CN104546847B - 一种萘‑1,4‑二酮类化合物作为hCBS酶抑制剂的应用 - Google Patents
一种萘‑1,4‑二酮类化合物作为hCBS酶抑制剂的应用 Download PDFInfo
- Publication number
- CN104546847B CN104546847B CN201310466966.XA CN201310466966A CN104546847B CN 104546847 B CN104546847 B CN 104546847B CN 201310466966 A CN201310466966 A CN 201310466966A CN 104546847 B CN104546847 B CN 104546847B
- Authority
- CN
- China
- Prior art keywords
- concentration
- enzymatic reaction
- hcbs
- naphthalene
- compound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/25—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving enzymes not classifiable in groups C12Q1/26 - C12Q1/66
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/44—Non condensed pyridines; Hydrogenated derivatives thereof
- A61K31/445—Non condensed piperidines, e.g. piperocaine
- A61K31/451—Non condensed piperidines, e.g. piperocaine having a carbocyclic group directly attached to the heterocyclic ring, e.g. glutethimide, meperidine, loperamide, phencyclidine, piminodine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/10—Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/02—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/527—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving lyase
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/75—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N2021/3185—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry typically monochromatic or band-limited
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/251—Colorimeters; Construction thereof
- G01N21/253—Colorimeters; Construction thereof for batch operation, i.e. multisample apparatus
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Zoology (AREA)
- Physics & Mathematics (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Medicinal Chemistry (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Immunology (AREA)
- Biochemistry (AREA)
- Analytical Chemistry (AREA)
- Molecular Biology (AREA)
- Genetics & Genomics (AREA)
- General Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- Biophysics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Epidemiology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Heart & Thoracic Surgery (AREA)
- Pathology (AREA)
- General Physics & Mathematics (AREA)
- Cardiology (AREA)
- Urology & Nephrology (AREA)
- Neurology (AREA)
- Neurosurgery (AREA)
- Biomedical Technology (AREA)
- Vascular Medicine (AREA)
- Plasma & Fusion (AREA)
Abstract
本发明公开了一种萘‑1,4‑二酮类化合物作为hCBS酶抑制剂的应用,具体涉及化合物2‑氯‑3‑(4‑甲基哌啶‑1‑基)萘‑1,4‑二酮作为hCBS酶抑制剂的应用。该小分子化合物对离体hCBS酶促反应的IC50为20μM。该小分子化合物可以作为研究H2S信号通路的工具药,以及开发治疗循环休克、中风、唐氏综合症和肿瘤等与H2S相关的疾病的药物的先导化合物。
Description
技术领域
本发明涉及生物医药领域,尤其涉及一种hCBS酶抑制剂的应用。
背景技术
人体内源性的H2S气体分子参与并调控很多生理和病理过程,为重要的信号转导通路的调控分子。在结肠癌、神经退行性疾病、缺血性中风、低血压、高血压和胰腺炎等很多病理条件下,内源性H2S含量都发现有异常变化。因此,目前需要内源性H2S信号的特异抑制剂或激活剂作为分子探针工具去进一步阐述H2S的生理功能,和治疗与H2S-相关的疾病的小分子药物先导物。
CBS(cystathionineβ-synthase,胱硫醚-β-合成酶)是一种PLP-依赖型(pyridoxal-5’-phosphate-dependent)酶,即维生素B6依赖型酶。在人体内,CBS催化底物L-半胱氨酸(Cysteine)和L-同型半胱氨酸(L-Homocysteine)产生内源性H2S气体。在循环休克、中风、唐氏综合症和癌症病人或模型动物的体内已发现过量的H2S和/或CBS活性的增强,因此,hCBS(human CBS)已经被认为是治疗循环休克、中风、唐氏综合症以及肿瘤等与H2S相关的疾病的潜在靶标。
已知的hCBS小分子抑制剂,不仅与酶的结合力弱而且选择性也很低,因为他们对其它维生素B6-依赖型酶也有抑制作用。因此,急需筛选出特异性的hCBS抑制剂,可作为“工具药”去证实已发现的H2S的生物学效应和信号通路作用,同时也可作为药物研发的先导化合物。
目前,酶抑制剂的发现主要通过两种方法,即生物筛选和合理药物设计。基于靶点的合理药物设计就是通过对药物作用的靶点进行研究,找到新的、合适的药物来治疗某些疾病。发现一个的靶点往往就能设计出一类新药,在新药研究领域也是极受重视的。
深入认识酶结构,特别是当它与特异性抑制剂复合时的结构,将会产生一种鉴定该酶中结合位点的方法,并获得酶/抑制剂复合物以及该酶中敏感残基的构象,这些知识对药物设计和优化方法来讲都是至关重要的。
hCBS纯酶3D晶体结构已被报道,这为其靶向抑制剂的设计提供了一定的结构基础,但是与底物-结合相关的氨基酸残基还不清楚。
因此,本领域的技术人员致力于研究hCBS酶促反应的抑制剂以及这种抑制剂作为研究治疗循环休克、中风、唐氏综合症和肿瘤等与H2S相关的疾病的药物的先导化合物的应用。
发明内容
本发明中所用缩写如下:
hCBS指人源胱硫醚-β-合成酶,即human cystathionineβ-synthase;
DTNB指5,5'-二硫代二(2-硝基苯甲酸),即5,5'-Dithio bis-(2-nitrobenzoicacid);
Tris-HCl指三羟甲基氨基甲烷盐酸盐,即Tris(hydroxymethyl)aminomethanehydrochloride;
EDTA指乙二胺四乙酸,即Ethylene Diamine Tetraacetic Acid;
L-Cys指L-半胱氨酸,即L-Cysteine;
D,L-HCys指D,L-同型半胱氨酸,即D,L-Homocysteine;
SAM指S-腺苷甲硫氨酸,即S-adenosyl methionine;
PLP指磷酸吡哆醛,即pyridoxal-5’-phosphate;
2-氯-3-(4-甲基哌嗪-1-基)萘-1,4-二酮,即
2-chloro-3-(4-methylpiperazin-1-yl)naphthalene-1,4-dione;
2-氯-3-(环庚基氨基)萘-1,4-二酮,即
2-chloro-3-(cycloheptylamino)-naphthalene-1,4-dione。
HepG2细胞指人肝癌细胞系,即a human liver carcinoma cell line;
本发明中所提到的酶促反应容器能够容纳H2S气体检测容器,即气体检测容器能够置入酶促反应容器中,以使酶促反应产生的H2S气体能够全部扩散进入检测体系。
本发明公开了一种萘-1,4-二酮类化合物作为hCBS酶抑制剂的应用,该类化合物是2-氯-3-(4-甲基哌啶-1-基)萘-1,4-二酮,结构如式(Ⅰ)所示,分子量289.76:
本发明中用Compd.10指代2-氯-3-(4-甲基哌嗪-1-基)萘-1,4-二酮;用Compd.11指代2-氯-3-(环庚基氨基)萘-1,4-二酮。
本发明公开了一种抑制离体hCBS酶促反应的方法,其应用步骤如下:
步骤一、配制缓冲溶液:在酶促反应容器中配置Tris-HCl浓度为50mM,PLP浓度为100μM,hCBS-413浓度为50-500nM,L-Cys浓度为4mM,D,L-HCys浓度为4mM的去离子水溶液,pH为7.6-9.0;
步骤二、配制酶促反应混合液:将化合物Compd.4分别加入到步骤一所配制的缓冲溶液中,配制成不同浓度的酶促反应混合液,形成酶促反应体系;
步骤三、配制H2S气体检测体系:
在H2S气体检测容器中,加入50μL的DTNB溶液,所述DTNB溶液为:DTNB浓度为300μM,Tris-HCl浓度为262mM,EDTA浓度为13mM,pH=8.9的去离子水溶液,形成H2S气体检测体系,将气体检测容器置入酶促反应容器中,以使酶促反应产生的H2S气体能够扩散进入气体检测体系;
步骤四、孵育过程:
用封板膜密封酶促反应容器,在37℃下孵育60分钟;
步骤五、化合物Compd.4作为hCBS抑制剂应用效果的检测:
在酶标仪上测定H2S气体检测体系在413nm下的光吸收。
优选地,上述抑制hCBS酶促反应的方法,其中,步骤一中所述pH=8.6。
优选地,上述抑制hCBS酶促反应的方法,其中,步骤一中所述hCBS-413浓度为100nM。
优选地,上述抑制hCBS酶促反应的方法,其中,步骤二中所述化合物Compd.4的浓度为0-400μM。
优选地,上述抑制hCBS酶促反应的方法,其中,步骤二中所述化合物Compd.4的浓度为20μM。
另一方面,本发明公开了化合物Compd.4作为细胞内hCBS酶抑制剂的应用,其步骤如下:
步骤一、将人源HepG2培养在氨基酸营养液中孵育一天后,将化合物Compd.4加入到所述氨基酸营养液中,进行共孵育;然后,用冷的Tris-HCl缓冲液将细胞洗涤两次,并用细胞刮刷收集;收集的细胞在裂解缓冲液中,先用液氮冷冻,然后在37℃下解冻2分钟,此冷冻、解冻操作重复3次;之后,裂解液在转离心机上离心1小时后,收集上层清液;作为HepG2细胞溶液进行下一步实验;所述Tris-HCl缓冲液的浓度为50mM,pH=8.6。
步骤二、在酶促反应容器中加入步骤一中得到的HepG2细胞溶液,然后加入PLP浓度为100μM、SAM浓度为200μM的去离子水溶液20μL和L-Cys浓度为4mM、D,L-HCys浓度为4mM的去离子水溶液,形成细胞内酶促反应体系;
步骤三、配制H2S气体检测体系:
在H2S气体检测容器中,加入50μL的DTNB溶液,所述DTNB溶液为:DTNB浓度为300μM,Tris-HCl浓度为262mM,EDTA浓度为13mM,pH=8.9的去离子水溶液,形成H2S气体检测体系;将气体检测容器置入酶促反应容器中,以使酶促反应产生的H2S气体能够扩散进入气体检测体系;
步骤四、孵育过程:
用封板膜密封酶促反应容器,在37℃下孵育60分钟;
步骤五、化合物Compd.4作为细胞内hCBS酶抑制剂应用效果的检测:
在酶标仪上测定H2S气体检测体系在413nm下的光吸收。
进一步地,化合物Compd.4作为细胞内hCBS酶抑制剂的应用时,步骤一中加入的NSC111041的最终浓度50μM、10μM或5μM。
进一步地,本发明中结构式(Ⅰ)的萘-1,4-二酮类化合物可作为用于治疗循环休克、中风、唐氏综合症和肿瘤等的药物来应用。
本发明研究了化合物Compd.4的类似物作为hCBS酶抑制剂的的构效关系,结果如表1所示,用大极性甲基哌嗪基(化合物Compd.10中)替代Compd.4上甲基哌啶基,抑制活性降低,说明在3-位上疏水性的取代基有利于对hCBS酶的抑制作用,而体积大的基团,如在3-位有环庚基氨基(化合物Compd.11中)取代基,抑制活性消失,说明3-位有小的取代基利于对hCBS酶的抑制作用。
表1
以下将结合附图对本发明的构思、具体结构及产生的技术效果作进一步说明,以充分地了解本发明的目的、特征和效果。
附图说明
图1是化合物Compd.4、Compd.10、Compd.11的浓度-活性曲线;
图2是化合物Compd.4在不同浓度下抑制的细胞内hCBS酶的活性柱形图。
具体实施方式
本发明用的材料如下:
1.1细胞来源
HepG2细胞指人肝癌细胞株,即a human liver carcinoma cell line,购自中国科学院上海生命科学研究院细胞资源中心。
其它药品或试剂均购自Sigma-Aldrich。
UltraClear封板膜来自Platemax PCR-TS,美国。
本发明中采用的实验方法如下:
实施例1、源截短型hCBS△414-551(hCBS-413)的表达纯化方法的表达纯化
按照Frank,N.,在Arch Biochem Biophys470,64-72(2008),Oliveriusova,J.,JBiol Chem277,48386-94(2002).中或者Janosik,M.et al.在Acta Crystallogr D BiolCrystallogr57,289-91(2001)中描述的方法,首先将hCBS△414-551hCBS-413)基因克隆到谷胱甘肽S-转移酶(GST)融合表达载体pGEX-KG,然后进行过表达再使用GST-琼脂糖柱亲和纯化。
序列表SEQ ID No:1是hCBS酶的氨基酸序列;
化合物Compd.4作为hCBS酶抑制剂的应用:
实施例2、测定不同浓度的化合物Compd.4对hCBS酶活性的抑制率:
步骤一、配制缓冲液:在酶促反应容器中加入Tris-HCl浓度为50mM,PLP浓度为100μM,hCBS-413浓度为100nM,L-Cys浓度为4mM,D,L-HCys浓度为4mM的去离子水溶液,pH=8.6;
步骤二、配制酶促反应混合液:将化合物Compd.4分别加入到步骤一所配制的缓冲溶液中,配制成化合物Compd.4浓度分别为400μM、200μM、100μM、50μM、25μM、12.5μM、6.2μM、3.125μM、1.56μM、0.78μM的酶促反应混合液,形成酶促反应体系;
步骤三、配制H2S气体检测体系:
在在H2S气体检测容器中加入50μL的DTNB溶液,所述DTNB溶液为:DTNB浓度为300μM,Tris-HCl浓度为262mM,EDTA浓度为13mM,pH=8.9的去离子水溶液,形成H2S气体检测体系;将气体检测容器置入酶促反应容器中,以使酶促反应产生的H2S气体能够扩散进入气体检测体系;
步骤四、孵育过程
用UltraClear封板膜密封酶促反应容器,在37℃下孵育60分钟;
步骤五、化合物Compd.4作为hCBS抑制剂应用效果的检测:
在酶标仪上测定H2S气体检测体系在413nm下的光吸收。
此次实验独立进行两次,阴性对照组(2%DMSO,体积百分比浓度)的活性被定义为100%。
得到的浓度-活性曲线如图1所示。
实施例3、测定不同浓度的化合物Compd.10对hCBS酶活性的抑制率;
步骤一、配制缓冲液:在酶促反应容器中加入Tris-HCl浓度为50mM,PLP浓度为100μM,hCBS-413浓度为100nM,L-Cys浓度为4mM,D,L-HCys浓度为4mM的去离子水溶液,pH=8.6;
步骤二、配制酶促反应混合液:将化合物Compd.10分别加入到步骤一所配制的缓冲溶液中,配制成化合物Compd.10浓度分别为400μM、200μM、100μM、50μM、25μM、12.5μM、6.2μM、3.125μM、1.56μM、0.78μM的酶促反应混合液,形成酶促反应体系;
步骤三、配制H2S气体检测体系:
在H2S气体检测容器中加入50μL的DTNB溶液,所述DTNB溶液为:DTNB浓度为300μM,Tris-HCl浓度为262mM,EDTA浓度为13mM,pH=8.9的去离子水溶液,形成H2S气体检测体系;将气体检测容器置入酶促反应容器中,以使酶促反应产生的H2S气体能够扩散进入气体检测体系;
步骤四、孵育过程:
用UltraClear封板膜密封酶促反应容器,在37℃下孵育60分钟;
步骤五、化合物Compd.10作为hCBS抑制剂应用效果的检测:
在酶标仪上测定H2S气体检测体系在413nm下的光吸收。
此次实验独立进行两次,阴性对照组(2%DMSO,体积百分比浓度)的活性被定义为100%。
得到的浓度-活性曲线如图1所示。
实施例4、测定不同浓度的化合物Compd.11对hCBS酶活性的抑制率;
步骤一、配制缓冲液:在酶促反应容器中加入Tris-HCl浓度为50mM,PLP浓度为100μM,hCBS-413浓度为100nM,L-Cys浓度为4mM,D,L-HCys浓度为4mM的去离子水溶液。pH=8.6;
步骤二、配制酶促反应混合液:将化合物Compd.11分别加入到步骤一所配制的缓冲溶液中,配制成化合物Compd.11浓度分别为400μM、200μM、100μM、50μM、25μM、12.5μM、6.2μM、3.125μM、1.56μM、0.78μM的酶促反应混合液,形成酶促反应体系;
步骤三、配制H2S气体检测体系:
在H2S气体检测器中加入50μL的DTNB溶液,所述DTNB溶液为:DTNB浓度为300μM,Tris-HCl浓度为262mM,EDTA浓度为13mM,pH=8.9的去离子水溶液,形成H2S气体检测体系;将气体检测容器置入酶促反应容器中,以使酶促反应产生的H2S气体能够扩散进入气体检测体系;
步骤四、孵育过程
用UltraClear封板膜密封酶促反应容器,在37℃下孵育60分钟;
步骤五、化合物Compd.11作为hCBS抑制剂应用效果的检测:
在酶标仪上测定H2S气体检测体系在413nm下的光吸收。
此次实验独立进行两次,阴性对照组(2%DMSO,体积百分比浓度)的活性被定义为100%。
得到的浓度-活性曲线如图1所示。
实施例5、Compd.4对HepG2细胞内的hCBS酶抑制作用的测定:
步骤一、在37℃下,湿度为5%的CO2气中,在涂有聚-D-赖氨酸的细胞培养6孔板(密度为)上,将人源HepG2培养在由氨基酸营养液MEM(生工公司)(含有1×非必需氨基酸,10%胎牛血清以及1%(w/v)盘尼西林和链霉素)中。孵育一天后,将对照样(空白DMSO溶液)或化合物Compd.4加入到上述氨基酸营养液中,形成含有化合物Compd.4的最终浓度为50μM、10μM、5μM的细胞培养液,然后在37℃下,进行8小时的共孵育。之后,用冷的Tris-HCl缓冲液(50mM,pH=8.6)将细胞洗涤两次,并用细胞刮刷收集。收集的细胞在50μl的裂解缓冲液(50μL的Tris-HCl,pH为8.6)中,先用液氮冷冻,然后在37℃下解冻2分钟,此冷冻、解冻操作重复3次。之后,裂解液在4℃,11,000rpm转离心机上离心1小时后,收集上层清液。用BCA试剂盒(pierce,美国)测定收集到的上层清液中的蛋白质浓度,即hCBS酶活性受到化合物Compd.4抑制的HepG2细胞溶液进行下一步实验。
步骤二、在酶促反应容器中加入20μL步骤一中得到的hCBS酶活性受到化合物Compd.4抑制的HepG2细胞溶液,然后加入PLP浓度为100μM、SAM浓度为200μM的去离子水溶液20μL和L-Cys浓度为4mM、D,L-HCys浓度为4mM的去离子水溶液的10μL,形成细胞内酶促反应体系;
步骤三、配制H2S气体检测体系:
在H2S气体检测容器中,加入50μL的DTNB溶液,所述DTNB溶液为:DTNB浓度为300μM,Tris-HCl浓度为262mM,EDTA浓度为13mM,pH=8.9的去离子水溶液,形成H2S气体检测体系;将气体检测容器置入酶促反应容器中,以使酶促反应产生的H2S气体能够扩散进入气体检测体系;
步骤四、孵育过程:
用封板膜密封酶促反应容器,在37℃下孵育60分钟;
步骤五、化合物Compd.4作为细胞内hCBS酶抑制剂应用效果的检测:
在酶标仪上测定H2S气体检测体系在413nm下的光吸收;
以加入对照样即空白DMSO溶液中获得的细胞内hCBS酶活性为100%,则Compd.4在不同浓度下抑制的细胞内hCBS酶的活性如图2所示。
以上详细描述了本发明的较佳具体实施例。应当理解,本领域的普通技术无需创造性劳动就可以根据本发明的构思作出诸多修改和变化。因此,凡本技术领域中技术人员依本发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。
Claims (7)
1.一种抑制离体人胱硫醚-β-合成酶(hCBS)酶促反应的方法,其步骤如下:
步骤一、配制缓冲溶液:在酶促反应容器中配置Tris-HCl浓度为50mM,PLP浓度为100μM,hCBS-413浓度为50-500nM,L-Cys浓度为4mM,D,L-HCys浓度为4mM的去离子水溶液,pH为7.6-9.0;
步骤二、配制酶促反应混合液:将化合物2-氯-3-(4-甲基哌啶-1-基)萘-1,4-二酮分别加入到步骤一所配制的缓冲溶液中,配制成不同浓度的酶促反应混合液,形成酶促反应体系;
步骤三、配制H2S气体检测体系:
在H2S气体检测容器中,加入50μL的DTNB溶液,所述DTNB溶液为:DTNB浓度为300μM,Tris-HCl浓度为262mM,EDTA浓度为13mM,pH=8.9的去离子水溶液;形成H2S气体检测体系,将气体检测容器置入酶促反应容器中,以使酶促反应产生的H2S气体能够扩散进入气体检测体系;
步骤四、孵育过程:
用封板膜密封酶促反应容器,在37℃下孵育60分钟;
步骤五、化合物2-氯-3-(4-甲基哌啶-1-基)萘-1,4-二酮作为hCBS抑制剂应用效果的检测:
在酶标仪上测定H2S气体检测体系在413nm下的光吸收。
2.如权利要求1所述的方法,其中,步骤一中所述pH=8.6。
3.如权利要求1所述的方法,其中,步骤一中所述hCBS-413浓度为100nM。
4.如权利要求1所述的方法,其中,步骤二中所述化合物2-氯-3-(4-甲基哌啶-1-基)萘-1,4-二酮的浓度为20-400μM。
5.如权利要求1所述的方法,其中,步骤二中所述化合物2-氯-3-(4-甲基哌啶-1-基)萘-1,4-二酮的浓度为20μM。
6.一种抑制细胞内人胱硫醚-β-合成酶(hCBS)酶活性的方法,其步骤如下:
步骤一、将人源HepG2培养在氨基酸营养液中孵育一天后,将化合物2-氯-3-(4-甲基哌啶-1-基)萘-1,4-二酮加入到所述氨基酸营养液中,进行共孵育;然后,用冷的Tris-HCl缓冲液将细胞洗涤两次,并用细胞刮刷收集;收集的细胞在裂解缓冲液中,先用液氮冷冻,然后在37℃下解冻2分钟,此冷冻、解冻操作重复3次;之后,裂解液在转离心机上离心1小时后,收集上层清液;作为HepG2细胞溶液进行下一步实验;所述Tris-HCl缓冲液的浓度为50mM,pH=8.6;
步骤二、在酶促反应容器中加入步骤一中得到的HepG2细胞溶液,然后加入PLP浓度为100μM、SAM浓度为200μM的去离子水溶液20μL和L-Cys浓度为4mM、D,L-HCys浓度为4mM的去离子水溶液,形成细胞内酶促反应体系;
步骤三、配制H2S气体检测体系:
在H2S气体检测容器中,加入50μL的DTNB溶液,所述DTNB溶液为:DTNB浓度为300μM,Tris-HCl浓度为262mM,EDTA浓度为13mM,pH=8.9的去离子水溶液,形成H2S气体检测体系;将气体检测容器置入酶促反应容器中,以使酶促反应产生的H2S气体能够扩散进入气体检测体系;
步骤四、孵育过程:
用封板膜密封酶促反应容器,在37℃下孵育60分钟;
步骤五、化合物2-氯-3-(4-甲基哌啶-1-基)萘-1,4-二酮作为细胞内hCBS酶抑制剂应用效果的检测:
在酶标仪上测定H2S气体检测体系在413nm下的光吸收。
7.如权利要求6所述的方法,其中,步骤一中加入的2-氯-3-(4-甲基哌啶-1-基)萘-1,4-二酮的最终浓度50、10或5μM。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310466966.XA CN104546847B (zh) | 2013-10-09 | 2013-10-09 | 一种萘‑1,4‑二酮类化合物作为hCBS酶抑制剂的应用 |
GB1417881.8A GB2523615B (en) | 2013-10-09 | 2014-10-09 | Use of Naphthalene-1,4-diketone compound as hCBS enzyme inhibitor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310466966.XA CN104546847B (zh) | 2013-10-09 | 2013-10-09 | 一种萘‑1,4‑二酮类化合物作为hCBS酶抑制剂的应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104546847A CN104546847A (zh) | 2015-04-29 |
CN104546847B true CN104546847B (zh) | 2017-10-17 |
Family
ID=52001161
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310466966.XA Expired - Fee Related CN104546847B (zh) | 2013-10-09 | 2013-10-09 | 一种萘‑1,4‑二酮类化合物作为hCBS酶抑制剂的应用 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN104546847B (zh) |
GB (1) | GB2523615B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3594336A1 (en) * | 2018-07-13 | 2020-01-15 | Université de Strasbourg | Treatment of down syndrome |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101838248A (zh) * | 2009-03-20 | 2010-09-22 | 中国科学院广州生物医药与健康研究院 | 1,4-萘醌类化合物及其应用 |
US10472315B2 (en) * | 2009-08-05 | 2019-11-12 | The Johns Hopkins University | Inhibitors of methionine aminopeptidases and methods of treating disorders |
WO2015051678A1 (zh) * | 2013-10-09 | 2015-04-16 | 上海交通大学 | 一种用于高通量检测的微孔板及其应用 |
-
2013
- 2013-10-09 CN CN201310466966.XA patent/CN104546847B/zh not_active Expired - Fee Related
-
2014
- 2014-10-09 GB GB1417881.8A patent/GB2523615B/en not_active Expired - Fee Related
Non-Patent Citations (2)
Title |
---|
Polynuclear Heterocycles. IV. The synthesis of New Heterocyclic Quinones;J.A. Vanallan et al.;《J. Org. Chem.》;19630228;第28卷;524-527 * |
Selectivity of commonly used pharmacological inhibitors for cystathionine b synthase (CBS) and cystathionine g lyase (CSE);Antonia Asimakopoulou 等;《British Journal of Pharmacology》;20130630;第169卷(第4期);第922-932页 * |
Also Published As
Publication number | Publication date |
---|---|
GB2523615A (en) | 2015-09-02 |
GB201417881D0 (en) | 2014-11-26 |
GB2523615B (en) | 2016-06-15 |
CN104546847A (zh) | 2015-04-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Scrutton et al. | Cation-π bonding and amino-aromatic interactions in the biomolecular recognition of substituted ammonium ligands | |
Marsh et al. | Adenosylcobalamin enzymes: Theory and experiment begin to converge | |
Fidan et al. | Carbonic anhydrase inhibitors: Design, synthesis, kinetic, docking and molecular dynamics analysis of novel glycine and phenylalanine sulfonamide derivatives | |
Blaum et al. | Structure of the pseudokinase domain of BIR2, a regulator of BAK1-mediated immune signaling in Arabidopsis | |
Cooper et al. | ω-Amidase: An underappreciated, but important enzyme in L-glutamine and L-asparagine metabolism; relevance to sulfur and nitrogen metabolism, tumor biology and hyperammonemic diseases | |
Kapuria et al. | Protein cross-linking as a novel mechanism of action of a ubiquitin-activating enzyme inhibitor with anti-tumor activity | |
Yang et al. | Mechanistic studies of the spore photoproduct lyase via a single cysteine mutation | |
Angeli et al. | The γ-carbonic anhydrase from the pathogenic bacterium Vibrio cholerae is potently activated by amines and amino acids | |
Feng et al. | Expression, purification, and S-nitrosylation of recombinant histone deacetylase 8 in Escherichia coli | |
CN104546847B (zh) | 一种萘‑1,4‑二酮类化合物作为hCBS酶抑制剂的应用 | |
Young et al. | Eukaryotic TYW1 is a radical SAM flavoenzyme | |
CN104560930B (zh) | hCBS酶特异性抑制剂的结合靶标及其应用 | |
Fresquet et al. | Mechanism of cobyrinic acid a, c-diamide synthetase from Salmonella typhimurium LT2 | |
Lammers et al. | Deoxyribonucleotide biosynthesis in yeast (Saccharomyces cerevisiae) a ribonucleotide reductase system of sufficient activity for DNA synthesis | |
Fabrini et al. | Spectrophotometric assay for serum glutathione transferase: a re-examination | |
CN104546849B (zh) | 一种喹啉酮类化合物作为hCBS酶抑制剂的应用 | |
CN104546860B (zh) | 一种1,2,4‑三嗪并嘧啶二酮类化合物作为hCBS酶抑制剂的应用 | |
CN104546850B (zh) | 一种喹哪啶类化合物作为hCBS酶抑制剂的应用 | |
CN100389323C (zh) | 毛细管电泳酶微反应器的制备方法和用途 | |
US10604785B2 (en) | Ubiquitination system and the uses thereof | |
Suazo et al. | Proteomic Analysis of protein–lipid modifications: significance and application | |
Arent et al. | The extraordinary specificity of xanthine phosphoribosyltransferase from Bacillus subtilis elucidated by reaction kinetics, ligand binding, and crystallography | |
Karlsson et al. | Hydroxyurea increases the phosphorylation of 3′‐fluorothymidine and 3′‐azidothymidine in CEM cells | |
Bachrach | Polyamines and carcinogenesis | |
Bandarian | Radical SAM enzymes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20171017 Termination date: 20201009 |