CN104539954A - Cascading method for speeding up high efficiency video coding (HEVC) - Google Patents
Cascading method for speeding up high efficiency video coding (HEVC) Download PDFInfo
- Publication number
- CN104539954A CN104539954A CN201410719598.XA CN201410719598A CN104539954A CN 104539954 A CN104539954 A CN 104539954A CN 201410719598 A CN201410719598 A CN 201410719598A CN 104539954 A CN104539954 A CN 104539954A
- Authority
- CN
- China
- Prior art keywords
- hevc
- pattern
- avc
- patterns
- current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 37
- 238000013507 mapping Methods 0.000 claims abstract description 29
- 238000005192 partition Methods 0.000 claims abstract description 14
- 230000008569 process Effects 0.000 claims abstract description 6
- 230000004075 alteration Effects 0.000 claims 1
- 238000005457 optimization Methods 0.000 abstract description 7
- 230000006872 improvement Effects 0.000 description 5
- 230000009466 transformation Effects 0.000 description 5
- 230000003044 adaptive effect Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000010187 selection method Methods 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000013139 quantization Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005477 standard model Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
Landscapes
- Compression Or Coding Systems Of Tv Signals (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种HEVC模式快速选择领域的方法,具体是一种级联H.264和HEVC编码器来加速HEVC编码的方法。The invention relates to a method in the field of HEVC mode rapid selection, in particular to a method for accelerating HEVC encoding by cascading H.264 and HEVC encoders.
背景技术Background technique
HEVC是高效视频编码标准的简称,是继H.264/AVC之后的新一代视频编码标准,由ITU-T的VCEG和ISO/IEC的MPEG组织组成的联合协作视频编码组(JCT-VC,Joint Collaborative Team on Video Coding)制定,已于2013年初发布。HEVC采用了基于块的混合编码框架,其主要包括了帧内预测、帧间预测、变换与量化、熵编码、反量化与反变换以及环路滤波等技术。与传统的编码框架相比,HEVC采用了灵活的四叉树编码块划分、大块预测和变换、多种类型的预测块和变换块、自适应运动参数编码以及自适应环路滤波等新技术。这些新的编码技术有效地提高了HEVC的编码性能,但是也引入了极大的计算量,不适合实际的应用。HEVC is the abbreviation of High Efficiency Video Coding Standard. It is a new generation of video coding standard after H.264/AVC. Collaborative Team on Video Coding) and released in early 2013. HEVC adopts a block-based hybrid coding framework, which mainly includes technologies such as intra prediction, inter prediction, transformation and quantization, entropy coding, inverse quantization and inverse transformation, and loop filtering. Compared with the traditional coding framework, HEVC adopts new technologies such as flexible quadtree coding block division, large block prediction and transformation, multiple types of prediction blocks and transformation blocks, adaptive motion parameter coding, and adaptive loop filtering. . These new coding techniques effectively improve the coding performance of HEVC, but also introduce a huge amount of calculation, which is not suitable for practical applications.
在HEVC的模式选择过程中,标准的模型方法是穷举了所有可能的编码单元、预测单元和变换单元的组合,并计算出最少的率失真来选择最优的编码模式。这种方法耗费了大量的计算在最后那些证明不是最优的模式上,所以为了推进HEVC发展和实际应用的关键所在,在保持HEVC视频编码的性能的前提下改进其模式选择方法是非常有必要的。一般来说模式选择的改进是利用编码单元、预测单元和变换单位之间存在的时间和空间冗余来实现的。这种冗余性的存在具有隐秘性,需要不断的去发掘,而模式选择方法的优化改进对于HEVC的实际应有有着重要的现实意义。In the mode selection process of HEVC, the standard model method is to exhaustively enumerate all possible combinations of coding units, prediction units and transformation units, and calculate the least rate-distortion to select the optimal coding mode. This method consumes a lot of calculations on the last modes that prove to be not optimal, so in order to promote the development of HEVC and the key to practical applications, it is very necessary to improve its mode selection method while maintaining the performance of HEVC video coding of. In general, improvements in mode selection are achieved by exploiting the temporal and spatial redundancies that exist among coding units, prediction units, and transform units. The existence of this redundancy is hidden and needs to be continuously explored, and the optimization and improvement of the mode selection method has important practical significance for the actual application of HEVC.
发明内容Contents of the invention
针对现有技术的不足,本发明提供一种加速HEVC编码速度的级联方法,采用全新的编码器的框架用以解决HEVC模式的快速选择问题,通过模式映射的方法将H.264/AVC的宏块划分结果与HEVC可能的CU(编码单元)模式选择集结合起来,为HEVC的快速模式选择问题提供了一种全新的思路。Aiming at the deficiencies of the prior art, the present invention provides a cascading method for accelerating HEVC encoding speed, adopts a brand-new encoder framework to solve the problem of fast selection of HEVC mode, and converts the H.264/AVC mode through the method of mode mapping Combining the macroblock partition results with the HEVC possible CU (Coding Unit) mode selection set provides a new way of thinking for HEVC's fast mode selection problem.
为实现上述目的,本发明采用以下技术方案:本发明设计了一种新的编码器的框架模式用来加速HEVC的编码速度,即:首先使用H.264/AVC对当前帧和HEVC的重建帧进行预编码,从预编码结果中提取出视频的宏块划分结果;然后通过模式映射将H.264的宏块划分结果映射为HEVC的可能模式集;最后在该集合中使用率失真优化搜索HEVC的最佳模式。In order to achieve the above object, the present invention adopts the following technical solutions: the present invention designs a new frame mode of the encoder to accelerate the encoding speed of HEVC, that is: first use H.264/AVC to reconstruct the frame of the current frame and HEVC Pre-encoding is performed, and the macroblock division result of the video is extracted from the pre-encoding result; then the macroblock division result of H.264 is mapped to the possible mode set of HEVC through mode mapping; finally, HEVC is searched using rate-distortion optimization in this set best mode.
本发明所述的加速HEVC编码速度的级联方法,该方法包含以下步骤:The cascading method of accelerating HEVC coding speed described in the present invention, the method comprises the following steps:
步骤1,对当前帧进行预编码,得到最优宏块划分;Step 1, precoding the current frame to obtain the optimal macroblock division;
首先利用H.264编码器对输入帧进行预编码得到该帧的最优宏块划分结果。在预编码过程中,编码器的框架采用H.264/AVC的混合编码框架,输入参数为当前帧和HEVC的重建帧,HEVC的重建帧将会被作为当前帧的参考帧以用于运动估计和宏块划分。First, the H.264 encoder is used to pre-encode the input frame to obtain the optimal macroblock division result of the frame. In the pre-encoding process, the framework of the encoder adopts the H.264/AVC hybrid coding framework, and the input parameters are the current frame and the reconstructed frame of HEVC, and the reconstructed frame of HEVC will be used as the reference frame of the current frame for motion estimation and macroblock division.
步骤2.将H.264/AVC的最优宏块划分映射为HEVC模式集Step 2. Map the optimal macroblock division of H.264/AVC to the HEVC mode set
通过映射的方法将H.264/AVC获得的最优宏块划分的结果映射为HEVC的最优可能模式集。对于不同大小的CU,采取不同的模式映射策略来选择最合适的CU模式集;The result of optimal macroblock division obtained by H.264/AVC is mapped to the optimal possible mode set of HEVC by a mapping method. For CUs of different sizes, different mode mapping strategies are adopted to select the most appropriate CU mode set;
B.64×64层B. 64×64 layers
对于64×64的CU,仅使用SKIP和2N×2N的预测模式,因为实验证明仅使用此两种模式对于编码器的性能影响甚微,但却极大了减少了编码器的复杂度。For 64×64 CUs, only SKIP and 2N×2N prediction modes are used, because experiments have shown that only using these two modes has little impact on the performance of the encoder, but it greatly reduces the complexity of the encoder.
C.32x32层C. 32x32 layers
对于32×32层,依据该CU内的四个MB的类型将CU分成五种不同的类型,对于每种类型的CU,都设计了不同的映射关系以保证映射的可能模式集最优。五种CU的模式和其对应的映射如下所示:For the 32×32 layer, the CU is divided into five different types according to the types of the four MBs in the CU. For each type of CU, different mapping relationships are designed to ensure the optimal set of possible mapping modes. The modes of the five CUs and their corresponding mappings are as follows:
a)当前CU中包含3个或者4个模式为Inter16×16的MB(宏块)时,仅检测当前CU的Inter2N×2N模式。a) When the current CU contains 3 or 4 MBs (macroblocks) whose mode is Inter16×16, only the Inter2N×2N mode of the current CU is detected.
b)当前CU中左边两个MB的模式均为Inter16×16时,仅检测当前CU的Inter2N×2N和Inter2N×N模式。b) When the modes of the two left MBs in the current CU are both Inter16×16, only the Inter2N×2N and Inter2N×N modes of the current CU are detected.
c)当前CU中右边两个MB的模式均为Inter16×16时,仅检测当前CU的Inter2N×2N和InterN×2N模式。c) When the modes of the two right MBs in the current CU are both Inter16×16, only the Inter2N×2N and InterN×2N modes of the current CU are detected.
d)当前CU中的四个MB的模式均为Intra16×16时,仅检测当前CU的Intra2N×2N模式。d) When the modes of the four MBs in the current CU are all Intra16×16, only the Intra2N×2N mode of the current CU is detected.
e)对于其他情况,所有的模式都将会被检测以判断当前CU最适合的预测模式。e) For other cases, all modes will be checked to determine the most suitable prediction mode for the current CU.
D.16×16和8×8层D. 16×16 and 8×8 layers
对于16×16和8×8的CU,本发明采取不同的映射关系以得到最适合的PU集。其中对于16×16和8×8的CU,分别采取以下的映射关系:For 16×16 and 8×8 CUs, the present invention adopts different mapping relationships to obtain the most suitable PU set. Among them, for 16×16 and 8×8 CUs, the following mapping relationships are adopted respectively:
a)对于16×16的CU,H.264/AVC的SKIP模式映射为HEVC的SKIP/Merge模式;16×16模式映射为2N×2N和SKIP/Merge模式;H.264/AVC的16×8和8×16分别对应HEVC的SKIP/Merge、2N×2N以及对应的左右/上下矩形和不对称划分模式;对于8×8,HEVC将会检测所有的模式除了Intra和N×N模式,对于H.264/AVC中的Intra模式,HEVC将会检测所有模式。a) For 16×16 CU, H.264/AVC SKIP mode is mapped to HEVC SKIP/Merge mode; 16×16 mode is mapped to 2N×2N and SKIP/Merge mode; H.264/AVC 16×8 and 8×16 respectively correspond to HEVC’s SKIP/Merge, 2N×2N and corresponding left/right/upper and lower rectangle and asymmetric division modes; for 8×8, HEVC will detect all modes except Intra and N×N mode, for H Intra mode in .264/AVC, HEVC will detect all modes.
b)对于8×8的CU,H.264/AVC的SKIP模式映射为HEVC的SKIP/Merge模式;16×16模式映射为2N×2N和SKIP/Merge模式;H.264/AVC的16×8和8×16分别对应HEVC的SKIP/Merge、2N×2N以及对应的左右/上下矩形和不对称划分模式;对于8×8,HEVC将会检测所有的模式除了Intra模式,对于H.264/AVC中的Intra模式,HEVC将会检测所有模式。b) For 8×8 CU, H.264/AVC SKIP mode is mapped to HEVC SKIP/Merge mode; 16×16 mode is mapped to 2N×2N and SKIP/Merge mode; H.264/AVC 16×8 and 8×16 respectively correspond to HEVC’s SKIP/Merge, 2N×2N and corresponding left/right/upper and lower rectangle and asymmetric division modes; for 8×8, HEVC will detect all modes except Intra mode, for H.264/AVC Intra mode in HEVC will detect all modes.
步骤3.使用HEVC编码器来遍历映射不同大小CU的PU模式集,利用率失真优化获得最佳的CU和PU模式。Step 3. Use the HEVC encoder to traverse the PU mode sets that map different sizes of CUs, and use rate-distortion optimization to obtain the best CU and PU modes.
与现有技术相比,本发明具有如下的有益效果:Compared with the prior art, the present invention has the following beneficial effects:
本发明使用H.264/AVC进行预编码来获取当前帧的宏块划分结果;通过模式映射的方法将H.264/AVC的划分结果映射为HEVC的CU模式集;最后利用HEVC率失真优化从模式集中选择最优的CU和PU(预测单元)模式。本发明通过模式映射的方法缩小了HEVC的需要搜索的模式集,加速了HEVC的编码速度,同时利用了成熟的H.264/AVC编码器,具有良好的应用前景。The present invention uses H.264/AVC to perform precoding to obtain the macroblock division result of the current frame; the division result of H.264/AVC is mapped to the CU mode set of HEVC through the method of mode mapping; finally, HEVC rate-distortion optimization is used to optimize the The optimal CU and PU (prediction unit) modes are selected in the mode set. The invention narrows down the HEVC mode set that needs to be searched through the mode mapping method, accelerates the encoding speed of the HEVC, utilizes a mature H.264/AVC encoder, and has a good application prospect.
附图说明Description of drawings
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:Other characteristics, objects and advantages of the present invention will become more apparent by reading the detailed description of non-limiting embodiments made with reference to the following drawings:
图1为四种不同的CU(32×32)类型示意图;Figure 1 is a schematic diagram of four different CU (32×32) types;
图2是使用用于加速HEVC编码速度的级联了H.264/AVC的编码器框图;Figure 2 is a block diagram of an encoder using cascaded H.264/AVC for accelerating HEVC encoding speed;
图3是本发明实施过程中的例图。Fig. 3 is an illustration during the implementation of the present invention.
具体实施方式Detailed ways
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。The present invention will be described in detail below in conjunction with specific embodiments. The following examples will help those skilled in the art to further understand the present invention, but do not limit the present invention in any form. It should be noted that those skilled in the art can make several modifications and improvements without departing from the concept of the present invention. These all belong to the protection scope of the present invention.
此处结合本发明在加速HEVC编码速度的应用以描述,具体是讲本发明构建的级联编码器的框架、H.264/AVC和HEVC之间的模式映射应用于HEVC的编码过程中,具体框图如图1所示:首先介绍利用H.264/AVC进行预编码的步骤,然后将在此基础之上详细介绍不同CU大小的模式映射方法,最后HEVC最优模式的选择方法。Here, the application of the present invention in accelerating the encoding speed of HEVC is described. Specifically, the framework of the concatenated encoder constructed by the present invention and the mode mapping between H.264/AVC and HEVC are applied to the encoding process of HEVC. Specifically The block diagram is shown in Figure 1: firstly, the steps of precoding using H.264/AVC are introduced, and then the mode mapping method of different CU sizes will be introduced in detail on this basis, and finally, the selection method of the optimal mode of HEVC will be introduced.
步骤1,对当前帧进行预编码,得到最优宏块划分;Step 1, precoding the current frame to obtain the optimal macroblock division;
HEVC和H.264/AVC的编码框架均为混合编码框架,而H.264/AVC经过多年的发展之后已经得到了长足的发展,在编解码器优化方面已经做了很多优秀的工作。所以,在本发明中我们首先利用H.264编码器对输入帧进行预编码得到该帧的最优宏块划分结果。在预编码过程中,编码器的框架采用H.264/AVC的混合编码框架,输入参数为当前帧和HEVC的重建帧,HEVC的重建帧将会被作为当前帧的参考帧。The encoding frameworks of HEVC and H.264/AVC are both hybrid encoding frameworks, and H.264/AVC has made great progress after years of development, and has done a lot of excellent work in codec optimization. Therefore, in the present invention, we first use the H.264 encoder to pre-encode the input frame to obtain the optimal macroblock division result of the frame. In the pre-encoding process, the encoder framework adopts the H.264/AVC hybrid encoding framework, and the input parameters are the current frame and the reconstructed frame of HEVC, and the reconstructed frame of HEVC will be used as the reference frame of the current frame.
步骤2.将H.264/AVC的最优宏块划分映射为HEVC模式集;Step 2. The optimal macroblock division of H.264/AVC is mapped to the HEVC mode set;
HEVC为了提高编码效率,采用基于自适应四叉树结构的编码树单元(CTU),替代了H.264基于宏块的编码单元。在HEVC中,CTU的大小为64×64,并且可以自适应地以迭代方式进行四分,直到SCU(smallest coding unit),SCU的大小为8×8。而在H.264/AVC中,宏块(MB)的大小可以为16×16,8×8,4×4。在H.264/AVC中,帧间预测编码只支持7种宏块分割模式:16×16、16×8、8×16、8×8、8×4、4×8和4×4,而HEVC不仅支持这些对称的分割模式,称为2N×2N、2N×N和N×2N,而且还支持非对称的分割模式,称为:2N×nU、2N×nD、nL×2N和nR×2N。相比H.264固定宏块大小的编码单元,HEVC对编码图像的划分更为灵活,从而提供了更好的视频图像质量,这种差异性也直接导致了H.264到HEVC转码的高复杂度。In order to improve coding efficiency, HEVC adopts a coding tree unit (CTU) based on an adaptive quadtree structure to replace the macroblock-based coding unit of H.264. In HEVC, the size of the CTU is 64×64, and it can be adaptively and iteratively quartered until the SCU (smallest coding unit), and the size of the SCU is 8×8. In H.264/AVC, the size of a macroblock (MB) can be 16×16, 8×8, 4×4. In H.264/AVC, inter-frame predictive coding only supports 7 macroblock partition modes: 16×16, 16×8, 8×16, 8×8, 8×4, 4×8 and 4×4, while HEVC not only supports these symmetric partition modes, called 2N×2N, 2N×N, and N×2N, but also supports asymmetric partition modes, called: 2N×nU, 2N×nD, nL×2N, and nR×2N . Compared with H.264 coding units with a fixed macroblock size, HEVC is more flexible in dividing coded images, thus providing better video image quality. This difference also directly leads to the high cost of transcoding from H.264 to HEVC. the complexity.
本发明中,通过映射的方法来将H.264/AVC获得的最优宏块划分的结果映射为对于HEVC可能的最优模式集,对于不同层的CU,选择不同的映射方法来取得最优的结果;In the present invention, the result of the optimal macroblock division obtained by H.264/AVC is mapped to the optimal mode set possible for HEVC through the mapping method. For CUs of different layers, different mapping methods are selected to obtain the optimal mode set. the result of;
A.64×64层A. 64×64 layers
对于64×64的CU,我们仅使用SKIP和2N×2N的预测模式,因为实验证明仅使用此两种模式对于编码器的性能影响甚微,但却极大了减少了编码器的复杂度。For 64×64 CUs, we only use SKIP and 2N×2N prediction modes, because experiments have shown that only using these two modes has little impact on the performance of the encoder, but it greatly reduces the complexity of the encoder.
B.32x32层B. 32x32 layers
对于32×32层,我们依据该CU内的四个MB的类型将CU分成五种不同的类型,对于每种类型的CU,我们都会有不同的映射关系以保证效果的最优。五种CU的模式和其对应的映射如下所示:For the 32×32 layer, we divide the CU into five different types according to the types of the four MBs in the CU. For each type of CU, we will have different mapping relationships to ensure the optimal effect. The modes of the five CUs and their corresponding mappings are as follows:
a)当前CU中包含3个或者4个模式为Inter16×16的MB时,我们仅检测当前CU的Inter2N×2N模式。a) When the current CU contains 3 or 4 MBs whose mode is Inter16×16, we only detect the Inter2N×2N mode of the current CU.
b)当前CU中左边两个MB的模式均为Inter16×16时,我们仅检测当前CU的Inter2N×2N和Inter2N×N模式。b) When the modes of the two left MBs in the current CU are both Inter16×16, we only detect the Inter2N×2N and Inter2N×N modes of the current CU.
c)当前CU中右边两个MB的模式均为Inter16×16时,我们仅检测当前CU的Inter2N×2N和InterN×2N模式。c) When the modes of the two right MBs in the current CU are both Inter16×16, we only detect the Inter2N×2N and InterN×2N modes of the current CU.
d)当前CU中的四个MB的模式均为Intra16×16时,我们仅检测当前CU的Intra2N×2N模式。d) When the modes of the four MBs in the current CU are all Intra16×16, we only detect the Intra2N×2N mode of the current CU.
e)对于其他情况,所有的模式都将会被检测以判断当前CU最适合的预测模式。e) For other cases, all modes will be checked to determine the most suitable prediction mode for the current CU.
C.16×16和8×8层C. 16×16 and 8×8 layers
对于16×16和8×8的CU,本发明采取不同的映射关系以得到最适合的PU集。具体的映射模式如表一和表二所示:For 16×16 and 8×8 CUs, the present invention adopts different mapping relationships to obtain the most suitable PU set. The specific mapping modes are shown in Table 1 and Table 2:
表一:MB和CU之间的映射关系表(16×16)Table 1: Mapping relation table between MB and CU (16×16)
表二:MB和CU之间的映射关系表(8×8)Table 2: Mapping relation table between MB and CU (8×8)
步骤3.在得到HEVC的最优可能模式集之后,使用HEVC编码器来遍历映射不同大小CU的PU模式集,计算出不同模式的率失真代价,利用率失真优化来确定最佳的CU和PU模式。Step 3. After obtaining the best possible mode set of HEVC, use the HEVC encoder to traverse the PU mode set that maps different sizes of CUs, calculate the rate-distortion cost of different modes, and use the rate-distortion optimization to determine the best CU and PU model.
下表三是本发明在X265中的运行结果。X265是目前HEVC性能突出的开源编码器之一,x265完全支持HEVC标准并在多个方面进行了深入的优化。同时选择x264作为H.264/AVC编码器来进行当前帧的预编码,X264为当前性能最优秀的开源H.264/AVC编码器。Table 3 below is the running result of the present invention in X265. X265 is currently one of the open source encoders with outstanding HEVC performance. X265 fully supports the HEVC standard and has been deeply optimized in many aspects. At the same time, x264 is selected as the H.264/AVC encoder to pre-encode the current frame. X264 is the current open source H.264/AVC encoder with the best performance.
使用本发明的级联编码器的模式映射方法处理了测试序列集,实验结果显示本发明的方法能够映射出最优的可能模式集,在效率上也有着不错的提升,加速了HEVC的编码速度。表三给出了本发明的方法对于不同测试序列的性能和时间的变化。The test sequence set is processed by using the mode mapping method of the cascaded encoder of the present invention, and the experimental results show that the method of the present invention can map out the optimal possible mode set, which also has a good improvement in efficiency and accelerates the encoding speed of HEVC . Table 3 shows the performance and time variation of the method of the present invention for different test sequences.
表三:基于X265和X264的实验结果Table 3: Experimental results based on X265 and X264
本发明方法用于HEVC编码时,能有效的利用H.264/AVC的宏块划分结果,并将宏块划分结果映射为可用于HEVC的CU模式选择的可能模式集,减少需要计算的CU和PU模式,达到加速HEVC编码目的。When the method of the present invention is used for HEVC encoding, the macroblock division result of H.264/AVC can be effectively used, and the macroblock division result is mapped to a possible mode set that can be used for HEVC CU mode selection, reducing the CU and PU mode to achieve the purpose of accelerating HEVC encoding.
以上所述仅是本发明的优选实施方式,本发明的保护范围不仅局限于上述实施例,凡属于本发明思路下的技术方案均属于本发明的保护范畴。应当指出,对于本技术领域的技术人员来说,在不脱离本发明原理前提下的若干改进和润饰,这些改进和润饰也都应视为本发明的保护范围。The above descriptions are only preferred implementations of the present invention, and the protection scope of the present invention is not limited to the above-mentioned embodiments, and all technical solutions under the idea of the present invention belong to the protection category of the present invention. It should be pointed out that for those skilled in the art, some improvements and modifications without departing from the principle of the present invention should also be regarded as the protection scope of the present invention.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410719598.XA CN104539954B (en) | 2014-12-01 | 2014-12-01 | A kind of Cascading Methods of acceleration HEVC coding rates |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410719598.XA CN104539954B (en) | 2014-12-01 | 2014-12-01 | A kind of Cascading Methods of acceleration HEVC coding rates |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104539954A true CN104539954A (en) | 2015-04-22 |
CN104539954B CN104539954B (en) | 2017-12-15 |
Family
ID=52855408
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410719598.XA Expired - Fee Related CN104539954B (en) | 2014-12-01 | 2014-12-01 | A kind of Cascading Methods of acceleration HEVC coding rates |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104539954B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105872564A (en) * | 2016-05-27 | 2016-08-17 | 武汉拓宝科技股份有限公司 | Intra-frame prediction mode determination method and system for transcoding from H.264/AVC to H.265/HEVC |
CN107690069A (en) * | 2017-08-28 | 2018-02-13 | 中国科学院深圳先进技术研究院 | A kind of cascade method for video coding of data-driven |
CN108012154A (en) * | 2016-10-28 | 2018-05-08 | 北京金山云网络技术有限公司 | A kind of method for video coding and device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103248893A (en) * | 2013-05-10 | 2013-08-14 | 四川大学 | Method for quick inter-frame transcoding from H. 264/AVC standard to HEVC standard and transcoder thereof |
CN103442228A (en) * | 2013-08-19 | 2013-12-11 | 四川大学 | Quick frame inner transcoding method from H.264/AVC standard to HEVC standard and transcoder thereof |
CN103475880A (en) * | 2013-09-11 | 2013-12-25 | 浙江大学 | Method for low-complexity video transcoding from H.264 to HEVC based on statistic analysis |
CN103491334A (en) * | 2013-09-11 | 2014-01-01 | 浙江大学 | Video transcode method from H264 to HEVC based on region feature analysis |
CN103796023A (en) * | 2014-03-05 | 2014-05-14 | 武汉拓宝电子系统有限公司 | H.265/HEVC transcoding method and transcoder based on H.264/AVC macro block structure and texture |
-
2014
- 2014-12-01 CN CN201410719598.XA patent/CN104539954B/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103248893A (en) * | 2013-05-10 | 2013-08-14 | 四川大学 | Method for quick inter-frame transcoding from H. 264/AVC standard to HEVC standard and transcoder thereof |
CN103442228A (en) * | 2013-08-19 | 2013-12-11 | 四川大学 | Quick frame inner transcoding method from H.264/AVC standard to HEVC standard and transcoder thereof |
CN103475880A (en) * | 2013-09-11 | 2013-12-25 | 浙江大学 | Method for low-complexity video transcoding from H.264 to HEVC based on statistic analysis |
CN103491334A (en) * | 2013-09-11 | 2014-01-01 | 浙江大学 | Video transcode method from H264 to HEVC based on region feature analysis |
CN103796023A (en) * | 2014-03-05 | 2014-05-14 | 武汉拓宝电子系统有限公司 | H.265/HEVC transcoding method and transcoder based on H.264/AVC macro block structure and texture |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105872564A (en) * | 2016-05-27 | 2016-08-17 | 武汉拓宝科技股份有限公司 | Intra-frame prediction mode determination method and system for transcoding from H.264/AVC to H.265/HEVC |
CN105872564B (en) * | 2016-05-27 | 2019-02-19 | 武汉拓宝科技股份有限公司 | Intra prediction mode determination method and system for H.264/AVC to H.265/HEVC transcoding |
CN108012154A (en) * | 2016-10-28 | 2018-05-08 | 北京金山云网络技术有限公司 | A kind of method for video coding and device |
CN107690069A (en) * | 2017-08-28 | 2018-02-13 | 中国科学院深圳先进技术研究院 | A kind of cascade method for video coding of data-driven |
Also Published As
Publication number | Publication date |
---|---|
CN104539954B (en) | 2017-12-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103248893B (en) | From H.264/AVC standard to code-transferring method and transcoder thereof the fast frame of HEVC standard | |
CN104023233B (en) | Fast inter-frame prediction method of HEVC (High Efficiency Video Coding) | |
CN103873861B (en) | Coding mode selection method for HEVC (high efficiency video coding) | |
CN105120292B (en) | A kind of coding intra-frame prediction method based on image texture characteristic | |
CN106131554B (en) | Fast sample adaptive compensation method for HEVC based on dominant edge direction | |
CN103281541B (en) | Based on the infra-frame prediction wedge shape method of partition of depth image | |
CN104038764B (en) | A kind of H.264 arrive video transcoding method H.265 and transcoder | |
CN103929652B (en) | Intra-frame prediction fast mode selecting method based on autoregressive model in video standard | |
CN104243997B (en) | Method for quality scalable HEVC (high efficiency video coding) | |
CN101938657A (en) | Coding Unit Adaptive Partitioning Method in High Efficiency Video Coding | |
CN103888762B (en) | Video coding framework based on HEVC standard | |
CN103533355B (en) | A kind of HEVC fast encoding method | |
CN104539949B (en) | The method and device of quick partitioning based on edge direction in HEVC screen codings | |
CN104883566B (en) | The fast algorithm that a kind of intra prediction block size suitable for HEVC standard divides | |
CN104539970B (en) | A kind of 3D HEVC interframe encodes merging patterns high-speed decision method | |
CN103702122B (en) | Coding mode selection method, device and encoder | |
CN102118615B (en) | Video encoding/decoding method and apparatus using variable block size skip mode | |
CN110139106B (en) | A video coding unit segmentation method and its system, device, and storage medium | |
CN104954787B (en) | HEVC inter-frame forecast mode selection methods and device | |
CN103702131B (en) | Pattern-preprocessing-based intraframe coding optimization method and system | |
CN104539954A (en) | Cascading method for speeding up high efficiency video coding (HEVC) | |
CN104202605B (en) | A kind of method and its realization device by reducing resolution prediction high-definition image coding unit CU dividing mode | |
CN103747272B (en) | Fast transform approach for the remaining quaternary tree coding of HEVC | |
CN102984524B (en) | A kind of video coding-decoding method based on block layer decomposition | |
CN104320656B (en) | Interframe encoding mode fast selecting method in x265 encoder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20171215 |