CN104557526A - Method for preparing ortho-methylcyclohexyl acetate under solvent-free conditions - Google Patents

Method for preparing ortho-methylcyclohexyl acetate under solvent-free conditions Download PDF

Info

Publication number
CN104557526A
CN104557526A CN201410694055.7A CN201410694055A CN104557526A CN 104557526 A CN104557526 A CN 104557526A CN 201410694055 A CN201410694055 A CN 201410694055A CN 104557526 A CN104557526 A CN 104557526A
Authority
CN
China
Prior art keywords
acetic ester
solvent
methyl cyclohexane
cyclohexane acetic
adjacent methyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410694055.7A
Other languages
Chinese (zh)
Inventor
余云丰
宋盘龙
卢鸿武
魏一帆
施孟华
陈永强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZHEJIANG JINKE CHEMICALS CO Ltd
Original Assignee
ZHEJIANG JINKE CHEMICALS CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ZHEJIANG JINKE CHEMICALS CO Ltd filed Critical ZHEJIANG JINKE CHEMICALS CO Ltd
Priority to CN201410694055.7A priority Critical patent/CN104557526A/en
Publication of CN104557526A publication Critical patent/CN104557526A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/08Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides with the hydroxy or O-metal group of organic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/06Systems containing only non-condensed rings with a five-membered ring
    • C07C2601/08Systems containing only non-condensed rings with a five-membered ring the ring being saturated

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The invention discloses a method for preparing ortho-methylcyclohexyl acetate under solvent-free conditions, which comprises the following steps: A. adding 2-methyl cyclohexanol and acetic acid in a mole ratio of 1:(1-2-1.5) into a reaction vessel, adding a sulfonic acid cation exchange resin as a catalyst, heating to 80-150 DEG C, and reacting to an equilibrium state; B. vacuumizing until the vacuum degree is -0.05 to -0.1 MPa; C. rectifying the material while controlling different reflux ratios in different stages until no fraction is distilled off, and collecting the rectification substrate; D. filtering the rectification substrate, neutralizing with a sodium bicarbonate solution until the pH value is 6.5-7.5; and E. washing with water, and drying to obtain the ortho-methylcyclohexyl acetate. The technique is simple to operate, has the advantages of favorable safety, low energy consumption and high product yield and purity, and has significant meanings for successful implementation of industrialization.

Description

The method of the adjacent methyl cyclohexane acetic ester of a kind of solvent-free preparation
Technical field
The present invention relates to a kind of preparation method of adjacent methyl cyclohexane acetic ester, especially relate to the method for the adjacent methyl cyclohexane acetic ester of a kind of solvent-free preparation.
Background technology
Adjacent methyl cyclohexane acetic ester is the important organic synthesis intermediate of a class, also can be used as organic solvent, extraction agent or softening agent and uses.Due to its solubilized quinones organism, be mainly used in the solvent in hydrogen peroxide production process.
Adjacent methyl cyclohexane acetic ester has multiple synthetic method according to starting material difference, having of current report: with 2 methyl cyclohexanol and isopropyl acetate alkenyl esters for Material synthesis, with 2-methylcyclohexanone and cyclohexanone-oxime acetic ester for Material synthesis, with 2 methyl cyclohexanol and methyl acetate for Material synthesis, it is low all to there is income in these synthetic methods, required expensive catalyst, the shortcoming such as uncommon, lack the meaning of suitability for industrialized production.
What now generally adopt is carboxyl acid method, namely with 2 methyl cyclohexanol and acetic acid or acetic anhydride for raw material, under catalyst action, reaction is obtained.
Such as, in publication CN101544563A with 2 methyl cyclohexanol and acetic acid for raw material, the vitriol oil or Si/Ti-Al-O are catalyzer, and temperature of reaction is reflux temperature, and yield is 97%.Its weak point is, adds organic solvent as azeotropy dehydrant in the method, and operational hazards coefficient is high, poor stability, and energy consumption is high.
And for example, change ethanol and acetic anhydride or acetic acid for raw material in publication CN1535949A with 2-methyl, trimethylchlorosilane is catalyzer, and temperature of reaction is 10 ~ 50 DEG C, and yield is 93%.Its weak point is, if this method acetic anhydride does raw material, cost ratio acetic acid is high, and large usage quantity, certainly will raise the cost; If do raw material with acetic acid, when not removing water, apply mechanically this method yield lower.And utilize partition refrigerated separation product, the shortcoming that product content is not high certainly will be there is.
For above-mentioned patent Problems existing, the present invention proposes solution, with 2 methyl cyclohexanol and acetic acid for raw material, adopt filling extract rectification post to carry out the method for segmentation rectifying and dewatering, both avoided the use of organic solvent, the water that reaction produces can be removed again smoothly, there is cost low, operational safety, yield is high, the feature of quality better.
Summary of the invention
In order to preparation method's operational hazards coefficient of the adjacent methyl cyclohexane acetic ester solving prior art is high, poor stability, energy consumption is high, the problem that the yield of product is low, provide the method for the adjacent methyl cyclohexane acetic ester of a kind of solvent-free preparation, method technological operation of the present invention is simple, and security is good, energy consumption is low, product yield and purity high.
For solving above technical problem, the method for the adjacent methyl cyclohexane acetic ester of a kind of solvent-free preparation of the present invention, comprises the steps:
A, in reaction vessel, add 2 methyl cyclohexanol and acetic acid with 1:1.2 ~ 1.5 mol ratio, be catalyzer, be heated to 80 ~ 150 DEG C with sulfonic acid ion exchange resin, be preferably 100 ~ 120 DEG C, 2 ~ 3 hours reaction times, reaction reaches balance;
B, vacuumizing, is-0.05 ~-0.1MPa to vacuum tightness;
The different reflux ratio of C, control by stages carries out rectifying to material, to steaming without cut, collects rectifying substrate;
D, rectifying substrate are neutralized to adjust ph 6.5-7.5 with sodium hydrogen carbonate solution after filtering;
E, washing, drying, obtain adjacent methyl cyclohexane acetic ester.
The reaction formula more than reacted is as follows:
This reaction is reversible reaction, after 2 ~ 3 hours, reaction reaches balance (by the content of each material in gas chromatographic analysis assaying reaction objects system, when the content of 2 methyl cyclohexanol in reaction system and adjacent methyl cyclohexane acetic ester no longer changes, namely molecular balance is reached), now only has the moisture removed as one of reaction product, disequilibrate and the reaction of 2 methyl cyclohexanol and acetic acid just can be made to proceed, follow-up vacuumize and control different reflux ratio stage by stage rectifying be exactly in order to break this balance, reaction is proceeded; The object removing moisture can be reached again simultaneously.
The interpolation mol ratio of 2 methyl cyclohexanol and acetic acid is 1:1.2 ~ 1.5, effectively ensures the transformation efficiency of 2 methyl cyclohexanol.
The present invention, as the sulfonic acid ion exchange resin of catalyzer, is specially polystyrene sulfonic acid type Zeo-karb, and its consumption is the 2%(quality of 2 methyl cyclohexanol consumption).
Filling extract rectification stage by stage in the present invention comprises first stage and subordinate phase;
First stage, control of reflux ratio at 3 ~ 5:1, when cut water content is 10 ~ 30%(quality) time, enter subordinate phase; Subordinate phase control of reflux ratio is at 1 ~ 2:1.Be preferably first stage control of reflux ratio at 4:1, subordinate phase control of reflux ratio is at 1:1.
First stage mainly removes the water that esterification starts to generating during equilibrium state, this part water removes back balance state and breaks, reaction can continue water outlet to reacting completely, improve the transformation efficiency of raw material, mainly water and acetic acid in the cut that first stage collects, under the reflux ratio of 3 ~ 5:1, the cut water-content steamed at the beginning is higher, carry out with rectifying, in cut, water-content is more and more lower, when cut water content is 10 ~ 30%(quality), mean that the first stage has dewatered (if continue rectifying cut just mainly acetic acid, and this cut mainly containing acetic acid treatedly can not be directly used in the raw material of next still.) acetic acid collected in first stage cut can be used for producing sodium-acetate; Subordinate phase mainly removes the low-boiling by-products of unreacted acetic acid and reaction generation, to improve the purity of product, because of containing unreacted acetic acid in the cut that subordinate phase is collected, can be used as raw material backflow and uses to reduce costs.
The present invention adopts solid acid catalyst, and acetic acid is as one of reaction raw materials, therefore has free acid in system and does not steam acetic acid completely, step D sodium hydrogen carbonate solution neutralizes, to ensure product purity, the present invention adopts saturated solution of sodium bicarbonate, to reduce waste water.
The present invention has following beneficial effect:
(1) using sulfonic acid ion exchange resin as solid acid catalyst, cost is low, excellent catalytic effect, can avoid the generation of a large amount of waste water, and not easy in inactivation, and work-ing life is longer;
(2) without the need to adopting organic solvent as azeotropic water removing agent, adopt filling extract rectification column sectional to remove the water of reaction generation, not only energy consumption is lower, and reduces operating process danger coefficient;
(3) rectifying divides two stages to carry out, and by controlling reflux ratio with Fractional Collections different fractions, can improve the purity of the transformation efficiency of raw material, utilization ratio and product;
(4) optimize whole Reactive Synthesis technique, the product yield obtained and purity high.
In a word, present invention process is simple to operate, and security is good, and energy consumption is low, product yield and purity high, for industrialized successful implementation, be significant.
Embodiment
With specific embodiment, technical scheme of the present invention is described below:
Embodiment 1
The method of the adjacent methyl cyclohexane acetic ester of solvent-free preparation, concrete steps are: in reaction vessel, add raw material 2 methyl cyclohexanol and acetic acid, the mol ratio of 2 methyl cyclohexanol and acetic acid is 1:1.2, the polystyrene sulfonic acid type Zeo-karb (its quality consumption is 2% of 2 methyl cyclohexanol quality consumption) as solid acid catalyst is also added in reaction system, then 80 DEG C are heated to, the content of each material in gas chromatographic analysis reaction system is sampled in reaction process, when in question response system, the content of 2 methyl cyclohexanol and adjacent methyl cyclohexane acetic ester no longer changes, reaction reaches balance, open vacuum unit, the vacuum tightness in reaction vessel is made to be-0.10MPa, then different reflux ratio (trim the top of column enters the liquid flow rate of tower and the ratio of overhead product flow) is controlled, filling extract rectification post is adopted to carry out the continuous rectification be made up of first stage and subordinate phase, hollow type cylinder glass filler can be filled in rectifying column.Wherein, the first stage, control of reflux ratio at 3:1, when cut water content is 10%(quality) time, enter subordinate phase, subordinate phase control of reflux ratio is at 1.5:1, until steam without cut, collect rectifying substrate, main containing adjacent methyl cyclohexane acetic ester and solid acid catalyst in rectifying substrate, filter, make its solid-liquid separation, pH value 6.5-7.5 is neutralized to again with saturated sodium bicarbonate solution, then washing removes the salt and other impurity given on product because using sodium hydrogen carbonate solution, and distillation dehydration makes product obtain drying, obtain adjacent methyl cyclohexane acetic ester, purity 99.5%(is calculated by gas-chromatography area normalization method), yield 96.5%(calculates based on raw material 2 methyl cyclohexanol, be specially M 1× P/M 2, M 1for finally obtaining product weight, M 2product theoretical weight, P is products obtained therefrom purity).
Be colourless under products therefrom normal temperature, with the thick liquid of strong aroma smell, water insoluble; Relative density under normal temperature is 0.942g/ cm 3, boiling point is 188 DEG C, and zero pour is-70 DEG C, flash-point 74 DEG C, and the refractive index at 20 DEG C is 1.4375.
Embodiment 2
The present embodiment adds polystyrene sulfonic acid type Zeo-karb post-heating to 90 DEG C, and adjacent methyl cyclohexane acetic ester yield 96.2%, purity 99.2%, all the other, with embodiment 1, repeat no more.
Embodiment 3
The present embodiment adds polystyrene sulfonic acid type Zeo-karb post-heating to 110 DEG C, and adjacent methyl cyclohexane acetic ester yield 96.1%, purity 99.4%, all the other, with embodiment 1, repeat no more.
Embodiment 4
The present embodiment adds polystyrene sulfonic acid type Zeo-karb post-heating to 120 DEG C, and adjacent methyl cyclohexane acetic ester yield 96.2%, purity 99.4%, all the other, with embodiment 1, repeat no more.
Embodiment 5
The present embodiment adds polystyrene sulfonic acid type Zeo-karb post-heating to 130 DEG C, and adjacent methyl cyclohexane acetic ester yield 96.9%, purity 99.2%, all the other, with embodiment 1, repeat no more.
Embodiment 6
The method of the adjacent methyl cyclohexane acetic ester of solvent-free preparation, concrete steps are: in reaction vessel, add raw material 2 methyl cyclohexanol and acetic acid, the mol ratio of 2 methyl cyclohexanol and acetic acid is 1:1.4, also add in reaction system and have polystyrene sulfonic acid type Zeo-karb, then 100 DEG C are heated to, vacuumize after question response balance, and be adopt filling extract rectification post to carry out the continuous rectification be made up of first stage and subordinate phase under the condition of-0.08MPa in vacuum tightness, wherein, first stage, control reflux ratio at 4:1, when cut water content is 20%(quality) time, enter subordinate phase, it is 1:1 that subordinate phase controls reflux ratio, until steam without cut, collect rectifying substrate, rectifying substrate sodium hydrogen carbonate solution is washed till pH value 6.5-7.5, through washing, drying, obtains adjacent methyl cyclohexane acetic ester, yield 96. 3 %, purity 99.2%.All the other unaccomplished matters, with embodiment 1, repeat no more.
Embodiment 7
The method of the adjacent methyl cyclohexane acetic ester of solvent-free preparation, concrete steps are: with 2-methylcyclohexane and acetic acid for raw material, the mol ratio of 2 methyl cyclohexanol and acetic acid is 1:1.5, add polystyrene sulfonic acid type Zeo-karb post-heating to 150 DEG C, vacuumize after question response balance, and be adopt filling extract rectification post to carry out the continuous rectification be made up of first stage and subordinate phase under the condition of-0.05MPa in vacuum tightness, wherein, first stage, control reflux ratio at 5:1, when cut water content is 30%(quality) time, enter subordinate phase; It is 1.5:1 that subordinate phase controls reflux ratio, until steam without cut, collect rectifying substrate, rectifying substrate is washed till pH value 6.5-7.5 with sodium hydrogen carbonate solution after filtering, and through washing, drying, obtains adjacent methyl cyclohexane acetic ester, yield 96.7%, purity 99.3%.All the other unaccomplished matters, with embodiment 1, repeat no more.
By the yield of methyl cyclohexane acetic ester adjacent in above-described embodiment all more than 96%, purity more than 99%, illustrate the product yield that method of the present invention obtains and purity high, for industrialized successful implementation, be significant.
Above-mentioned embodiment is exemplary, being to better enable those skilled in the art understand the present invention, can not being interpreted as it is limiting the scope of the invention; As long as any equivalent change done by disclosed spirit or modification, all fall into the scope of protection of the invention.

Claims (6)

1. a method for the adjacent methyl cyclohexane acetic ester of solvent-free preparation, is characterized in that preparing according to the following steps:
A, in reaction vessel, add 2 methyl cyclohexanol and acetic acid with 1:1.2 ~ 1.5 mol ratio, be catalyzer, be heated to 80 ~ 150 DEG C with sulfonic acid ion exchange resin, question response balances;
B, to be evacuated to vacuum tightness be-0.05 ~-0.1MPa;
The different reflux ratio of C, control by stages carries out rectifying to material, to steaming without cut, collects rectifying substrate;
D, rectifying substrate filter, and are neutralized to pH value 6.5-7.5 with sodium hydrogen carbonate solution;
E, washing, drying, obtain adjacent methyl cyclohexane acetic ester.
2. the method for the adjacent methyl cyclohexane acetic ester of solvent-free preparation according to claim 1, it is characterized in that described sulfonic acid ion exchange resin is polystyrene sulfonic acid type Zeo-karb, consumption is the 2%(quality of 2 methyl cyclohexanol consumption).
3. the method for the adjacent methyl cyclohexane acetic ester of solvent-free preparation according to claim 1, is characterized in that steps A Heating temperature is 100 ~ 120 DEG C.
4. the method for the adjacent methyl cyclohexane acetic ester of solvent-free preparation according to claim 1, described in it is characterized in that, rectifying is two stages stage by stage;
First stage, control of reflux ratio at 3 ~ 5:1, when cut water content is 10 ~ 30%(quality) time, enter subordinate phase; Subordinate phase control of reflux ratio is at 1 ~ 2:1.
5. the method for the adjacent methyl cyclohexane acetic ester of solvent-free preparation according to claim 4, it is characterized in that first stage control of reflux ratio is at 4:1, subordinate phase control of reflux ratio is at 1:1.
6. the method for the adjacent methyl cyclohexane acetic ester of solvent-free preparation according to claim 1, is characterized in that in step D, sodium hydrogen carbonate solution used is saturated solution of sodium bicarbonate.
CN201410694055.7A 2014-11-27 2014-11-27 Method for preparing ortho-methylcyclohexyl acetate under solvent-free conditions Pending CN104557526A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410694055.7A CN104557526A (en) 2014-11-27 2014-11-27 Method for preparing ortho-methylcyclohexyl acetate under solvent-free conditions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410694055.7A CN104557526A (en) 2014-11-27 2014-11-27 Method for preparing ortho-methylcyclohexyl acetate under solvent-free conditions

Publications (1)

Publication Number Publication Date
CN104557526A true CN104557526A (en) 2015-04-29

Family

ID=53074709

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410694055.7A Pending CN104557526A (en) 2014-11-27 2014-11-27 Method for preparing ortho-methylcyclohexyl acetate under solvent-free conditions

Country Status (1)

Country Link
CN (1) CN104557526A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113292423A (en) * 2021-05-31 2021-08-24 武汉理工大学 Synthesis method of o-methyl cyclohexyl acetate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101544563A (en) * 2009-05-07 2009-09-30 湖州吉昌化学有限公司 Preparation method of 2-methylcyclohexyl acetate
CN102304041A (en) * 2011-05-12 2012-01-04 中国科学院新疆理化技术研究所 Solvent-free esterification-distillation integrated process
CN103420832A (en) * 2013-09-04 2013-12-04 天宁香料(江苏)有限公司 Preparing method of cis-3-Hexenyl caproate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101544563A (en) * 2009-05-07 2009-09-30 湖州吉昌化学有限公司 Preparation method of 2-methylcyclohexyl acetate
CN102304041A (en) * 2011-05-12 2012-01-04 中国科学院新疆理化技术研究所 Solvent-free esterification-distillation integrated process
CN103420832A (en) * 2013-09-04 2013-12-04 天宁香料(江苏)有限公司 Preparing method of cis-3-Hexenyl caproate

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
俞善信: "强酸性阳离子树脂催化合成羧酸环己酯", 《离子交换与吸附》 *
苏娜等: "无溶剂法合成季戊四醇四异辛酸酯的研究", 《化学世界》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113292423A (en) * 2021-05-31 2021-08-24 武汉理工大学 Synthesis method of o-methyl cyclohexyl acetate
CN113292423B (en) * 2021-05-31 2023-12-12 武汉理工大学 Synthesis method of o-methyl cyclohexyl acetate

Similar Documents

Publication Publication Date Title
CN108623456B (en) Preparation method of butylphthalide and pharmaceutical intermediate thereof
CN106866366B (en) Method for removing dihydric alcohol or polyhydric alcohol impurities in ethylene glycol and increasing yield of ethylene glycol
CN101948387A (en) Preparation technology of methyl benzoate
CN106478514A (en) A kind of synthesis γ, the method for δ unsaturated ketone compound
CN102351691B (en) Method for synthesizing adipic acid monoethyl ester
CN102557932A (en) Method for producing isobutyl acetate
CN111205200A (en) Method and device for preparing heptafluoroisobutyronitrile
CN103588618B (en) Ritalin hydrogenation produces reactive distillation method and the device of ethanol
CN104557526A (en) Method for preparing ortho-methylcyclohexyl acetate under solvent-free conditions
CN108947774A (en) A kind of method and device of separating isopropanol
CN109627226B (en) Preparation method of 4-methyl-5-ethoxy oxazole
CN112574006A (en) Preparation method of 4-tert-butyl-2 (alpha-methylbenzyl) phenol
CN103588622A (en) Method for synthesizing 2-methallyl alcohol through continuous hydrolysis reaction
CN104163832B (en) A kind of glyphosate continuous production device and method
CN104592027A (en) Method for preparing methyl benzoate
CN110304995B (en) Extraction process of isopropyl ether generated in process of preparing isopropanol by acetone method
CN109776314B (en) Preparation method of cinnamate
CN100473631C (en) Process for purifying biphenyl
CN104418779A (en) Preparation method of high-purity fudosteine
CN104672091B (en) Containing ethyl acetate and the resource utilization method of the waste material of ethanol in a kind of trifluoroacetic ethyl acetoacetate production process
CN105481643B (en) The method that the pentanediol diisobutyrate of 2,2,4 trimethyl 1,3 is prepared by Qing Ye oxanes
CN202010445U (en) On-line dehydration system used for main reaction equipment in diosmin production
CN204125402U (en) A kind of process unit reclaimed for by product propylene glycol monomethyl ether in methylcarbonate production
CN103214372A (en) Synthesis method of tridecyl trimellitate
CN107032999A (en) A kind of method that utilization biological diesel oil byproduct glycerin produces triacetyl glycerine

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: 312369 Shangyu Industrial Park, Hangzhou Bay, Zhejiang, Shaoxing

Applicant after: Zhejiang Jinke entertainment Limited by Share Ltd

Address before: 312369 Shangyu Industrial Park, Hangzhou Bay, Zhejiang, Shaoxing

Applicant before: Zhejiang Jinke Chemicals Co., Ltd.

COR Change of bibliographic data
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20150429