CN104556011B - A kind of method utilizing high-speed stirring technology to prepare porous graphene microballon - Google Patents

A kind of method utilizing high-speed stirring technology to prepare porous graphene microballon Download PDF

Info

Publication number
CN104556011B
CN104556011B CN201510001514.3A CN201510001514A CN104556011B CN 104556011 B CN104556011 B CN 104556011B CN 201510001514 A CN201510001514 A CN 201510001514A CN 104556011 B CN104556011 B CN 104556011B
Authority
CN
China
Prior art keywords
graphene
microballon
porous graphene
powder
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201510001514.3A
Other languages
Chinese (zh)
Other versions
CN104556011A (en
Inventor
孙立国
藏琳琳
刘晖
汪成
张艳红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heilongjiang University
Original Assignee
Heilongjiang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heilongjiang University filed Critical Heilongjiang University
Priority to CN201510001514.3A priority Critical patent/CN104556011B/en
Publication of CN104556011A publication Critical patent/CN104556011A/en
Application granted granted Critical
Publication of CN104556011B publication Critical patent/CN104556011B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

Utilize high-speed stirring technology to prepare a method for porous graphene microballon, the present invention relates to the preparation method of porous graphene microballon.The present invention will solve the problem that prior art cannot prepare the porous graphene of globosity.Method: polyvinylpyrrolidonepowder powder, graphene oxide dry powder, silicon dioxide microsphere dry powder are mixed with deionized water, obtain composite suspension liquid, composite suspension liquid is added in dimethyl silicone oil, carry out high-speed stirring at a certain temperature, then curing molding also leaves standstill precipitating, finally reheats solidification, calcining, impregnated in hydrofluoric acid solution, dry, namely obtain porous graphene microballon.The present invention is used for utilizing high-speed stirring technology to prepare porous graphene microballon.

Description

A kind of method utilizing high-speed stirring technology to prepare porous graphene microballon
Technical field
The present invention relates to the preparation method of porous graphene microballon.
Background technology
Carbon material specific surface area is high, conductive capability good, stable chemical nature, easily shaping, simultaneously cheap, raw material sources extensively, mature production technology, be the most widely used electrode materials in ultracapacitor field.Graphene is as a kind of novel nanometer two-dimensional material, show a lot of excellent physical property, as specific surface area is large, electroconductibility is good, thermostability and physical strength high, since finding one of most popular domain just becoming people's research, and very large effect is played in the performance boost of the discovery of new carbon Graphene to electrode material for super capacitor.M.D.Stouer etc. using the rare ultracapacitor as electrode of graphite, and test its ratio capacitance in water system and organic electrolyte respectively, can reach 135F/g and 99F/g respectively; Quadrol and the Resorcino such as Chen modify graphene oxide, greatly increase the ratio capacitance value of graphene oxide; The people such as Wang adopt in-situ polymerization, reduction/doping and dedoping three processes to prepare polyaniline/Graphene hybrid supercapacitor electrode materials, and ratio capacitance value is up to 1126F/g.Therefore, Graphene is applied in electrode material for super capacitor field as carbon material very large development prospect.The invention provides a kind of globosity of porous graphene, former porous graphene does not almost have globosity.
Summary of the invention
The present invention will solve the problem that prior art cannot prepare the porous graphene of globosity, and provides a kind of method utilizing high-speed stirring technology to prepare porous graphene microballon.
Utilize high-speed stirring technology to prepare a method for porous graphene microballon, specifically carry out according to following steps:
One, polyvinylpyrrolidonepowder powder, graphene oxide dry powder and silicon dioxide microsphere dry powder are mixed, obtain powder mix, then powder mix is mixed with deionized water, obtain composite suspension liquid;
The mass ratio of described polyvinylpyrrolidonepowder powder and graphene oxide dry powder is 1:(0.2 ~ 0.3); The mass ratio of described polyvinylpyrrolidonepowder powder and silicon dioxide microsphere dry powder is 1:(0.5 ~ 1); Described powder mix and the mass ratio of deionized water are 1:(25 ~ 30);
Two, composite suspension liquid is joined fill in the polypropylene microwave oven box of dimethyl silicone oil, under temperature is 80 DEG C ~ 90 DEG C and stirring velocity is the condition of 400rpm ~ 600rpm, magnetic agitation 2h ~ 3h, then curing molding, last at room temperature standing precipitating 12h ~ 24h, obtains polyvinylpyrrolidone/graphene oxide/silicon-dioxide compounded microbeads;
Three, substep intensification heating method is adopted by polyvinylpyrrolidone/graphene oxide/silicon-dioxide compounded microbeads to be cured; Described substep intensification heating method is specifically carried out according to the following steps: polyvinylpyrrolidone/graphene oxide/silicon-dioxide compounded microbeads is heated 2h ~ 3h at temperature is 80 DEG C ~ 100 DEG C, 10h ~ 12h is heated again at temperature is 150 DEG C, finally at temperature is 280 DEG C, heat 1.5h ~ 2h, obtain the compounded microbeads of completion of cure;
Four, under condition of nitrogen gas, be under the condition of 750 DEG C ~ 850 DEG C by the compounded microbeads of completion of cure in temperature, calcining 1.5h ~ 2h, obtains graphene/silicon dioxide compounded microbeads;
Five, 1., by graphene/silicon dioxide compounded microbeads impregnated in the hydrofluoric acid solution that mass percent is 8%, dipping 2h ~ 3h; 2., again change mass percent be the hydrofluoric acid solution of 8%, repeating step five 1. 4 times ~ 5 times; 3., dry, namely obtain porous graphene microballon.
The invention has the beneficial effects as follows: 1. the present invention obtains having the Graphene microballon of vesicular structure, and the graphene layer pattern of inside and outside all has obvious fold sense.
2. adopt direct-fired mode to be cured mixed solution small droplets, solidification rate obtains great lifting.
3. polyvinylpyrrolidone is a kind of water miscible polymkeric substance, and along with water is from drop internal diffusive evaporation gradually, water miscible polyvinylpyrrolidone is also thereupon to the diffusion of drop skin, and in whole solidification process, polyvinylpyrrolidone plays the effect of firm pattern.
4. the pyrroles's nitrogen be rich in polyvinylpyrrolidone and carbonyl can produce fake capacitance, and it has a great impact the capacitive property of porous graphene microballon.
5. the Graphene of two dimension is transformed into the Graphene microballon of the three-dimensional packed structures of porous by the present invention, and Graphene has high-ratio surface sum highly conc, has broad application prospects in electrode material for super capacitor field.
The present invention is used for a kind of method utilizing high-speed stirring technology to prepare porous graphene microballon.
Accompanying drawing explanation
Fig. 1 is the scanning electron microscopic picture of the porous graphene microballon of preparation in embodiment 1, and magnification is 100;
Fig. 2 is the scanning electron microscopic picture of the porous graphene microballon of preparation in embodiment 1, and magnification is 10000;
Fig. 3 is the porous graphene microballon of preparation and the X-ray diffractogram of graphene oxide in embodiment 1, and 1 is porous graphene microballon, and 2 is graphene oxide;
Fig. 4 is cyclic voltammetry curve, and 1 represents the cyclic voltammetry curve sweeping the porous graphene microballon prepared in embodiment 1 when speed is 5mV/s; 2 represent the cyclic voltammetry curve sweeping the porous graphene microballon prepared in embodiment 1 when speed is 10mV/s; 3 represent the cyclic voltammetry curve sweeping the porous graphene microballon prepared in embodiment 1 when speed is 20mV/s; 4 represent the cyclic voltammetry curve sweeping the porous graphene microballon prepared in embodiment 1 when speed is 50mV/s; 5 represent the cyclic voltammetry curve sweeping the porous graphene microballon prepared in embodiment 1 when speed is 100mV/s.
Embodiment
Technical solution of the present invention is not limited to following cited embodiment, also comprises the arbitrary combination between each embodiment.
Embodiment one: a kind of method utilizing high-speed stirring technology to prepare porous graphene microballon described in present embodiment, specifically carry out according to following steps:
One, polyvinylpyrrolidonepowder powder, graphene oxide dry powder and silicon dioxide microsphere dry powder are mixed, obtain powder mix, then powder mix is mixed with deionized water, obtain composite suspension liquid;
The mass ratio of described polyvinylpyrrolidonepowder powder and graphene oxide dry powder is 1:(0.2 ~ 0.3); The mass ratio of described polyvinylpyrrolidonepowder powder and silicon dioxide microsphere dry powder is 1:(0.5 ~ 1); Described powder mix and the mass ratio of deionized water are 1:(25 ~ 30);
Two, composite suspension liquid is joined fill in the polypropylene microwave oven box of dimethyl silicone oil, under temperature is 80 DEG C ~ 90 DEG C and stirring velocity is the condition of 400rpm ~ 600rpm, magnetic agitation 2h ~ 3h, then curing molding, last at room temperature standing precipitating 12h ~ 24h, obtains polyvinylpyrrolidone/graphene oxide/silicon-dioxide compounded microbeads;
Three, substep intensification heating method is adopted by polyvinylpyrrolidone/graphene oxide/silicon-dioxide compounded microbeads to be cured; Described substep intensification heating method is specifically carried out according to the following steps: polyvinylpyrrolidone/graphene oxide/silicon-dioxide compounded microbeads is heated 2h ~ 3h at temperature is 80 DEG C ~ 100 DEG C, 10h ~ 12h is heated again at temperature is 150 DEG C, finally at temperature is 280 DEG C, heat 1.5h ~ 2h, obtain the compounded microbeads of completion of cure;
Four, under condition of nitrogen gas, be under the condition of 750 DEG C ~ 850 DEG C by the compounded microbeads of completion of cure in temperature, calcining 1.5h ~ 2h, obtains graphene/silicon dioxide compounded microbeads;
Five, 1., by graphene/silicon dioxide compounded microbeads impregnated in the hydrofluoric acid solution that mass percent is 8%, dipping 2h ~ 3h; 2., again change mass percent be the hydrofluoric acid solution of 8%, repeating step five 1. 4 times ~ 5 times; 3., dry, namely obtain porous graphene microballon.
Curing molding in present embodiment step 2 evaporates by the moisture in liquid.
The beneficial effect of present embodiment is: 1. present embodiment obtains having microballon, and the Graphene pattern of inside and outside all has obvious fold sense.
2. adopt direct-fired mode to be cured mixed solution small droplets, solidification rate obtains great lifting.
3. polyvinylpyrrolidone is a kind of water miscible polymkeric substance, and along with water is from drop internal diffusive evaporation gradually, water miscible polyvinylpyrrolidone is also thereupon to the diffusion of drop skin, and in whole solidification process, polyvinylpyrrolidone plays the effect of firm pattern.
4. the pyrroles's nitrogen be rich in polyvinylpyrrolidone and carbonyl can produce fake capacitance, and it has a great impact the capacitive property of porous graphene microballon.
5. the Graphene of two dimension is transformed into the Graphene microballon of the three-dimensional packed structures of porous by present embodiment, and Graphene has high-ratio surface sum highly conc, has broad application prospects in electrode material for super capacitor field.
Embodiment two: present embodiment and embodiment one unlike: the mass ratio of the polyvinylpyrrolidonepowder powder described in step one and graphene oxide dry powder is 1:(0.2 ~ 0.28).Other is identical with embodiment one.
Embodiment three: one of present embodiment and embodiment one or two unlike: the mass ratio of the polyvinylpyrrolidonepowder powder described in step one and silicon dioxide microsphere dry powder is 1:(0.5 ~ 0.9).Other is identical with embodiment one or two.
Embodiment four: one of present embodiment and embodiment one to three unlike: the mass ratio of the powder mix described in step one and deionized water is 1:(25 ~ 28).Other is identical with embodiment one to three.
Embodiment five: one of present embodiment and embodiment one to four unlike: the substep intensification heating method described in step 3 is specifically carried out according to the following steps: polyvinylpyrrolidone/graphene oxide/silicon-dioxide compounded microbeads is heated 2h ~ 2.8h at temperature is 80 DEG C ~ 100 DEG C, 10h ~ 11h is heated again at temperature is 150 DEG C, finally at temperature is 280 DEG C, heat 1.6h ~ 2h, obtain the compounded microbeads of completion of cure.Other is identical with embodiment one to four.
Embodiment six: one of present embodiment and embodiment one to five unlike: in step 4 under condition of nitrogen gas, be under the condition of 750 DEG C ~ 800 DEG C in temperature by the compounded microbeads of completion of cure, calcining 1.6h ~ 2h, obtains graphene/silicon dioxide compounded microbeads.Other is identical with embodiment one to five.
Following examples are adopted to verify beneficial effect of the present invention:
Embodiment 1:
A kind of method utilizing high-speed stirring technology to prepare porous graphene microballon described in the present embodiment, specifically carry out according to following steps:
One, polyvinylpyrrolidonepowder powder, graphene oxide dry powder and silicon dioxide microsphere dry powder are mixed, obtain powder mix, then powder mix is mixed with deionized water, obtain composite suspension liquid;
The mass ratio of described polyvinylpyrrolidonepowder powder and graphene oxide dry powder is 1:0.2; The mass ratio of described polyvinylpyrrolidonepowder powder and silicon dioxide microsphere dry powder is 1:0.5; Described powder mix and the mass ratio of deionized water are 1:25;
Two, composite suspension liquid is joined fill in the polypropylene microwave oven box of dimethyl silicone oil, under temperature is 80 DEG C and stirring velocity is the condition of 500rpm, magnetic agitation 2h, curing molding, last at room temperature standing precipitating 12h, obtains polyvinylpyrrolidone/graphene oxide/silicon-dioxide compounded microbeads;
Three, substep intensification heating method is adopted by polyvinylpyrrolidone/graphene oxide/silicon-dioxide compounded microbeads to be cured;
Described substep intensification heating method is specifically carried out according to the following steps: polyvinylpyrrolidone/graphene oxide/silicon-dioxide compounded microbeads is heated 2h at temperature is 100 DEG C, 10h is heated again at temperature is 150 DEG C, finally at temperature is 280 DEG C, heat 1.5h, obtain the compounded microbeads of completion of cure;
Four, under condition of nitrogen gas, by the compounded microbeads of completion of cure at temperature is 750 DEG C, calcining 1.5h, obtains graphene/silicon dioxide compounded microbeads;
Five, 1., by graphene/silicon dioxide compounded microbeads impregnated in the hydrofluoric acid solution that mass percentage is 8%, dipping 2h; 2., again change mass percentage be the hydrofluoric acid solution of 8%, repeating step five 1. 4 times; 3., dry, namely obtain porous graphene microballon.
Fig. 1 is the scanning electron microscopic picture of the porous graphene microballon of preparation in embodiment 1, and magnification is 100; Fig. 2 is the scanning electron microscopic picture of the porous graphene microballon of preparation in embodiment 1, and magnification is 10000; The diameter of porous graphene microballon is between 15 ~ 50 microns as seen from the figure, and the sense of graphene layer fold is obvious, and pore size on graphene layer is homogeneous.
Fig. 3 is the porous graphene microballon of preparation and the X-ray diffractogram of graphene oxide in embodiment 1, and 1 is porous graphene microballon, and 2 is graphene oxide; As seen from the figure, disappear after calcining in figure in the sharp-pointed diffraction peak at 11 ° of places, represent that graphene oxide successfully reduces, in figure, the diffraction peak at 26 ° of places is more weak, and after reduction is described, the degree of crystallinity of Graphene declines, in agraphitic carbon state.
Fig. 4 is cyclic voltammetry curve, and 1 represents the cyclic voltammetry curve sweeping the porous graphene microballon prepared in embodiment 1 when speed is 5mV/s; 2 represent the cyclic voltammetry curve sweeping the porous graphene microballon prepared in embodiment 1 when speed is 10mV/s; 3 represent the cyclic voltammetry curve sweeping the porous graphene microballon prepared in embodiment 1 when speed is 20mV/s; 4 represent the cyclic voltammetry curve sweeping the porous graphene microballon prepared in embodiment 1 when speed is 50mV/s; 5 represent the cyclic voltammetry curve sweeping the porous graphene microballon prepared in embodiment 1 when speed is 100mV/s; As seen from the figure, along with the shape of the increase cyclic voltammetry curve of scanning speed does not change, having good stability of illustrative material; Porous graphene microballon presents electric double layer capacitance and fake capacitance performance, illustrates that pyrroles's nitrogen in polyvinylpyrrolidine and carbonyl have very large effect to capacitive property.

Claims (6)

1. utilize high-speed stirring technology to prepare a method for porous graphene microballon, it is characterized in that a kind of method utilizing high-speed stirring technology to prepare porous graphene microballon is carried out according to following steps:
One, polyvinylpyrrolidonepowder powder, graphene oxide dry powder and silicon dioxide microsphere dry powder are mixed, obtain powder mix, then powder mix is mixed with deionized water, obtain composite suspension liquid;
The mass ratio of described polyvinylpyrrolidonepowder powder and graphene oxide dry powder is 1:(0.2 ~ 0.3); The mass ratio of described polyvinylpyrrolidonepowder powder and silicon dioxide microsphere dry powder is 1:(0.5 ~ 1); Described powder mix and the mass ratio of deionized water are 1:(25 ~ 30);
Two, composite suspension liquid is joined fill in the polypropylene microwave oven box of dimethyl silicone oil, under temperature is 80 DEG C ~ 90 DEG C and stirring velocity is the condition of 400rpm ~ 600rpm, magnetic agitation 2h ~ 3h, then curing molding, last at room temperature standing precipitating 12h ~ 24h, obtains polyvinylpyrrolidone/graphene oxide/silicon-dioxide compounded microbeads;
Three, substep intensification heating method is adopted by polyvinylpyrrolidone/graphene oxide/silicon-dioxide compounded microbeads to be cured; Described substep intensification heating method is specifically carried out according to the following steps: polyvinylpyrrolidone/graphene oxide/silicon-dioxide compounded microbeads is heated 2h ~ 3h at temperature is 80 DEG C ~ 100 DEG C, 10h ~ 12h is heated again at temperature is 150 DEG C, finally at temperature is 280 DEG C, heat 1.5h ~ 2h, obtain the compounded microbeads of completion of cure;
Four, under condition of nitrogen gas, be under the condition of 750 DEG C ~ 850 DEG C by the compounded microbeads of completion of cure in temperature, calcining 1.5h ~ 2h, obtains graphene/silicon dioxide compounded microbeads;
Five, 1., by graphene/silicon dioxide compounded microbeads impregnated in the hydrofluoric acid solution that mass percent is 8%, dipping 2h ~ 3h; 2., again change mass percent be the hydrofluoric acid solution of 8%, repeating step five 1. 4 times ~ 5 times; 3., dry, namely obtain porous graphene microballon.
2. a kind of method utilizing high-speed stirring technology to prepare porous graphene microballon according to claim 1, is characterized in that the mass ratio of the polyvinylpyrrolidonepowder powder described in step one and graphene oxide dry powder is 1:(0.2 ~ 0.28).
3. a kind of method utilizing high-speed stirring technology to prepare porous graphene microballon according to claim 1, is characterized in that the mass ratio of the polyvinylpyrrolidonepowder powder described in step one and silicon dioxide microsphere dry powder is 1:(0.5 ~ 0.9).
4. a kind of method utilizing high-speed stirring technology to prepare porous graphene microballon according to claim 1, is characterized in that the mass ratio of the powder mix described in step one and deionized water is 1:(25 ~ 28).
5. a kind of method utilizing high-speed stirring technology to prepare porous graphene microballon according to claim 1, it is characterized in that the substep intensification heating method described in step 3 is specifically carried out according to the following steps: polyvinylpyrrolidone/graphene oxide/silicon-dioxide compounded microbeads is heated 2h ~ 2.8h at temperature is 80 DEG C ~ 100 DEG C, 10h ~ 11h is heated again at temperature is 150 DEG C, finally at temperature is 280 DEG C, heat 1.6h ~ 2h, obtain the compounded microbeads of completion of cure.
6. a kind of method utilizing high-speed stirring technology to prepare porous graphene microballon according to claim 1, to it is characterized in that in step 4 under condition of nitrogen gas, be under the condition of 750 DEG C ~ 800 DEG C in temperature by the compounded microbeads of completion of cure, calcining 1.6h ~ 2h, obtains graphene/silicon dioxide compounded microbeads.
CN201510001514.3A 2015-01-04 2015-01-04 A kind of method utilizing high-speed stirring technology to prepare porous graphene microballon Expired - Fee Related CN104556011B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510001514.3A CN104556011B (en) 2015-01-04 2015-01-04 A kind of method utilizing high-speed stirring technology to prepare porous graphene microballon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510001514.3A CN104556011B (en) 2015-01-04 2015-01-04 A kind of method utilizing high-speed stirring technology to prepare porous graphene microballon

Publications (2)

Publication Number Publication Date
CN104556011A CN104556011A (en) 2015-04-29
CN104556011B true CN104556011B (en) 2016-04-20

Family

ID=53073219

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510001514.3A Expired - Fee Related CN104556011B (en) 2015-01-04 2015-01-04 A kind of method utilizing high-speed stirring technology to prepare porous graphene microballon

Country Status (1)

Country Link
CN (1) CN104556011B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11572280B2 (en) * 2018-08-02 2023-02-07 Global Graphene Group, Inc. Environmentally benign production of graphene suspensions

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101443217B1 (en) * 2007-09-12 2014-09-19 삼성전자주식회사 Graphene shell and process for preparing the same
CN102502609A (en) * 2011-11-10 2012-06-20 东华大学 Method for preparing graphene hollow microspheres for anisotropic conductive materials
CN102544459B (en) * 2012-01-09 2014-04-16 上海交通大学 Method for preparing graphene-coated carbon microsphere material by coating graphene oxide on carbon microsphere

Also Published As

Publication number Publication date
CN104556011A (en) 2015-04-29

Similar Documents

Publication Publication Date Title
Deng et al. Review on recent advances in nitrogen-doped carbons: preparations and applications in supercapacitors
CN103303913B (en) A kind of porous graphene and preparation method thereof, ultracapacitor
CN106783197B (en) A kind of ZIF-8 pyrolysis porous carbon-graphene composite material and its preparation method and application
CN108975325B (en) Self-nitrogen-doped porous carbon material with three-dimensional network structure and preparation method and application thereof
CN105761950B (en) A kind of preparation method of porous rich nitrogen carbon fiber electrode
CN104071768B (en) Part graphitization porous carbon electrode material of aperture fractional distribution and preparation method thereof
CN101985358A (en) Method for quickly preparing carbon-silicon dioxide composite aerogel
CN112017868B (en) Mesoporous hollow carbon micron cage material and preparation method and application thereof
CN109616333A (en) A kind of nitrogen-doped carbon nanometer pipe/cobaltosic oxide composite material and preparation method thereof
CN104715936A (en) Hierarchical porous carbon electrode material for supercapacitor and preparation method
CN106449130B (en) The preparation method of multi-stage porous carbon nitrogen micro-sphere material
CN104495830B (en) A kind of preparation method of porous graphene microballon
CN106971860A (en) A kind of MnO2The preparation method of@graphene fiber super capacitor electrode materials
CN112357900B (en) High-density nitrogen, oxygen and chlorine co-doped carbon particle material, and preparation method and application thereof
CN110517900A (en) A kind of preparation method of supercapacitor N doping low temperature carbon nanofiber electrode material
CN108039283B (en) A kind of rich N doping multi-stage porous carbon material and the preparation method and application thereof based on in-situ polymerization
CN104743543B (en) A kind of preparation method of polyaniline/phenolic aldehyde base material with carbon element
CN110577207B (en) Preparation method of nitrogen and phosphorus co-doped carbon nanosheet
CN111430153B (en) Carbon nano aerogel material for all-solid-state supercapacitor and preparation method and application thereof
CN104556011B (en) A kind of method utilizing high-speed stirring technology to prepare porous graphene microballon
CN105261485B (en) A kind of preparation method of capacitor electrode material
KR101095863B1 (en) Electrode of super capacitor for high power and manufacturing method thereof
Zhao et al. Ice‐Templating: Integrative Ice Frozen Assembly to Tailor Pore Morphology of Energy Storage and Conversion Devices
CN108511206A (en) A kind of preparation method and application of melamine resin base carbon material electrode material for super capacitor
CN104505268B (en) Preparation method of nitrogen-doped porous carbon microsphere

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160420

Termination date: 20200104

CF01 Termination of patent right due to non-payment of annual fee