CN104539970A - 3D-HEVC interframe coding merge mode fast decision making method - Google Patents

3D-HEVC interframe coding merge mode fast decision making method Download PDF

Info

Publication number
CN104539970A
CN104539970A CN201410802175.4A CN201410802175A CN104539970A CN 104539970 A CN104539970 A CN 104539970A CN 201410802175 A CN201410802175 A CN 201410802175A CN 104539970 A CN104539970 A CN 104539970A
Authority
CN
China
Prior art keywords
mode
current
condition
coding
merge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410802175.4A
Other languages
Chinese (zh)
Other versions
CN104539970B (en
Inventor
贾克斌
宋雨新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Ge Lei Information Technology Co ltd
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN201410802175.4A priority Critical patent/CN104539970B/en
Publication of CN104539970A publication Critical patent/CN104539970A/en
Application granted granted Critical
Publication of CN104539970B publication Critical patent/CN104539970B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

本发明公开了一种3D-HEVC帧间编码合并模式快速决策方法,1)从非独立视点的纹理图中提取需要编码的CU。2)当前CU在2N×2N划分模式下检查合并模式和合并-跳过模式。3)判断当前CU所在帧是P帧还是B帧。4)通过上一步判断,如果得到的结果是P帧,判断当前CU的划分层次是否为3且是否同时满足条件a和条件b;5)通过步骤3的判断,如果得到的结果是B帧,通过由相邻块得到的视差矢量(DoNBDV)确定当前CU在视点方向的5个参考块,包括当前CU在视点方向的对应块及其4个相邻块。判断当前CU是否同时满足条件c和条件d:本发明方法能够在保证编码质量的同时平均节省约6.5%的总编码时间以及20.4%的非独立视点纹理图编码时间。

The present invention discloses a fast decision-making method for 3D-HEVC inter-frame coding merging mode. 1) Extract a CU to be coded from a texture map of a dependent viewpoint. 2) The current CU checks merge mode and merge-skip mode in 2N×2N partition mode. 3) Determine whether the frame where the current CU is located is a P frame or a B frame. 4) Through the judgment of the previous step, if the obtained result is a P frame, judge whether the division level of the current CU is 3 and whether the condition a and condition b are satisfied at the same time; 5) Through the judgment of step 3, if the obtained result is a B frame, The 5 reference blocks of the current CU in the view direction are determined by the disparity vector (DoNBDV) obtained from the adjacent blocks, including the corresponding block of the current CU in the view direction and its 4 adjacent blocks. Judging whether the current CU satisfies condition c and condition d at the same time: the method of the present invention can save an average of about 6.5% of total encoding time and 20.4% of non-independent view texture map encoding time while ensuring encoding quality.

Description

一种3D-HEVC帧间编码合并模式快速决策方法A fast decision-making method for merging mode of 3D-HEVC interframe coding

技术领域technical field

本发明涉及视频编码技术领域,尤其是涉及一种基于高效视频编码标准HEVC的3D视频编码标准3D-HEVC中的帧间编码合并模式快速决策方法。The present invention relates to the technical field of video coding, in particular to a method for fast decision-making of an inter-frame coding combination mode in the 3D video coding standard 3D-HEVC based on the high-efficiency video coding standard HEVC.

背景技术Background technique

高效视频编码标准(HEVC)是由国际标准组织/国际电工委员会(ISO/IEC)移动图像专家组(MPEG)和国际电信联盟远程通信标准化组织(ITU-T)视频编码专家组(VCEG)共同建立的联合视频编码工作组(JCT-VC)制定的新一代视频编码标准,它在ISO/IEC中的正式名称是MPEG-H标准的第二部分,在ITU-T中的正式名称是H.265。随着HEVC的不断完善和发展,MPEG和VCEG于2012年成立了3D视频编码联合工作组(JCT-3V),针对HEVC的3D视频编码扩展展开研究,旨在制定基于HEVC的3D视频编码标准(3D-HEVC)。目前,3D-HEVC已经经过了10次JCT-3V会议的讨论、研究和改进,各项技术日趋成熟。3D-HEVC包含了HEVC的关键技术,并针对3D视频的特点,在此基础上增加了新的编码工具,提高了3D视频的编码效率。The High Efficiency Video Coding standard (HEVC) was jointly established by the International Organization for Standardization/International Electrotechnical Commission (ISO/IEC) Moving Picture Experts Group (MPEG) and the International Telecommunication Union Telecommunication Standardization Organization (ITU-T) Video Coding Experts Group (VCEG). A new generation of video coding standard formulated by the Joint Video Coding Working Group (JCT-VC), its official name in ISO/IEC is the second part of the MPEG-H standard, and its official name in ITU-T is H.265 . With the continuous improvement and development of HEVC, MPEG and VCEG established the 3D Video Coding Joint Working Group (JCT-3V) in 2012 to conduct research on the 3D video coding extension of HEVC, aiming to formulate HEVC-based 3D video coding standards ( 3D-HEVC). At present, 3D-HEVC has been discussed, researched and improved in 10 JCT-3V conferences, and various technologies are becoming more and more mature. 3D-HEVC includes the key technologies of HEVC, and based on the characteristics of 3D video, new coding tools are added to improve the coding efficiency of 3D video.

在3D-HEVC中,3D视频采用多视点纹理视频加深度的形式表示,其包含的全部纹理图和深度图按照处理单元的顺序依次进行编码。每个处理单元由同一时刻、不同视点的几组纹理图和深度图组成,如图1所示。在一个处理单元中,首先对独立视点的纹理图和深度图编码。该视点采用独立编码的方式,通过HEVC编码器进行编码,不依赖于其他视点的信息。然后,对非独立视点的纹理图和深度图编码。该视点在编码时参考已编码的独立视点的信息来预测当前视点的信息,减少了视点间冗余,保证了编码效率。完成上述过程后,当前处理单元编码完成。对于非独立视点的纹理图,其内部的每个编码单元(CU)在编码时需要依次进行帧间编码和帧内编码,然后基于率失真模型选择率失真代价最小的编码模式作为当前CU的最佳编码模式。其中,率失真代价通过J=D+λ·R计算得到,D表示原始图像块和重构图像块的差值平方和,λ表示拉格朗日乘子,R表示当前编码模式下所需的总编码比特数,包括编码模式、残差系数等信息。对于帧间编码来说,为了灵活地匹配图像内容,得到最佳编码效果,其共包含8种基于CU的预测单元(PU)划分模式,划分大小分别为:2N×2N,2N×N,N×2N,N×N,2N×nU,2N×nD,nL×2N和nR×2N,如图2所示。当进行帧间编码时,首先需要在2N×2N划分模式下检查合并模式、合并-跳过模式和帧间预测模式,然后在剩余的7种基于CU的PU划分模式(其中NxN模式仅对尺寸为8×8的CU有效)下依次检查帧间预测模式和合并模式,至多需要检查17种编码模式。对于帧内编码来说,其包含2N×2N和N×N两种基于CU的PU划分模式。当进行帧内编码时,需要在这2种PU划分模式下检查帧内预测模式。此外,如果满足PCM模式允许的CU尺寸,还需检查PCM模式。因此,当对非独立视点的纹理图进行编码时,每个CU至多需要检查20种编码模式才能得到最佳编码模式,编码复杂度极高。而在非独立视点的实际编码过程中,平均每帧纹理图中有高达94.0%的CU选择合并模式作为最佳编码模式。因此,如何快速地判定合并模式对于降低非独立视点纹理图的编码复杂度至关重要。In 3D-HEVC, 3D video is represented in the form of multi-view texture video plus depth, and all texture maps and depth maps contained in it are encoded in sequence in the order of processing units. Each processing unit consists of several sets of texture maps and depth maps from different viewpoints at the same moment, as shown in Figure 1. In one processing unit, texture maps and depth maps for independent viewpoints are first encoded. The viewpoint adopts an independent encoding method, which is encoded by the HEVC encoder, and does not depend on the information of other viewpoints. Then, the texture and depth maps of the dependent views are encoded. When the viewpoint is coded, it refers to the information of the coded independent viewpoint to predict the information of the current viewpoint, which reduces the redundancy between viewpoints and ensures the coding efficiency. After the above process is completed, the encoding of the current processing unit is completed. For texture maps with non-independent viewpoints, each coding unit (CU) inside needs to perform inter-frame coding and intra-frame coding in sequence, and then select the coding mode with the smallest rate-distortion cost based on the rate-distortion model as the best coding mode for the current CU. best encoding mode. Among them, the rate-distortion cost is calculated by J=D+λ·R, D represents the sum of squared differences between the original image block and the reconstructed image block, λ represents the Lagrangian multiplier, and R represents the required The total number of encoded bits, including information such as encoding mode and residual coefficient. For inter-frame coding, in order to flexibly match the image content and obtain the best coding effect, it contains a total of 8 CU-based prediction unit (PU) partition modes, and the partition sizes are: 2N×2N, 2N×N, N ×2N, N×N, 2N×nU, 2N×nD, nL×2N and nR×2N, as shown in Figure 2. When performing inter-frame coding, you first need to check the merge mode, merge-skip mode, and inter-frame prediction mode in the 2N×2N partition mode, and then check the remaining 7 CU-based PU partition modes (wherein the NxN mode is only for size It is valid for 8×8 CU) to check the inter prediction mode and merge mode in turn, and at most 17 coding modes need to be checked. For intra coding, it includes two CU-based PU division modes: 2N×2N and N×N. When doing intra coding, you need to check the intra prediction mode in these 2 PU partition modes. In addition, if the CU size allowed by the PCM mode is met, the PCM mode needs to be checked. Therefore, when encoding a texture map of a non-independent viewpoint, each CU needs to check at most 20 encoding modes to obtain the optimal encoding mode, and the encoding complexity is extremely high. In the actual coding process of non-independent viewpoints, 94.0% of the CUs in the average texture map of each frame choose the merge mode as the best coding mode. Therefore, how to quickly determine the merging mode is very important to reduce the coding complexity of the dependent view texture map.

目前,3D-HEVC采用了一种基于视点方向参考块的合并模式快速判定方法。该方法利用视点方向参考块的最佳编码模式预测当前CU的编码模式。当当前CU在视点方向的对应块及其相邻块都选择合并模式作为最佳编码模式,且在2N×2N划分模式下当前CU采用合并-跳过模式编码得到的率失真代价优于采用合并模式编码得到的率失真代价时,当前CU在所有PU划分模式下只检查合并模式,跳过其他编码模式。该方法能够在一定程度上降低B帧的编码复杂度,但由于没有充分利用视点间的冗余信息,只能覆盖每帧图像中的小部分CU,导致大部分选择合并模式作为最佳编码模式的CU仍需检查全部编码模式后才能得到最佳编码模式,编码效率仍然有待提高。对于P帧,由于其视点方向的参考帧为I帧,采用帧内预测模式进行编码,因此纹理图中所有采用合并模式作为最佳编码模式的CU都不满足合并模式快速判定条件,该方法失效,P帧的编码复杂度没有得到改善。At present, 3D-HEVC adopts a fast determination method of merging mode based on the reference block of the viewpoint direction. This method uses the best coding mode of the reference block in the view direction to predict the coding mode of the current CU. When the corresponding block of the current CU in the view direction and its adjacent blocks all select the merge mode as the best coding mode, and in the 2N×2N partition mode, the rate-distortion cost obtained by using the merge-skip mode encoding of the current CU is better than using the merge mode. When the rate-distortion cost obtained by mode encoding, the current CU only checks the merge mode in all PU partition modes, and skips other encoding modes. This method can reduce the coding complexity of B frames to a certain extent, but because it does not make full use of the redundant information between viewpoints, it can only cover a small part of CUs in each frame of images, resulting in most of them choosing the merge mode as the best coding mode The CU still needs to check all the coding modes to get the best coding mode, and the coding efficiency still needs to be improved. For a P frame, since the reference frame in the view direction is an I frame, which is coded in intra-frame prediction mode, all CUs in the texture map that use the merge mode as the best coding mode do not meet the fast judgment conditions of the merge mode, and this method fails , the coding complexity of P frames is not improved.

本发明基于3D-HEVC,提出一种基于视点间编码模式相关性和CU划分层次间编码模式相关性的帧间编码合并模式快速决策方法,在保证编码质量的前提下提高选择合并模式作为最佳编码模式的CU的预判率,有效地降低编码复杂度。Based on 3D-HEVC, the present invention proposes a fast decision-making method for inter-coding merging modes based on inter-view coding mode correlation and CU partition layer coding mode correlation, and improves the choice of merging mode as the best under the premise of ensuring coding quality. The prediction rate of the CU in the encoding mode can effectively reduce the encoding complexity.

发明内容Contents of the invention

本发明所要解决的技术问题是针对3D视频非独立视点纹理图的图像帧编码复杂度高的问题,提供一种由视点间编码模式的相关性和CU划分层次间编码模式的相关性来快速判定合并模式的方法,在保证编码质量的情况下有效地降低编码复杂度。The technical problem to be solved by the present invention is to solve the problem of high coding complexity of the image frame of the 3D video non-independent viewpoint texture map, and to provide a fast judgment by the correlation between the coding modes between the viewpoints and the coding mode between the CU division levels The method of merging modes can effectively reduce the coding complexity while ensuring the coding quality.

本发明解决上述技术问题采用的技术方案为:一种3D-HEVC帧间编码合并模式快速决策方法,针对3D视频非独立视点纹理图设计快速算法。本发明的技术方案流程如图3所示。定义Jskip(CUcur)表示当前CU采用合并-跳过模式编码得到的率失真代价,Jmerge(CUcur)表示当前CU采用合并模式编码得到的率失真代价。本发明的方法包含如下步骤:The technical solution adopted by the present invention to solve the above technical problems is: a fast decision-making method for merging modes of 3D-HEVC inter-frame coding, and a fast algorithm is designed for 3D video non-independent viewpoint texture maps. The flow chart of the technical solution of the present invention is shown in FIG. 3 . Define J skip (CU cur ) to indicate the rate-distortion cost obtained by encoding the current CU in the merge-skip mode, and J merge (CU cur ) to indicate the rate-distortion cost obtained by encoding the current CU in the merge mode. Method of the present invention comprises the steps:

1)从非独立视点的纹理图中提取需要编码的CU。1) Extract the CU to be coded from the texture map of the non-independent view.

2)当前CU在2N×2N划分模式下检查合并模式和合并-跳过模式。2) The current CU checks merge mode and merge-skip mode in 2N×2N partition mode.

3)判断当前CU所在帧是P帧还是B帧。3) Determine whether the frame where the current CU is located is a P frame or a B frame.

4)通过上一步判断,如果得到的结果是P帧,判断当前CU的划分层次是否为3;4) Through the judgment of the previous step, if the obtained result is a P frame, judge whether the division level of the current CU is 3;

如果当前CU的划分层次为3,即当前CU的大小为8×8时,判断是否同时满足条件a和条件b:If the division level of the current CU is 3, that is, the size of the current CU is 8×8, determine whether condition a and condition b are satisfied at the same time:

条件a.上一划分层次的CU采用合并模式作为最佳编码模式。Condition a. The merge mode is used as the best coding mode for the CU at the previous split level.

条件b.在2N×2N划分模式下,Jskip(CUcur)<Jmerge(CUcur)。Condition b. In the 2N×2N division mode, J skip (CU cur )<J merge (CU cur ).

如果条件a和条件b同时成立,则当前CU在2N×N,N×2N,N×N,2N×nU,2N×nD,nL×2N和nR×2N划分模式下只检查合并模式,跳过其他编码模式;否则,当前CU检查所有编码模式。If condition a and condition b hold at the same time, the current CU only checks the merge mode in 2N×N, N×2N, N×N, 2N×nU, 2N×nD, nL×2N and nR×2N partition modes, skip other encoding modes; otherwise, the current CU checks all encoding modes.

如果当前CU的划分层次为0~2,即当前CU的大小为64×64、32×32或16×16时,检查所有编码模式。If the division level of the current CU is 0-2, that is, when the size of the current CU is 64×64, 32×32 or 16×16, all coding modes are checked.

5)通过步骤3的判断,如果得到的结果是B帧,通过由相邻块得到的视差矢量(DoNBDV)确定当前CU在视点方向的5个参考块,包括当前CU在视点方向的对应块及其4个相邻块。判断当前CU是否同时满足条件c和条件d:5) Through the judgment of step 3, if the obtained result is a B frame, determine the five reference blocks of the current CU in the direction of the viewpoint through the disparity vector (DoNBDV) obtained from the adjacent blocks, including the corresponding block of the current CU in the direction of the viewpoint and its 4 adjacent blocks. Determine whether the current CU satisfies condition c and condition d at the same time:

条件c.视点方向参考帧中的任意一个参考块采用合并模式作为最佳编码模式。Condition c. Any reference block in the reference frame in the view direction adopts the merge mode as the best coding mode.

条件d.在2N×2N划分模式下,Jskip(CUcur)<Jmerge(CUcur)。Condition d. In the 2N×2N division mode, J skip (CU cur )<J merge (CU cur ).

如果条件c和条件d同时成立,则当前CU在2N×N,N×2N,N×N,2N×nU,2N×nD,nL×2N和nR×2N划分模式下只检查合并模式,跳过其他编码模式;否则,当前CU检查所有编码模式。If condition c and condition d are true at the same time, the current CU only checks the merge mode in 2N×N, N×2N, N×N, 2N×nU, 2N×nD, nL×2N and nR×2N partition modes, skip other encoding modes; otherwise, the current CU checks all encoding modes.

与现有技术相比,本发明的优点在于:传统的合并模式快速判定方法基于视点方向参考块的最佳编码模式判定当前CU的编码模式,只有当5个参考块同时采用合并模式作为最佳编码模式时,才能判定当前CU的最佳编码模式为合并模式,没有充分利用视点间的冗余信息;对于P帧,不能通过视点方向参考块判定出最佳编码模式为合并模式的CU,方法失效。本发明充分利用CU编码模式的视点间相关性和划分层次间相关性来预判采用合并模式作为最佳编码模式的CU。对于B帧,采用当前CU在视点方向参考帧中的对应块及其相邻块的最佳编码模式判定最佳编码模式为合并模式的CU;对于P帧,采用位于上一划分层次的CU的最佳编码模式判定当前划分层次下最佳编码模式为合并模式的CU。该方法可以在保持编码质量的同时,降低非独立视点纹理图的编码复杂度,提高编码速度。Compared with the prior art, the present invention has the advantage that: the traditional method for quickly determining the merge mode determines the encoding mode of the current CU based on the best encoding mode of the reference block in the view direction, only when five reference blocks adopt the merge mode at the same time as the best When the encoding mode is selected, it can be determined that the best encoding mode of the current CU is merge mode, and the redundant information between views is not fully utilized; for P frames, the CU whose best encoding mode is merge mode cannot be determined through the view direction reference block, the method invalidated. The present invention makes full use of the inter-viewpoint correlation and the inter-division level correlation of the CU coding mode to predict the CU that adopts the merge mode as the best coding mode. For a B frame, use the best coding mode of the corresponding block of the current CU in the reference frame in the view direction and its adjacent blocks to determine the CU whose best coding mode is merge mode; for a P frame, use the best coding mode of the CU located in the previous division The best coding mode determines the CU whose best coding mode under the current division level is merge mode. This method can reduce the coding complexity of the non-independent viewpoint texture map and improve the coding speed while maintaining the coding quality.

实验结果表明,本发明的方法与3D-HEVC中采用的合并模式快速判定方法相比,能够在码流只有少许增加,编码质量基本不降低的情况下,节省平均20.4%的非独立视点纹理图编码时间。Experimental results show that, compared with the fast determination method of combining modes used in 3D-HEVC, the method of the present invention can save an average of 20.4% of non-independent viewpoint texture maps with only a small increase in code stream and basically no decrease in coding quality encoding time.

附图说明Description of drawings

图1是3D视频处理单元编码结构示意图;FIG. 1 is a schematic diagram of a coding structure of a 3D video processing unit;

图2是基于CU的PU划分模式示意图;FIG. 2 is a schematic diagram of a PU partition mode based on a CU;

图3是本发明方法的流程图;Fig. 3 is a flow chart of the inventive method;

图4是CU划分分层结构示意图;FIG. 4 is a schematic diagram of a hierarchical structure of CU division;

图5是当前CU在视点方向参考帧中的参考块示意图。FIG. 5 is a schematic diagram of a reference block in a view direction reference frame of the current CU.

具体实施方式detailed description

以下结合附图对本发明作进一步详细阐述。The present invention will be described in further detail below in conjunction with the accompanying drawings.

本发明针对3D视频非独立视点纹理图的CU设计帧间编码合并模式快速决策方法。在实际的使用中,编码器将调用本发明中的方法来完成具体的编码工作。图3为本发明方法的流程图。定义Jskip(CUcur)表示当前CU采用合并-跳过模式编码得到的率失真代价,Jmerge(CUcur)表示当前CU采用合并模式编码得到的率失真代价。本发明的方法步骤如下:The present invention designs a fast decision-making method for an inter-frame coding merging mode for a CU of a 3D video non-independent viewpoint texture map. In actual use, the encoder will call the method of the present invention to complete specific encoding work. Fig. 3 is a flowchart of the method of the present invention. Define J skip (CU cur ) to indicate the rate-distortion cost obtained by encoding the current CU in the merge-skip mode, and J merge (CU cur ) to indicate the rate-distortion cost obtained by encoding the current CU in the merge mode. Method steps of the present invention are as follows:

第一步:根据编码器的配置文件读入视频序列,通过配置文件中的参数信息配置编码器。Step 1: Read in the video sequence according to the configuration file of the encoder, and configure the encoder through the parameter information in the configuration file.

第二步:从非独立视点的纹理图中按顺序提取出需要编码的CU。Step 2: sequentially extract the CUs to be coded from the texture map of the non-independent viewpoint.

第三步:当前CU在2N×2N划分模式下检查合并模式和合并-跳过模式。Step 3: The current CU checks merge mode and merge-skip mode in 2N×2N partition mode.

第四步:判断当前CU所在帧是P帧还是B帧。Step 4: Determine whether the frame where the current CU is located is a P frame or a B frame.

第五步:通过上一步判断,如果得到的结果是P帧,判断当前CU的划分层次是否为3;Step 5: Judging by the previous step, if the obtained result is a P frame, judge whether the division level of the current CU is 3;

1)如果当前CU的划分层次为3,即当前CU的大小为8×8时,判断是否同时1) If the division level of the current CU is 3, that is, when the size of the current CU is 8×8, determine whether to

满足条件a和条件b:Condition a and condition b are met:

条件a.上一划分层次的CU采用合并模式作为最佳编码模式。Condition a. The merge mode is used as the best coding mode for the CU at the previous split level.

条件b.在2N×2N划分模式下Jskip(CUcur)<Jmerge(CUcur)。Condition b. J skip (CU cur )<J merge (CU cur ) in the 2N×2N division mode.

其中,条件a中提到的上一划分层次的CU表示位于上一划分层次且满足在当前层划分后得到的4个8×8大小的CU中包含当前CU的大小为16×16的CU,如图4所示。如果条件a和条件b同时成立,则当前CU在2N×N,N×2N,N×N,2N×nU,2N×nD,nL×2N和nR×2N划分模式下只检查合并模式,跳过其他编码模式,选择率失真代价最小的编码模式作为最佳编码模式;否则,当前CU检查所有编码模式,选择率失真代价最小的编码模式作为最佳编码模式。2)如果当前CU的划分层次为0~2,即当前CU的大小为64×64、32×32或16×16Among them, the CU of the previous division level mentioned in condition a means that the CU of the size of the current CU is 16×16 among the four 8×8 CUs obtained after the division of the current level, which is located at the previous division level, As shown in Figure 4. If condition a and condition b hold at the same time, the current CU only checks the merge mode in 2N×N, N×2N, N×N, 2N×nU, 2N×nD, nL×2N and nR×2N partition modes, skip For other coding modes, the coding mode with the smallest rate-distortion cost is selected as the best coding mode; otherwise, the current CU checks all coding modes, and the coding mode with the smallest rate-distortion cost is selected as the best coding mode. 2) If the division level of the current CU is 0~2, that is, the size of the current CU is 64×64, 32×32 or 16×16

时,检查所有编码模式,选择率失真代价最小的编码模式作为最佳编码模式。When , all coding modes are checked, and the coding mode with the smallest rate-distortion cost is selected as the best coding mode.

第六步:通过第四步的判断,如果得到的结果是B帧,通过由相邻块得到的视差矢量(DoNBDV)确定当前CU在视点方向的5个参考块,包括当前CU在视点方向的对应块及其相邻的左边块、上边块、右边块和下边块,如图5所示。其中,当前CU在视点方向的对应块是由DoNBDV得到的当前CU在视点方向参考帧中的视差补偿块。判断当前CU是否同时满足条件c和条件d:Step 6: Through the judgment of the fourth step, if the obtained result is a B frame, determine the five reference blocks of the current CU in the direction of the viewpoint through the disparity vector (DoNBDV) obtained from the adjacent block, including the current CU in the direction of the viewpoint The corresponding block and its adjacent left block, upper block, right block and lower block are shown in Figure 5. Wherein, the corresponding block of the current CU in the view direction is the disparity compensation block of the current CU in the view direction reference frame obtained by DoNBDV. Determine whether the current CU satisfies condition c and condition d at the same time:

条件c.视点方向参考帧中的任意一个参考块采用合并模式作为最佳编码模式。Condition c. Any reference block in the reference frame in the view direction adopts the merge mode as the best coding mode.

条件d.在2N×2N划分模式下Jskip(CUcur)<Jmerge(CUcur)。Condition d. J skip (CU cur )<J merge (CU cur ) in the 2N×2N division mode.

如果条件c和条件d同时成立,则当前CU在2N×N,N×2N,N×N,2N×nU,2N×nD,nL×2N和nR×2N划分模式下只检查合并模式,跳过其他编码模式,选择率失真代价最小的编码模式作为最佳编码模式;否则,当前CU检查所有编码模式,选择率失真代价最小的编码模式作为最佳编码模式。If condition c and condition d are true at the same time, the current CU only checks the merge mode in 2N×N, N×2N, N×N, 2N×nU, 2N×nD, nL×2N and nR×2N partition modes, skip For other coding modes, the coding mode with the smallest rate-distortion cost is selected as the best coding mode; otherwise, the current CU checks all coding modes, and the coding mode with the smallest rate-distortion cost is selected as the best coding mode.

为了检验本发明所提出的方法的性能,将本发明的方法与3D-HEVC中的合并模式快速判定方法进行比较。实验平台为HTM-10.0,测试序列为Balloons,Kendo,Newspaper,GT_Fly,Pozan_Hall2和Poznan_Street序列,包括1024×768和1920×1088两种分辨率。采用(25,34),(30,39),(35,42)和(40,45)4种QP组合。共编码3个视点,包含1个独立视点(参考视点)和2个非独立视点(测试视点),每个视点编码长度为10s的视频。实验条件及实验参数均按照JCT-3V公布的通用测试条件进行。所有实验在配置为Intel(R)Core(TM)i7-3770 CPU,8GB RAM的PC上独立执行。In order to test the performance of the method proposed in the present invention, the method of the present invention is compared with the fast judgment method of the merge mode in 3D-HEVC. The experimental platform is HTM-10.0, and the test sequences are Balloons, Kendo, Newspaper, GT_Fly, Pozan_Hall2 and Poznan_Street sequences, including two resolutions of 1024×768 and 1920×1088. Four QP combinations (25, 34), (30, 39), (35, 42) and (40, 45) are used. A total of 3 viewpoints are encoded, including 1 independent viewpoint (reference viewpoint) and 2 dependent viewpoints (test viewpoint), and each viewpoint encodes a video with a length of 10s. The experimental conditions and experimental parameters are carried out in accordance with the general test conditions published by JCT-3V. All experiments were performed independently on a PC configured with an Intel(R) Core(TM) i7-3770 CPU and 8GB RAM.

表1为本发明方法与3D-HEVC中采用的方法的编码性能比较结果。从表中可以看出,本发明方法与3D-HEVC中的合并模式快速判定方法相比,只有平均0.3%,0.3%和0.0%的BD-Rate增加,基本上看不出编码质量的下降,并且本发明方法能够平均节省6.5%的总编码时间以及20.4%的非独立视点纹理图编码时间。Table 1 shows the coding performance comparison results between the method of the present invention and the method adopted in 3D-HEVC. It can be seen from the table that the method of the present invention has only an average BD-Rate increase of 0.3%, 0.3% and 0.0% compared with the fast determination method of the merge mode in 3D-HEVC, and basically no decline in encoding quality can be seen. And the method of the present invention can save 6.5% of the total coding time and 20.4% of the coding time of the dependent viewpoint texture map on average.

表1不同方法的编码性能结果比较Table 1 Comparison of encoding performance results of different methods

Claims (4)

1.一种3D-HEVC帧间编码合并模式快速决策方法,定义Jskip(CUcur)表示当前CU采用合并-跳过模式编码得到的率失真代价,Jmerge(CUcur)表示当前CU采用合并模式编码得到的率失真代价,其特征在于:包括以下步骤, 1. A fast decision-making method for merging mode of 3D-HEVC inter-frame coding, defining J skip (CU cur ) to represent the rate-distortion cost obtained by merging-skip mode encoding of the current CU, and J merge (CU cur ) to represent the merging of the current CU The rate-distortion cost obtained by mode encoding is characterized in that it includes the following steps, 1)从非独立视点的纹理图中按顺序提取出需要编码的CU; 1) Extract the CUs to be coded in order from the texture map of the non-independent viewpoint; 2)当前CU在2N×2N划分模式下检查合并模式和合并-跳过模式; 2) The current CU checks the merge mode and the merge-skip mode in the 2N×2N partition mode; 3)判断CU所在帧是P帧还是B帧; 3) Determine whether the frame where the CU is located is a P frame or a B frame; 4)通过上一步判断,如果得到的结果是P帧,判断当前CU的划分层次是否为3; 4) Through the judgment of the previous step, if the obtained result is a P frame, judge whether the division level of the current CU is 3; 如果当前CU的划分层次为3,即当前CU的大小为8×8时,判断是否同时满足条件a和条件b: If the division level of the current CU is 3, that is, the size of the current CU is 8×8, determine whether condition a and condition b are satisfied at the same time: 条件a.上一划分层次的CU采用合并模式作为最佳编码模式; Condition a. The CU of the previous division level adopts the merge mode as the best coding mode; 条件b.在2N×2N划分模式下,Jskip(CUcur)<Jmerge(CUcur); Condition b. In the 2N×2N division mode, J skip (CU cur )<J merge (CU cur ); 如果条件a和条件b同时成立,则当前CU在2N×N,N×2N,N×N,2N×nU,2N×nD,nL×2N和nR×2N划分模式下只检查合并模式,跳过其他编码模式,选择率失真代价最小的编码模式作为最佳编码模式;否则,当前CU检查所有编码模式,选择率失真代价最小的编码模式作为最佳编码模式; If condition a and condition b hold at the same time, the current CU only checks the merge mode in 2N×N, N×2N, N×N, 2N×nU, 2N×nD, nL×2N and nR×2N partition modes, skip For other coding modes, select the coding mode with the smallest rate-distortion cost as the best coding mode; otherwise, the current CU checks all coding modes, and select the coding mode with the smallest rate-distortion cost as the best coding mode; 如果当前CU的划分层次为0~2,即当前CU的大小为64×64、32×32或16×16时,检查所有编码模式,选择率失真代价最小的编码模式作为最佳编码模式; If the division level of the current CU is 0 to 2, that is, when the size of the current CU is 64×64, 32×32 or 16×16, check all coding modes, and select the coding mode with the smallest rate-distortion cost as the best coding mode; 5)通过第3步的判断,如果得到的结果是B帧,通过由相邻块得到的视差矢量确定当前CU在视点方向的5个参考块;判断当前CU是否同时满足条件c和条件d: 5) Through the judgment in step 3, if the obtained result is a B frame, determine the five reference blocks of the current CU in the viewpoint direction through the disparity vector obtained from the adjacent block; judge whether the current CU satisfies condition c and condition d at the same time: 条件c.视点方向参考帧中的任意一个参考块采用合并模式作为最佳编码模式; Condition c. Any reference block in the reference frame in the view direction adopts the merge mode as the best coding mode; 条件d.在2N×2N划分模式下,Jskip(CUcur)<Jmerge(CUcur); Condition d. In the 2N×2N division mode, J skip (CU cur )<J merge (CU cur ); 如果条件c和条件d同时成立,则当前CU在2N×N,N×2N,N×N,2N×nU,2N×nD,nL×2N和nR×2N划分模式下只检查合并模式,跳过其他编码模式,选择率失真代价最小的编码模式作为最佳编码模式;否则,当前CU检查所有编码模式,选择率失真代价最小的编码模式作为最佳编码模式。 If condition c and condition d are true at the same time, the current CU only checks the merge mode in 2N×N, N×2N, N×N, 2N×nU, 2N×nD, nL×2N and nR×2N partition modes, skip For other coding modes, the coding mode with the smallest rate-distortion cost is selected as the best coding mode; otherwise, the current CU checks all coding modes, and the coding mode with the smallest rate-distortion cost is selected as the best coding mode. 2.根据权利要求1所述的一种3D-HEVC帧间编码合并模式快速决策方法,其特征在于:所述步骤4中上一划分层次的CU表示位于上一划分层次且满足在当前层划分后得到的4个8×8大小的CU中包含当前CU的大小为16×16的CU。 2. A fast decision-making method for 3D-HEVC inter-frame coding merging mode according to claim 1, characterized in that: in step 4, the CU at the previous division level indicates that it is located at the previous division level and satisfies the requirements of the division at the current level. The four obtained CUs with a size of 8×8 include a CU with a size of 16×16 of the current CU. 3.根据权利要求1所述的一种3D-HEVC帧间编码合并模式快速决策方法,其特征在于:所述步骤5中当前CU在视点方向的5个参考块包括当前CU在视点方向的对应块及其相邻的左边块、上边块、右边块和下边块;其中,当前CU在视点方向的对应块是由DoNBDV得到的当前CU在视点方向参考帧中的视差补偿块。 3. A fast decision-making method for 3D-HEVC inter-frame coding merging mode according to claim 1, characterized in that: in the step 5, the five reference blocks of the current CU in the direction of the viewpoint include the corresponding blocks of the current CU in the direction of the viewpoint block and its adjacent left block, upper block, right block and lower block; wherein, the corresponding block of the current CU in the view direction is the disparity compensation block of the current CU in the view direction reference frame obtained by DoNBDV. 4.根据权利要求1所述的一种3D-HEVC帧间编码合并模式快速决策方法,其特征在于:在实际的使用中,编码器将调用本发明中的方法来完成具体的编码工作;定义Jskip(CUcur)表示当前CU采用合并-跳过模式编码得到的率失真代价,Jmerge(CUcur)表示当前CU采用合并模式编码得到的率失真代价;步骤如下, 4. a kind of 3D-HEVC inter-frame encoding merge mode fast decision-making method according to claim 1 is characterized in that: in actual use, encoder will call the method in the present invention to complete specific encoding work; definition J skip (CU cur ) indicates the rate-distortion cost obtained by encoding the current CU using the merge-skip mode, and J merge (CU cur ) indicates the rate-distortion cost obtained by encoding the current CU using the merge mode; the steps are as follows, 第一步:根据编码器的配置文件读入视频序列,通过配置文件中的参数信息配置编码器; Step 1: Read in the video sequence according to the configuration file of the encoder, and configure the encoder through the parameter information in the configuration file; 第二步:从非独立视点的纹理图中按顺序提取出需要编码的CU; Step 2: Extract the CUs to be coded sequentially from the texture map of the non-independent viewpoint; 第三步:当前CU在2N×2N划分模式下检查合并模式和合并-跳过模式; Step 3: The current CU checks the merge mode and the merge-skip mode in the 2N×2N partition mode; 第四步:判断当前CU所在帧是P帧还是B帧; Step 4: Determine whether the frame where the current CU is located is a P frame or a B frame; 第五步:通过上一步判断,如果得到的结果是P帧,判断当前CU的划分层次是否为3; Step 5: Judging by the previous step, if the obtained result is a P frame, judge whether the division level of the current CU is 3; 1)如果当前CU的划分层次为3,即当前CU的大小为8×8时,判断是否同时满足条件a和条件b: 1) If the division level of the current CU is 3, that is, when the size of the current CU is 8×8, determine whether condition a and condition b are satisfied at the same time: 条件a.上一划分层次的CU采用合并模式作为最佳编码模式; Condition a. The CU of the previous division level adopts the merge mode as the best coding mode; 条件b.在2N×2N划分模式下Jskip(CUcur)<Jmerge(CUcur); Condition b. J skip (CU cur )<J merge (CU cur ) in 2N×2N division mode; 如果条件a和条件b同时成立,则当前CU在2N×N,N×2N,N×N,2N×nU,2N×nD,nL×2N和nR×2N划分模式下只检查合并模式,跳过其他编码模式,选择率失真代价最小的编码模式作为最佳编码模式;否则,当前CU检查所有编码模式,选择率失真代价最小的编码模式作为最佳编码模式; If condition a and condition b hold at the same time, the current CU only checks the merge mode in 2N×N, N×2N, N×N, 2N×nU, 2N×nD, nL×2N and nR×2N partition modes, skip For other coding modes, select the coding mode with the smallest rate-distortion cost as the best coding mode; otherwise, the current CU checks all coding modes, and select the coding mode with the smallest rate-distortion cost as the best coding mode; 2)如果当前CU的划分层次为0~2,即当前CU的大小为64×64、32×32或16×16时,检查所有编码模式,选择率失真代价最小的编码模式作为最佳编码模式; 2) If the division level of the current CU is 0~2, that is, when the size of the current CU is 64×64, 32×32 or 16×16, check all coding modes, and select the coding mode with the smallest rate-distortion cost as the best coding mode ; 第六步:通过第四步的判断,如果得到的结果是B帧,通过由相邻块得到的视差矢量确定当前CU在视点方向的5个参考块;判断当前CU是否同时满足条件c和条件d: Step 6: Through the judgment of the fourth step, if the obtained result is a B frame, determine the 5 reference blocks of the current CU in the viewpoint direction through the disparity vector obtained from the adjacent block; judge whether the current CU satisfies the condition c and the condition at the same time d: 条件c.视点方向参考帧中的任意一个参考块采用合并模式作为最佳编码模式; Condition c. Any reference block in the reference frame in the view direction adopts the merge mode as the best coding mode; 条件d.在2N×2N划分模式下Jskip(CUcur)<Jmerge(CUcur); Condition d. J skip (CU cur )<J merge (CU cur ) in 2N×2N division mode; 如果条件c和条件d同时成立,则当前CU在2N×N,N×2N,N×N,2N×nU,2N×nD,nL×2N和nR×2N划分模式下只检查合并模式,跳过其他编码模式,选 择率失真代价最小的编码模式作为最佳编码模式;否则,当前CU检查所有编码模式,选择率失真代价最小的编码模式作为最佳编码模式。 If condition c and condition d are true at the same time, the current CU only checks the merge mode in 2N×N, N×2N, N×N, 2N×nU, 2N×nD, nL×2N and nR×2N partition modes, skip For other coding modes, the coding mode with the smallest rate-distortion cost is selected as the best coding mode; otherwise, the current CU checks all coding modes, and the coding mode with the smallest rate-distortion cost is selected as the best coding mode.
CN201410802175.4A 2014-12-21 2014-12-21 A kind of 3D HEVC interframe encodes merging patterns high-speed decision method Active CN104539970B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410802175.4A CN104539970B (en) 2014-12-21 2014-12-21 A kind of 3D HEVC interframe encodes merging patterns high-speed decision method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410802175.4A CN104539970B (en) 2014-12-21 2014-12-21 A kind of 3D HEVC interframe encodes merging patterns high-speed decision method

Publications (2)

Publication Number Publication Date
CN104539970A true CN104539970A (en) 2015-04-22
CN104539970B CN104539970B (en) 2017-12-15

Family

ID=52855414

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410802175.4A Active CN104539970B (en) 2014-12-21 2014-12-21 A kind of 3D HEVC interframe encodes merging patterns high-speed decision method

Country Status (1)

Country Link
CN (1) CN104539970B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106210741A (en) * 2016-09-10 2016-12-07 天津大学 A kind of based on the deep video encryption algorithm of dependency between viewpoint
CN106954057A (en) * 2017-02-27 2017-07-14 华侨大学 A Fast Mode Selection Method for 3D-HEVC Inter-frame Prediction Based on Inter-View Correlation
CN107071479A (en) * 2017-04-28 2017-08-18 南京理工大学 3D video depth image predicting mode selecting methods based on dependency
CN107222742A (en) * 2017-07-05 2017-09-29 中南大学 Video coding Merge mode quick selecting methods and device based on time-space domain correlation
CN108924551A (en) * 2018-08-29 2018-11-30 腾讯科技(深圳)有限公司 The prediction technique and relevant device of video image coding pattern
CN109788283A (en) * 2019-01-08 2019-05-21 中南大学 A kind of coding unit dividing method and its system, device, storage medium
CN111918058A (en) * 2020-07-02 2020-11-10 北京大学深圳研究生院 Hardware-friendly intra prediction mode fast determination method, device and storage medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101873484A (en) * 2009-08-13 2010-10-27 杭州海康威视软件有限公司 Method and device for selecting coding mode in layered video coding
CN103051896A (en) * 2012-12-14 2013-04-17 华中科技大学 Mode skipping-based video frequency coding method and mode skipping-based video frequency coding system
US20130114687A1 (en) * 2011-11-07 2013-05-09 Sharp Laboratories Of America, Inc. Fixed intra run-level mode for cavlc in hevc
CN103297774A (en) * 2013-05-13 2013-09-11 清华大学深圳研究生院 Fast encoding method for B-frames in video encoding

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101873484A (en) * 2009-08-13 2010-10-27 杭州海康威视软件有限公司 Method and device for selecting coding mode in layered video coding
US20130114687A1 (en) * 2011-11-07 2013-05-09 Sharp Laboratories Of America, Inc. Fixed intra run-level mode for cavlc in hevc
CN103051896A (en) * 2012-12-14 2013-04-17 华中科技大学 Mode skipping-based video frequency coding method and mode skipping-based video frequency coding system
CN103297774A (en) * 2013-05-13 2013-09-11 清华大学深圳研究生院 Fast encoding method for B-frames in video encoding

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
宋雨新等: "基于分层B帧预测结构的多视点视频编码算法", 《计算机工程与应用》 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106210741A (en) * 2016-09-10 2016-12-07 天津大学 A kind of based on the deep video encryption algorithm of dependency between viewpoint
CN106210741B (en) * 2016-09-10 2018-12-21 天津大学 A kind of deep video encryption algorithm based on correlation between viewpoint
CN106954057B (en) * 2017-02-27 2018-08-28 华侨大学 A kind of 3D-HEVC inter-prediction fast schema selection methods based on correlation between viewpoint
CN106954057A (en) * 2017-02-27 2017-07-14 华侨大学 A Fast Mode Selection Method for 3D-HEVC Inter-frame Prediction Based on Inter-View Correlation
CN107071479B (en) * 2017-04-28 2020-06-05 南京理工大学 Depth image prediction mode selection method for 3D video based on viewpoint correlation
CN107071479A (en) * 2017-04-28 2017-08-18 南京理工大学 3D video depth image predicting mode selecting methods based on dependency
CN107222742A (en) * 2017-07-05 2017-09-29 中南大学 Video coding Merge mode quick selecting methods and device based on time-space domain correlation
CN107222742B (en) * 2017-07-05 2019-07-26 中南大学 Method and device for fast selection of Merge mode in video coding based on spatiotemporal correlation
CN108924551A (en) * 2018-08-29 2018-11-30 腾讯科技(深圳)有限公司 The prediction technique and relevant device of video image coding pattern
CN108924551B (en) * 2018-08-29 2022-01-07 腾讯科技(深圳)有限公司 Method for predicting video image coding mode and related equipment
CN109788283A (en) * 2019-01-08 2019-05-21 中南大学 A kind of coding unit dividing method and its system, device, storage medium
CN109788283B (en) * 2019-01-08 2023-01-06 中南大学 A coding unit segmentation method and its system, device, and storage medium
CN111918058A (en) * 2020-07-02 2020-11-10 北京大学深圳研究生院 Hardware-friendly intra prediction mode fast determination method, device and storage medium
CN111918058B (en) * 2020-07-02 2022-10-28 北京大学深圳研究生院 Hardware-friendly intra prediction mode fast determination method, device and storage medium

Also Published As

Publication number Publication date
CN104539970B (en) 2017-12-15

Similar Documents

Publication Publication Date Title
CN104539970B (en) A kind of 3D HEVC interframe encodes merging patterns high-speed decision method
CN103248893B (en) From H.264/AVC standard to code-transferring method and transcoder thereof the fast frame of HEVC standard
CN102984521B (en) High-efficiency video coding inter-frame mode judging method based on temporal relativity
CN104796694B (en) Optimization intraframe video coding method based on video texture information
CN103796023B (en) H.265/HEVC transcoding method and transcoder based on H.264/AVC macro block structure and texture
CN108712648A (en) A kind of quick inner frame coding method of deep video
CN104768019B (en) A kind of adjacent parallax vector acquisition methods towards many deep videos of multi-texturing
CN103327327B (en) For the inter prediction encoding unit selection method of high-performance video coding HEVC
CN103442228B (en) Code-transferring method and transcoder thereof in from standard H.264/AVC to the fast frame of HEVC standard
CN106507116A (en) A 3D‑HEVC Coding Method Based on 3D Saliency Information and View Synthesis Prediction
CN108347605B (en) Quick decision-making method for 3D video depth image quad-tree coding structure division
CN101883284B (en) Video encoding/decoding method and system based on background modeling and optional differential mode
CN105898332B (en) For the fast deep figure frame mode decision method of 3D-HEVC coding standards
CN104469336B (en) Coding method for multi-view depth video signals
CN101729891A (en) Method for encoding multi-view depth video
CN104639940A (en) Quick HEVC (High Efficiency Video Coding) inter-frame prediction mode selection method
CN109756719A (en) Fast method for 3D-HEVC inter-frame based on CU partition Bayesian decision
CN110557646B (en) Intelligent inter-view coding method
CN110446052A (en) The quick CU depth selection method of depth map in a kind of 3D-HEVC frame
CN101404766A (en) Multi-view point video signal encoding method
CN105681797A (en) Prediction residual based DVC-HEVC (Distributed Video Coding-High Efficiency Video Coding) video transcoding method
CN106791828B (en) Video transcoding method based on machine learning and its transcoder
CN102420990B (en) Multi-view video-oriented fast coding method
CN102710949B (en) Visual sensation-based stereo video coding method
CN106331727A (en) A Simplified Search Method for Deep Modeling Patterns

Legal Events

Date Code Title Description
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20221114

Address after: 100012 817, Floor 8, No. 101, Floor 3 to 8, Building 17, Rongchuang Road, Chaoyang District, Beijing

Patentee after: Beijing Ge Lei Information Technology Co.,Ltd.

Address before: 100124 No. 100 Chaoyang District Ping Tian Park, Beijing

Patentee before: Beijing University of Technology

TR01 Transfer of patent right