酶KpnI和SphI(美国NeW England BioLabs公司)进行酶切,得到粘性末端,将扩增后基因片段gldA,用不同的限制性内切酶SphI和SalI(美国New England BioLabs公司)进行酶切,将扩增后基因片段fucO,用不同的限制性内切酶SalI和XbaI(美国New England BioLabs公司)进行酶切,得到粘性末端,将pUC19载体也用限制性内切酶KpnI和XbaI进行酶切。酶切条件均为37℃,保温2小时。将所有得到基因片度和线性化的载体进行回收,并将纯化后的基因片段和线性化的载体等浓度混合,加入连接缓冲液和DNA连接酶(美国New England BioLabs公司),37℃连接过夜;得到质粒pPPO连接液; 
3)阳性克隆的筛选 
得到的质粒pPPO连接液用热击法转化入大肠杆菌细胞中,具体方法为:首先制备感受态细胞,然后取2μL构建好的质粒pPPO与感受态细胞轻轻混合,42℃热击,加入500μL不含抗生素的LB培养基复苏30分钟,然后涂布在含有氨苄青霉素的LB平板上37℃培养12小时,得到基因工程菌PPO16178。 
本发明的另一目的是开发一种重组大肠杆菌使用甘油生产1,2-丙二醇的方法。 
本发明的上述目的是通过以下技术方案达到的: 
一种重组大肠杆菌利用甘油生产1,2-丙二醇的方法,其步骤如下: 
1)LB培养基的制备:Tryptone(胰蛋白胨):1%;Yeast Extract(酵母提取物):0.5%;NaCl(氯化钠):1%;若配制固体培养基,则再加入1.5%Agar(琼脂)。 
2)M9培养基的制备:Na2HPO4·7H2O(七水合磷酸氢二钠):1.28%;KH2PO4(磷酸二氢钾):0.3%;NaCl(氯化钠):0.05%;NH4Cl(氯化铵):0.1%;Glycerol(甘油):2%;Yeast Extract(酵母提取物):0.5%,1M MgSO4·7H2O(七水合硫酸镁):0.1%;0.1M CaCl(氯化钙):0.1%。 
3)LB培养: 
将所得基因工程菌PPO16178在含有氨苄青霉素的LB培养基中37℃,250rpm培养12小时; 
4)M9培养: 
转入M9培养基,M9培养基在使用前加入氨苄青霉素,37℃培养3小时,用0.5mM的IPTG诱导,并转入30℃,250rpm培养24-48小时,发酵得到1,2-丙二醇。 
本发明的有益效果: 
本发明通过基因工程菌生产1,2-丙二醇有以下优势: 
1,原始菌株在通过基因工程改造后,除了生产1,2-丙二醇外,没有改变菌株的其他特性,因此不影响发酵生产。 
2,该菌株采用的pUC19质粒为成熟的大肠杆菌载体,因此在代谢过程中,不影响细菌生长和正常代谢。 
3,该工程菌可以利用大量甘油生产1,2-丙二醇,在抗生素条件下,质粒保持稳定。 
另外,本发明解决了以糖质资源生产1,2-丙二醇存在的问题,由非糖质资源一甘油进行1,2-丙二醇的生产,使得生产成本大幅下降,并且产量稳定,适合工业化生产。 
具体实施方式:
实施例1 
1)基因片段的克隆 
利用引物序列1,引物序列2,扩增基因片段mgsA,PCR扩增条件为:95℃30S,62℃20S,72℃30S,进行30个循环,72℃延伸10min。利用引物序列3,引物序列4,扩增基因片段gldA,PCR扩增条件为:95℃30S,62℃20S,72℃60S,进行30个循环,72℃延伸10min。利用引物序列5,引物序列6,扩增基因片段fucO,PCR扩增条件为:95℃30S,62℃20S,72℃60S,进行30个循环,72℃延伸10min。 
2)质粒的构建 
将扩增后基因片段mgsA,用不同的限制性内切酶KpnI和SphI进行酶切,得到粘性末端,将扩增后基因片段gldA,用不同的限制性内切酶SphI和SalI进行酶切,得到粘性末端,将扩增后基因片段fucO,用不同的限制性内切酶SalI和XbaI进行酶切,得到粘性末端,将pUC19载体也用限制性内切酶KpnI和XbaI进行酶切。酶切条件均为37℃,保温2小时。将所有得到基因片度和线性化的载体进行回收,并将纯化后的基因片度和线性化的载体等浓度混合,加入连接缓冲液和DNA连接酶,37℃连接过夜;得到质粒pPPO连接液; 
3)阳性克隆的筛选 
得到的质粒pPPO连接液用热击法转化入大肠杆菌细胞中,具体方法为:首先制备感受态细胞,然后取2u L构建好的质粒pPPO与感受态细胞轻轻混合,42℃热击,加入500μL不含抗生素的LB培养基复苏30分钟,然后涂布在含有氨苄青霉素的LB平板上37℃培养12小时,得到基因工程菌PPO16178。 
4)1,2-丙二醇生产菌株的生长与发酵 
基因工程菌PPO16178在3ml含有氨苄青霉素的LB培养基中37℃,250rpm培养12小时,转入M9培养基,M9培养基在使用前加入氨苄青霉素,37℃培养3小时,用0.5mM的IPTG诱导,并转入30℃,250rpm培养24-48小时,发酵得到3g/L左右1,2-丙二醇。 

Claims (6)

1.一株可利用甘油生产1,2-丙二醇的大肠杆菌BW25141,质粒pPPO,基因工程菌PPO16178和1,2-丙二醇合成相关酶的基因mgsA,gldA和fucO。
2.根据权利要求1中,利用甘油发酵生产大肠杆菌的方法,包括培养所需条件和培养基配方。
3.根据权利要求1中利用甘油发酵生产1,2-丙二醇的大肠杆菌基因工程菌的制备方法,包括:
a.利用设计的引物扩增得到三个相关合成酶的基因片段
b.利用热击法将构建质粒转化入大肠杆菌的方法
c.用氨苄青霉素筛选阳性克隆并用于生产的方法。
4.根据权利要求1中三个1,2-丙二醇合成酶的相关基因设计的引物为:引物序列1,2,3,4,5,6
5.根据权利要求1中利用基因工程菌生产1,2-丙二醇的发酵方法及培养基:
LB培养基(1L):Tryptone(胰蛋白胨):10g,Yeast Extract(酵母提取物):5g,NaCl(氯化钠):10g。若配制固体培养基,则再加入15g Agar(琼脂)。
M9培养基(1L):Na2HPO4·7H2O(七水合磷酸氢二钠):12.8g,KH2PO4(磷酸二氢钾):3g,NaCl(氯化钠):0.5g,NH4Cl(氯化铵):1g,Glycerol(甘油):20g。Yeast Extract(酵母提取物):5g,1M MgSO4·7H2O(七水合硫酸镁)1ML,0.1M CaCl(氯化钙):1ML。
将所得基因工程菌在3ML含有氨苄青霉素的LB培养基中37℃,250rpm培养12小时,转入M9培养基,M9培养基在使用前加入氨苄青霉素,37℃培养3小时,加入4μL浓度为0.5mM的IPTG诱导,并转入30℃,250rpm培养24-48小时。
6.根据权利要求5中,利用基因工程菌大量发酵生产1,2-丙二醇的扩大培养方法,包括分批补料,流加等发酵方法。
CN201310488513.7A 2013-10-18 2013-10-18 一种重组大肠杆菌利用甘油生产1,2-丙二醇的方法 Pending CN104560842A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310488513.7A CN104560842A (zh) 2013-10-18 2013-10-18 一种重组大肠杆菌利用甘油生产1,2-丙二醇的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310488513.7A CN104560842A (zh) 2013-10-18 2013-10-18 一种重组大肠杆菌利用甘油生产1,2-丙二醇的方法

Publications (1)

Publication Number Publication Date
CN104560842A true CN104560842A (zh) 2015-04-29

Family

ID=53077923

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310488513.7A Pending CN104560842A (zh) 2013-10-18 2013-10-18 一种重组大肠杆菌利用甘油生产1,2-丙二醇的方法

Country Status (1)

Country Link
CN (1) CN104560842A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115261292A (zh) * 2021-04-29 2022-11-01 中国科学院上海高等研究院 改造的克雷伯氏菌属细菌及其生产1,2-丙二醇的应用和方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008116853A1 (en) * 2007-03-23 2008-10-02 Metabolic Explorer Microorganisms and methods for production of 1,2-propanediol and acetol
CN102089421A (zh) * 2008-07-28 2011-06-08 科莱恩金融(Bvi)有限公司 生产方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008116853A1 (en) * 2007-03-23 2008-10-02 Metabolic Explorer Microorganisms and methods for production of 1,2-propanediol and acetol
CN102089421A (zh) * 2008-07-28 2011-06-08 科莱恩金融(Bvi)有限公司 生产方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NEDIM E. ALTARAS ET AL.: "Enhanced Production of (R)-1,2-Propanediol by Metabolically Engineered Escherichia coli", 《BIOTECHNOL. PROG.》 *
王纪明等: "工程大肠杆菌生产高附加值有机酸、醇研究进展", 《生物工程学报》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115261292A (zh) * 2021-04-29 2022-11-01 中国科学院上海高等研究院 改造的克雷伯氏菌属细菌及其生产1,2-丙二醇的应用和方法

Similar Documents

Publication Publication Date Title
Laxman Pachapur et al. Co‐culture strategies for increased biohydrogen production
Camus et al. Scaling up bioethanol production from the farmed brown macroalga Macrocystis pyrifera in Chile
Papoutsakis Engineering solventogenic clostridia
Zaky et al. The establishment of a marine focused biorefinery for bioethanol production using seawater and a novel marine yeast strain
Adnan et al. Optimization of bioethanol production from glycerol by Escherichia coli SS1
Naspolini et al. Bioconversion of Sugarcane Vinasse into High‐Added Value Products and Energy
Wang et al. Activation of glycerol metabolism in Xanthomonas campestris by adaptive evolution to produce a high-transparency and low-viscosity xanthan gum from glycerol
Xu et al. Metabolic engineering of Escherichia coli for efficient production of (3 R)‐acetoin
Sonego et al. Extractive fed-batch ethanol fermentation with CO2 stripping in a bubble column bioreactor: experiment and modeling
Parra-Ramírez et al. Lactic acid production from glucose and xylose using the lactogenic Escherichia coli strain JU15: Experiments and techno-economic results
Liu et al. Recombinant diploid Saccharomyces cerevisiae strain development for rapid glucose and xylose co-fermentation
Jiang et al. Fermentative hydrogen production from Jerusalem artichoke by Clostridium tyrobutyricum expressing exo-inulinase gene
Rizza et al. A semi-closed loop microalgal biomass production-platform for ethanol from renewable sources of nitrogen and phosphorous
Petrov et al. Current advances in microbial production of acetoin and 2, 3-butanediol by Bacillus spp.
Cao et al. Efficient β-poly (L-malic acid) production from Jerusalem artichoke by Aureobasidium pullulans ipe-1 immobilized in luffa sponge matrices
CN103865944A (zh) 一种生产核黄素的大肠杆菌菌株及构建方法及用途
Wang et al. Bioethanol production from the dry powder of Jerusalem artichoke tubers by recombinant Saccharomyces cerevisiae in simultaneous saccharification and fermentation
Hapeta et al. Overexpression of citrate synthase increases isocitric acid biosynthesis in the yeast Yarrowia lipolytica
Cardoso et al. Overview of CO2 bioconversion into third-generation (3G) bioethanol—a patent-based scenario
CN105779513B (zh) 利用重组大肠杆菌以甘油为碳源发酵生产琥珀酸的方法
Salma et al. Well knowledge of the physiology of Actinobacillus succinogenes to improve succinic acid production
Ahuja et al. Yeast-mediated biomass valorization for biofuel production: A literature review
Li et al. Light-driven synthetic biology: progress in research and industrialization of cyanobacterial cell factory
CN104560842A (zh) 一种重组大肠杆菌利用甘油生产1,2-丙二醇的方法
Jiang et al. Enhanced butanol production through adding organic acids and neutral red by newly isolated butanol-tolerant bacteria

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20150429