CN104539265A - Self-adaptive UKF (Unscented Kalman Filter) algorithm - Google Patents

Self-adaptive UKF (Unscented Kalman Filter) algorithm Download PDF

Info

Publication number
CN104539265A
CN104539265A CN201410691143.1A CN201410691143A CN104539265A CN 104539265 A CN104539265 A CN 104539265A CN 201410691143 A CN201410691143 A CN 201410691143A CN 104539265 A CN104539265 A CN 104539265A
Authority
CN
China
Prior art keywords
mrow
msub
mover
msubsup
math
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410691143.1A
Other languages
Chinese (zh)
Inventor
何俊
张清华
孙国玺
肖明
熊建斌
丘海健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Petrochemical Technology
Original Assignee
Guangdong University of Petrochemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Petrochemical Technology filed Critical Guangdong University of Petrochemical Technology
Priority to CN201410691143.1A priority Critical patent/CN104539265A/en
Publication of CN104539265A publication Critical patent/CN104539265A/en
Pending legal-status Critical Current

Links

Landscapes

  • Complex Calculations (AREA)

Abstract

The invention discloses a self-adaptive UKF (Unscented Kalman Filter) algorithm. In the algorithm, a Kalman filtering algorithm based on a maximum likelihood criterion and the self-adaptive UKF algorithm based on maximum posteriori estimation are combined. Real-time estimation is performed on covariance through the two algorithms, and averaging is performed to obtain an estimated value with a better prior covariance true value tracking effect, so that the filtering accuracy is increased, and the filtering stability is enhanced.

Description

Self-adaptive UKF filtering algorithm
Technical Field
The invention relates to a self-adaptive UKF filtering algorithm, in particular to a self-adaptive UKF filtering algorithm combining maximum likelihood estimation and maximum posterior estimation.
Background
In order to solve the problem that the Kalman filtering and the subsequent extended Kalman filtering under the nonlinear condition have larger errors in estimation and even possibly cause Filter divergence, in recent years, Julie and Uhlman propose an Unscented Kalman Filter (UKF) method based on a multivariate function representative point idea, the accuracy of the UKF algorithm is obviously higher than that of the EKF algorithm, and the calculated amount is obviously smaller than that of the EKF algorithm, but the UKF algorithm has a main problem that when the noise statistical characteristic is unknown, the filtering accuracy of the UKF is reduced and even diverges, in order to solve the problem, various scholars propose a plurality of solving methods, wherein a document [7] proposes an algorithm of a suboptimal unbiased MAP noise time-varying estimator containing a fading factor according to an extremely large posterior estimation principle and exponential weighting, the algorithm has the characteristics of self-adaption capability, simple recurrence formula and easy engineering realization, but needs enough data, the ideal effect can be achieved.
Disclosure of Invention
The invention aims to overcome the defects of the prior art and provides a self-adaptive UKF filtering algorithm, which is an algorithm combining a Kalman filtering algorithm based on a maximum likelihood criterion and a self-adaptive UKF filtering algorithm based on maximum posterior estimation, estimates covariance in real time through the two algorithms, and then obtains an estimated value with better tracking effect on a priori covariance true value in average acquisition, thereby improving filtering precision and filtering stability. The specific technical scheme is as follows:
an adaptive UKF filtering algorithm comprising the steps of:
the first step is as follows: judging whether convergence has been stabilized
Qk-Qk-2≤H
Rk-Rk-2≤H
Wherein H is a small positive integer;
the second step is that: selecting a figure of merit
Let the estimated covariance of the two algorithms be Q1k、R1k、Q2k、R2kThen, then
Q ^ k = Q 1 k + Q 2 k 2
R ^ k = R 1 k + R 2 k 2
In the formula,is the covariance estimate.
Compared with the prior art, the invention has the beneficial effects that:
compared with the traditional UKF algorithm, the UKF adaptive algorithm based on the maximum posterior estimation solves the problem of filter divergence of the traditional UKF algorithm under the condition that the noise statistical characteristic is unknown, selects the UKF adaptive algorithm based on the optimal noise statistical characteristic estimation by combining the advantages and the disadvantages of the maximum likelihood estimation and the maximum posterior estimation, and can be seen to improve the filtering precision in a simulation result.
Drawings
FIG. 1 is a graph of adaptive estimation of noise mean for the process [7 ];
FIG. 2 is a graph of adaptive estimation of process noise covariance in [7 ];
FIG. 3 is a graph of the process noise covariance estimation of the present invention;
FIG. 4 is a graph of adaptive estimation of mean value of measured noise in document [7 ];
FIG. 5 document [7] adaptive estimation plot of the measured noise covariance;
FIG. 6 is a graph of adaptive estimation of measured noise covariance according to the present invention.
Detailed Description
In order to make the technical means, the creation characteristics, the achievement purposes and the effects of the invention easy to understand, the invention is further described with the specific examples.
1 problem statement
Consider a non-linear discrete system as shown below:
x k = f ( x k - 1 ) + w k - 1 z k = h ( x k ) + v k - - - ( 1 )
wherein k is more than or equal to 0 and is a discrete time variable; f (x)k-1) And h (x)k) Respectively a system nonlinear state function and a measurement function; x is the number ofkAnd zkRespectively an n-dimensional state vector and a l-dimensional measurement vector of the system; w is akAnd vkN-dimensional system noise and l-dimensional measurement noise, respectively, and having the following statistical properties:
<math><mrow> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <mi>E</mi> <mo>[</mo> <msub> <mi>w</mi> <mi>k</mi> </msub> <mo>]</mo> <mo>=</mo> <mi>q</mi> <mo>,</mo> <mi>cov</mi> <mrow> <mo>(</mo> <msub> <mi>w</mi> <mi>k</mi> </msub> <mo>,</mo> <msub> <mi>w</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mi>Q</mi> <msub> <mi>&delta;</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mi>E</mi> <mo>[</mo> <msub> <mi>v</mi> <mi>k</mi> </msub> <mo>]</mo> <mo>=</mo> <mi>r</mi> <mo>,</mo> <mi>cov</mi> <mrow> <mo>(</mo> <msub> <mi>v</mi> <mi>k</mi> </msub> <mo>,</mo> <msub> <mi>v</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mi>R</mi> <msub> <mi>&delta;</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mi>cov</mi> <mrow> <mo>(</mo> <msub> <mi>w</mi> <mi>k</mi> </msub> <mo>,</mo> <msub> <mi>v</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow></math>
in many cases, the noise mean is non-zero mean, so the system noise and the measurement noise are not made to be non-zero mean gaussian noise and their means are q and r, respectively:
visible,. mu.kAndthe discrete nonlinear system (1) is zero-mean white gaussian noise which is uncorrelated with each other and the variance is Q and R respectively, so the discrete nonlinear system is equivalent to:
2-adaptive UKF filtering algorithm
2.1 UKF algorithm when noise mean is non-zero
Step 1. initialize system variables
x ^ 0 = E ( x 0 ) - - - ( 5 )
P 0 = E ( ( x 0 - x ^ 0 ) ( x 0 - x ^ 0 ) T ) - - - ( 6 )
Step 2, sigma points and corresponding weights are calculated
From the determined sampling strategy, the obedient mean value is obtainedVariance is Pk-1Sigma point { X ofi,k-1}; where i is 0,1,2, …,2n, operatorRepresenting a symmetric Cholesky decomposition.
X 0 , k - 1 = x k - 1 X i , k - 1 = x k - 1 + ( ( n + 1 ) P k - 1 ) i , i = 1,2 , . . . , n X i , k - 1 = x k - 1 - ( ( n + 1 ) P K - 1 ) i , i = n + 1 , n + 2 , . . . , 2 n - - - ( 7 )
The corresponding weight of the Sigma point is as follows
<math><mrow> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msubsup> <mi>w</mi> <mn>0</mn> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> </msubsup> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>w</mi> <mn>0</mn> <mrow> <mo>(</mo> <mi>c</mi> <mo>)</mo> </mrow> </msubsup> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> <mo>+</mo> <mn>1</mn> <mo>-</mo> <msup> <mi>&alpha;</mi> <mn>2</mn> </msup> <mo>+</mo> <mi>&beta;</mi> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>w</mi> <mi>i</mi> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> </msubsup> <mo>=</mo> <msubsup> <mi>w</mi> <mi>i</mi> <mrow> <mo>(</mo> <mi>c</mi> <mo>)</mo> </mrow> </msubsup> <mo>=</mo> <mfrac> <mn>0.5</mn> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> <mo>,</mo> <mi>i</mi> <mo>=</mo> <mn>1,2</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mn>2</mn> <mi>n</mi> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow></math>
Wherein α describes the extent of the Sigma point around the mean; beta is an adjusting parameter, l ═ alpha2(n + k) -n, k describe the system distribution information.
Step 3. time update
Sigma Point X obtained according to step 2i,k-1(i is 0,1,2, …,2n) and its corresponding weight, so that X is equal toi,k-1After propagation through the nonlinear state function f (·) + q, Xi,k|k-1According to Xi,k|k-1One-step state prediction can be obtainedAnd its corresponding error covariance matrix Pk|k-1
Xi,k|k-1=f(Xi,k-1)+q,i=0,1,…,2n (9)
<math><mrow> <msub> <mi>x</mi> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mn>2</mn> <mi>n</mi> </mrow> </munderover> <msubsup> <mi>w</mi> <mi>i</mi> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> </msubsup> <mo>&times;</mo> <msub> <mi>X</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow></math>
<math><mrow> <msub> <mi>P</mi> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mn>2</mn> <mi>n</mi> </mrow> </munderover> <msubsup> <mi>w</mi> <mi>i</mi> <mrow> <mo>(</mo> <mi>c</mi> <mo>)</mo> </mrow> </msubsup> <mo>&times;</mo> <mrow> <mo>(</mo> <msub> <mi>X</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <msub> <mi>x</mi> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>&times;</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>X</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <msub> <mi>x</mi> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mo>+</mo> <mi>Q</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>11</mn> <mo>)</mo> </mrow> </mrow></math>
Step 4, sigma points and corresponding weights are calculated
Then obtaining the obedient mean value ofVariance is Pk|k-1Sigma point { X ofi,k|k-1},i=0,…,2n
X 0 , k | k - 1 = x k | k - 1 X i , k | k - 1 = x k | k - 1 + ( ( n + 1 ) P k | k - 1 ) i , i = 1,2 , . . . , n X i , k | k - 1 = x k | k - 1 - ( ( n + 1 ) P k | k - 1 ) i , i = n + 1 , n + 2 , . . . , 2 n - - - ( 12 )
The corresponding weight is consistent with the formula (8) in the step 2.
Step 5, updating measurement
Then according to newly obtained Sigam point X in step 4i,k|k-1(i is 0, …,2n) and weight, let Xi,k|k-1Z is obtained after propagation through a nonlinear measurement function h (·) + ri,k|k-1Then from zi,k|k-1Deriving output predictionsAnd auto-covariance matrixSum cross covariance matrix
zi,k|k-1=h(Xi,k|k-1)+r,i=0,1,…,2n (13)
<math><mrow> <msub> <mover> <mi>z</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mn>2</mn> <mi>n</mi> </mrow> </munderover> <msubsup> <mi>w</mi> <mi>i</mi> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> </msubsup> <mo>&times;</mo> <msub> <mi>z</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>14</mn> <mo>)</mo> </mrow> </mrow></math>
<math><mrow> <msub> <mi>P</mi> <msub> <mover> <mi>z</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> </msub> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mn>2</mn> <mi>n</mi> </mrow> </munderover> <msubsup> <mi>w</mi> <mi>i</mi> <mrow> <mo>(</mo> <mi>c</mi> <mo>)</mo> </mrow> </msubsup> <mo>&times;</mo> <mrow> <mo>(</mo> <msub> <mi>z</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <msub> <mover> <mi>z</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>&times;</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>z</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <msub> <mover> <mi>z</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mo>+</mo> <mi>R</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>15</mn> <mo>)</mo> </mrow> </mrow></math>
<math><mrow> <msub> <mi>P</mi> <mrow> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <msub> <mover> <mi>z</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> </mrow> </msub> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mn>2</mn> <mi>n</mi> </mrow> </munderover> <msubsup> <mi>w</mi> <mi>i</mi> <mrow> <mo>(</mo> <mi>c</mi> <mo>)</mo> </mrow> </msubsup> <mo>&times;</mo> <mrow> <mo>(</mo> <msub> <mi>X</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>&times;</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>z</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <msub> <mover> <mi>z</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>16</mn> <mo>)</mo> </mrow> </mrow></math>
Step 6, filtering updating
After time and measurement updates have passedThe filter gain matrix K is obtained by calculationkState vector estimation at time kAnd its corresponding covariance matrix Pk|k-1
<math><mrow> <msub> <mi>&epsiv;</mi> <mi>k</mi> </msub> <mo>=</mo> <msub> <mi>z</mi> <mi>k</mi> </msub> <mo>-</mo> <msub> <mover> <mi>z</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>17</mn> <mo>)</mo> </mrow> </mrow></math>
K k = P x ^ k z ^ k ( P z ^ k ) - 1 - - - ( 18 )
<math><mrow> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mo>=</mo> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>K</mi> <mi>K</mi> </msub> <msub> <mi>&epsiv;</mi> <mi>K</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>19</mn> <mo>)</mo> </mrow> </mrow></math>
P k | k - 1 = P k | k - 1 - K k P z ^ k ( K k ) T - - - ( 20 )
2.2 adaptive UKF Algorithm
2.2.1 constant noise estimator
From document [7], it is known that a suboptimal unbiased MAP constant noise statistical estimator is obtained based on the maximum a posteriori estimation principle:
<math><mrow> <msub> <mover> <mi>q</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mi>k</mi> </mfrac> <mo>[</mo> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <msub> <mover> <mi>q</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mo>-</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mn>2</mn> <mi>n</mi> </mrow> </munderover> <msubsup> <mi>w</mi> <mi>i</mi> <mi>m</mi> </msubsup> <mo>&times;</mo> <mi>f</mi> <mrow> <mo>(</mo> <msub> <mi>X</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>]</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>21</mn> <mo>)</mo> </mrow> </mrow></math>
<math><mrow> <msub> <mover> <mi>r</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mi>k</mi> </mfrac> <mo>[</mo> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <msub> <mover> <mi>r</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mover> <mi>z</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mo>-</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mn>2</mn> <mi>n</mi> </mrow> </munderover> <msubsup> <mi>w</mi> <mi>i</mi> <mi>m</mi> </msubsup> <mo>&times;</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>X</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>]</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>22</mn> <mo>)</mo> </mrow> </mrow></math>
<math><mrow> <msub> <mover> <mi>R</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mi>k</mi> </mfrac> <mo>[</mo> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <msub> <mover> <mi>R</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>&epsiv;</mi> <mi>k</mi> </msub> <msubsup> <mi>&epsiv;</mi> <mi>k</mi> <mi>T</mi> </msubsup> <mo>-</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mn>2</mn> <mi>n</mi> </mrow> </munderover> <msubsup> <mi>w</mi> <mi>i</mi> <mi>c</mi> </msubsup> <mo>&times;</mo> <mrow> <mo>(</mo> <msub> <mi>X</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <msub> <mover> <mi>z</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <msub> <mi>X</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <msub> <mover> <mi>z</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mo>]</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>23</mn> <mo>)</mo> </mrow> </mrow></math>
<math><mrow> <msub> <mover> <mi>Q</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mi>k</mi> </mfrac> <mo>[</mo> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <msub> <mover> <mi>Q</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>K</mi> <mi>k</mi> </msub> <msub> <mi>&epsiv;</mi> <mi>k</mi> </msub> <msubsup> <mi>&epsiv;</mi> <mi>k</mi> <mi>T</mi> </msubsup> <msubsup> <mi>K</mi> <mi>k</mi> <mi>T</mi> </msubsup> <mo>+</mo> <msub> <mi>P</mi> <mi>k</mi> </msub> <mo>-</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mn>2</mn> <mi>n</mi> </mrow> </munderover> <msubsup> <mi>w</mi> <mi>i</mi> <mi>c</mi> </msubsup> <mo>&times;</mo> <mrow> <mo>(</mo> <msub> <mi>X</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <msub> <mi>X</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mo>]</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>24</mn> <mo>)</mo> </mrow> </mrow></math>
wherein,respectively representing the mean value of system noise, mean value of measured noise, covariance value of system noise, and covariance value of measured noise at time kThe value is obtained.
2.2.2 evanescent factor
Assume weighting factor { beta }iSatisfy: beta is ai=βi-1b andwherein 0<b<And 1 is a forgetting factor.
Obtaining the weight coefficient and the time { beta ] according to an equal ratio series summation formula and the constraint condition of the weight coefficientiThe related general expression is
<math><mrow> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mi>&beta;</mi> <mi>i</mi> </msub> <mo>=</mo> <mi>d</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <msup> <mi>b</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> <mo>,</mo> </mrow> </msup> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mi>k</mi> </mtd> </mtr> <mtr> <mtd> <mi>d</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mn>1</mn> <mo>-</mo> <mi>b</mi> </mrow> <mrow> <mn>1</mn> <mo>-</mo> <msup> <mi>b</mi> <mi>k</mi> </msup> </mrow> </mfrac> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>25</mn> <mo>)</mo> </mrow> </mrow></math>
2.2.3 adaptive UKF Algorithm with time-varying noise estimator
From document [10], it is known that the weight coefficient 1/k in equations (21) and (24) is replaced by an fading factor d (k), so as to obtain an fading memory time-varying noise statistical estimator:
<math><mrow> <msub> <mover> <mi>q</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>d</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <msub> <mover> <mi>q</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>d</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mo>-</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mn>2</mn> <mi>n</mi> </mrow> </munderover> <msubsup> <mi>w</mi> <mi>i</mi> <mi>m</mi> </msubsup> <mo>&times;</mo> <mi>f</mi> <mrow> <mo>(</mo> <msub> <mi>X</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>26</mn> <mo>)</mo> </mrow> </mrow></math>
<math><mrow> <msub> <mover> <mi>r</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>d</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <msub> <mover> <mi>r</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>d</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <msub> <mover> <mi>z</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mo>-</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mn>2</mn> <mi>n</mi> </mrow> </munderover> <msubsup> <mi>w</mi> <mi>i</mi> <mi>m</mi> </msubsup> <mo>&times;</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>X</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>27</mn> <mo>)</mo> </mrow> </mrow></math>
<math><mrow> <msub> <mover> <mi>R</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>d</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <msub> <mover> <mi>R</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>d</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>&epsiv;</mi> <mi>k</mi> </msub> <msubsup> <mi>&epsiv;</mi> <mi>k</mi> <mi>T</mi> </msubsup> <mo>-</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mn>2</mn> <mi>n</mi> </mrow> </munderover> <msubsup> <mi>w</mi> <mi>i</mi> <mi>c</mi> </msubsup> <mo>&times;</mo> <mrow> <mo>(</mo> <msub> <mi>X</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <msub> <mover> <mi>z</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <msub> <mi>X</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <msub> <mover> <mi>z</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>29</mn> <mo>)</mo> </mrow> </mrow></math>
<math><mrow> <msub> <mover> <mi>Q</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>d</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <msub> <mover> <mi>Q</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>d</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>K</mi> <mi>k</mi> </msub> <msub> <mi>&epsiv;</mi> <mi>k</mi> </msub> <msubsup> <mi>&epsiv;</mi> <mi>k</mi> <mi>T</mi> </msubsup> <msubsup> <mi>K</mi> <mi>k</mi> <mi>T</mi> </msubsup> <mo>+</mo> <msub> <mi>P</mi> <mi>k</mi> </msub> <mo>-</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mn>2</mn> <mi>n</mi> </mrow> </munderover> <msubsup> <mi>w</mi> <mi>i</mi> <mi>c</mi> </msubsup> <mo>&times;</mo> <mrow> <mo>(</mo> <msub> <mi>X</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <msub> <mi>X</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>30</mn> <mo>)</mo> </mrow> </mrow></math>
accordingly, an adaptive UKF filtering algorithm can be derived by combining equations (5) and (20) and equations (26) and (29):
<math><mrow> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mn>2</mn> <mi>n</mi> </mrow> </munderover> <msubsup> <mi>w</mi> <mi>i</mi> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> </msubsup> <mo>&times;</mo> <mi>f</mi> <mrow> <mo>(</mo> <msub> <mi>X</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mover> <mi>q</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>31</mn> <mo>)</mo> </mrow> </mrow></math>
<math><mrow> <msub> <mi>P</mi> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mn>2</mn> <mi>n</mi> </mrow> </munderover> <msubsup> <mi>w</mi> <mi>i</mi> <mrow> <mo>(</mo> <mi>c</mi> <mo>)</mo> </mrow> </msubsup> <mo>&times;</mo> <mrow> <mo>(</mo> <msub> <mi>X</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>&times;</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>X</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mo>+</mo> <msub> <mover> <mi>Q</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>32</mn> <mo>)</mo> </mrow> </mrow></math>
<math><mrow> <msub> <mover> <mi>z</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mn>2</mn> <mi>n</mi> </mrow> </munderover> <msubsup> <mi>w</mi> <mi>i</mi> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> </msubsup> <mo>&times;</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>X</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mover> <mi>r</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>33</mn> <mo>)</mo> </mrow> </mrow></math>
<math><mrow> <msub> <mi>P</mi> <msub> <mover> <mi>z</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> </msub> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mn>2</mn> <mi>n</mi> </mrow> </munderover> <msubsup> <mi>w</mi> <mi>i</mi> <mrow> <mo>(</mo> <mi>c</mi> <mo>)</mo> </mrow> </msubsup> <mo>&times;</mo> <mrow> <mo>(</mo> <msub> <mi>z</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <msub> <mover> <mi>z</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>&times;</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>z</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <msub> <mover> <mi>z</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mo>+</mo> <msub> <mover> <mi>R</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>35</mn> <mo>)</mo> </mrow> </mrow></math>
<math><mrow> <msub> <mi>P</mi> <mrow> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <msub> <mover> <mi>z</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> </mrow> </msub> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mn>2</mn> <mi>n</mi> </mrow> </munderover> <msubsup> <mi>w</mi> <mi>i</mi> <mrow> <mo>(</mo> <mi>c</mi> <mo>)</mo> </mrow> </msubsup> <mo>&times;</mo> <mrow> <mo>(</mo> <msub> <mi>X</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>&times;</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>z</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>36</mn> <mo>)</mo> </mrow> </mrow></math>
K k = P x ^ k z ^ k ( P z ^ k ) - 1 - - - ( 37 )
<math><mrow> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mo>=</mo> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>K</mi> <mi>k</mi> </msub> <msub> <mi>&epsiv;</mi> <mi>k</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>38</mn> <mo>)</mo> </mrow> </mrow></math>
P k | k = P k | k - 1 - K k P z ^ k ( K k ) T - - - ( 39 )
3 maximum likelihood criterion and Q, R array online estimation adjustment
According to the document [4]]The proposed idea uses the combination of matrix derivative formula and UKF filter formula to deduce the problem of estimating and adjusting R and Q matrix based on maximum likelihood estimation criterion into 1 determinationAnd a ═ a (Q, R) (representing the noise variance matrix that needs to be estimated).
The system innovation variance is not set as:
<math><mrow> <msub> <mi>P</mi> <msub> <mi>V</mi> <mi>k</mi> </msub> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mi>N</mi> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mi>k</mi> <mo>-</mo> <mi>N</mi> <mo>+</mo> <mn>1</mn> </mrow> <mi>k</mi> </munderover> <msub> <mi>&epsiv;</mi> <mi>i</mi> </msub> <msubsup> <mi>&epsiv;</mi> <mi>i</mi> <mi>T</mi> </msubsup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>40</mn> <mo>)</mo> </mrow> </mrow></math>
in the formula, innovation: <math><mrow> <msub> <mi>&epsiv;</mi> <mi>k</mi> </msub> <mo>=</mo> <msub> <mi>Z</mi> <mi>k</mi> </msub> <mo>-</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>41</mn> <mo>)</mo> </mrow> <mo>,</mo> </mrow></math> the window size N is estimated.
The maximum likelihood estimation is to realize real-time estimation and adjustment of the Q, R array from the angle of maximum occurrence probability of system measurement, and is based on an objective function J (a) under the maximum likelihood condition:
<math><mrow> <mi>J</mi> <mrow> <mo>(</mo> <mi>a</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mi>k</mi> <mo>-</mo> <mi>N</mi> <mo>+</mo> <mn>1</mn> </mrow> <mi>k</mi> </munderover> <mo>|</mo> <msub> <mi>P</mi> <msub> <mi>V</mi> <mi>k</mi> </msub> </msub> <mo>|</mo> <mo>+</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mi>k</mi> <mo>-</mo> <mi>N</mi> <mo>+</mo> <mn>1</mn> </mrow> <mi>k</mi> </munderover> <msub> <mi>&epsiv;</mi> <mi>i</mi> </msub> <msup> <msub> <mi>P</mi> <msub> <mi>V</mi> <mi>k</mi> </msub> </msub> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <msubsup> <mi>&epsiv;</mi> <mi>i</mi> <mi>T</mi> </msubsup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>42</mn> <mo>)</mo> </mrow> </mrow></math>
in the formula, | · | represents a determinant.
The derivation of a converts the adaptive filtering problem into the derivation of innovation variance on a:
<math><mrow> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mi>k</mi> <mo>-</mo> <mi>N</mi> <mo>+</mo> <mn>1</mn> </mrow> <mi>k</mi> </munderover> <mo>{</mo> <mi>tr</mi> <mo>{</mo> <msup> <msub> <mi>P</mi> <msub> <mi>V</mi> <mi>k</mi> </msub> </msub> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mfrac> <mrow> <mo>&PartialD;</mo> <msub> <mi>P</mi> <msub> <mi>V</mi> <mi>k</mi> </msub> </msub> </mrow> <mrow> <mo>&PartialD;</mo> <mi>a</mi> </mrow> </mfrac> <mo>}</mo> <mo>-</mo> <msubsup> <mi>&epsiv;</mi> <mi>i</mi> <mi>T</mi> </msubsup> <msup> <msub> <mi>P</mi> <msub> <mi>V</mi> <mi>k</mi> </msub> </msub> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mfrac> <mrow> <mo>&PartialD;</mo> <msub> <mi>P</mi> <msub> <mi>V</mi> <mi>k</mi> </msub> </msub> </mrow> <mrow> <mo>&PartialD;</mo> <mi>a</mi> </mrow> </mfrac> <msup> <msub> <mi>P</mi> <msub> <mi>V</mi> <mi>k</mi> </msub> </msub> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <msub> <mi>&epsiv;</mi> <mi>i</mi> </msub> <mo>}</mo> <mo>=</mo> <mn>0</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>43</mn> <mo>)</mo> </mrow> </mrow></math>
in the formula, tr represents a trace of the sampling matrix.
Obtaining according to a standard unscented Kalman filter equation:
<math><mrow> <msub> <mi>P</mi> <mrow> <msub> <mover> <mi>z</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> </mrow> </msub> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mn>2</mn> <mi>n</mi> </mrow> </munderover> <msubsup> <mi>w</mi> <mi>i</mi> <mrow> <mo>(</mo> <mi>c</mi> <mo>)</mo> </mrow> </msubsup> <mo>&times;</mo> <mrow> <mo>(</mo> <msub> <mi>z</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <msub> <mover> <mi>z</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>&times;</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>z</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <msub> <mover> <mi>z</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mo>+</mo> <msub> <mi>R</mi> <mi>k</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>44</mn> <mo>)</mo> </mrow> </mrow></math>
<math><mrow> <msub> <mi>P</mi> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mn>2</mn> <mi>n</mi> </mrow> </munderover> <msubsup> <mi>w</mi> <mi>i</mi> <mrow> <mo>(</mo> <mi>c</mi> <mo>)</mo> </mrow> </msubsup> <mo>&times;</mo> <mrow> <mo>(</mo> <msub> <mi>X</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>&times;</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>X</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mo>+</mo> <msub> <mi>Q</mi> <mi>k</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>45</mn> <mo>)</mo> </mrow> </mrow></math>
3.1R array estimation
To obtain a real-time estimated expression for the R-array, the derivation of equation (44) a is reduced jointly with equation (43) without assuming that the Q-array is completely known:
<math><mrow> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mi>k</mi> <mo>-</mo> <mi>N</mi> <mo>+</mo> <mn>1</mn> </mrow> <mi>k</mi> </munderover> <mi>tr</mi> <mo>[</mo> <msup> <msub> <mi>P</mi> <msub> <mi>V</mi> <mi>k</mi> </msub> </msub> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <msub> <mi>P</mi> <msub> <mi>V</mi> <mi>k</mi> </msub> </msub> <mo>-</mo> <msub> <mi>&epsiv;</mi> <mi>i</mi> </msub> <msubsup> <mi>&epsiv;</mi> <mi>i</mi> <mi>T</mi> </msubsup> <mo>)</mo> </mrow> <msup> <msub> <mi>P</mi> <msub> <mi>V</mi> <mi>k</mi> </msub> </msub> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo>]</mo> <mo>=</mo> <mn>0</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>43</mn> <mo>)</mo> </mrow> </mrow></math>
taking the covariance matrix of the innovation sequence as a positive definite matrix, and obtaining the condition that the above formula is satisfied in the whole estimation window: <math><mrow> <msub> <mi>P</mi> <msub> <mi>V</mi> <mi>k</mi> </msub> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mi>N</mi> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mi>k</mi> <mo>-</mo> <mi>N</mi> <mo>+</mo> <mn>1</mn> </mrow> <mi>k</mi> </munderover> <msub> <mi>&epsiv;</mi> <mi>i</mi> </msub> <msubsup> <mi>&epsiv;</mi> <mi>i</mi> <mi>T</mi> </msubsup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>44</mn> <mo>)</mo> </mrow> </mrow></math>
therefore, the real-time estimation value of the observed noise covariance:
<math><mrow> <msub> <mover> <mi>R</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mi>N</mi> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mi>k</mi> <mo>-</mo> <mi>N</mi> <mo>+</mo> <mn>1</mn> </mrow> <mi>k</mi> </munderover> <msub> <mi>&epsiv;</mi> <mi>i</mi> </msub> <msubsup> <mi>&epsiv;</mi> <mi>i</mi> <mi>T</mi> </msubsup> <mo>-</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mn>2</mn> <mi>n</mi> </mrow> </munderover> <msubsup> <mi>w</mi> <mi>i</mi> <mrow> <mo>(</mo> <mi>c</mi> <mo>)</mo> </mrow> </msubsup> <mo>&times;</mo> <mrow> <mo>(</mo> <msub> <mi>z</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <msub> <mover> <mi>z</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>&times;</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>z</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <msub> <mover> <mi>z</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>45</mn> <mo>)</mo> </mrow> </mrow></math>
3.2Q matrix estimation
In the same way, a real-time estimation expression of the Q array is obtained, and the R array is not assumed to be completely accurately known.
Let the state estimation error be:
<math><mrow> <mi>&Delta;</mi> <msub> <mi>X</mi> <mi>k</mi> </msub> <mo>=</mo> <msub> <mover> <mi>X</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mo>-</mo> <msub> <mover> <mi>X</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>K</mi> <mi>k</mi> </msub> <msub> <mi>&epsiv;</mi> <mi>k</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>46</mn> <mo>)</mo> </mrow> </mrow></math>
then combine equations (40) and (42) in conjunction with the standard unscented kalman filter equation to obtain a real-time estimate of the process noise covariance:
<math><mrow> <msub> <mover> <mi>Q</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mi>N</mi> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mi>k</mi> <mo>-</mo> <mi>N</mi> <mo>+</mo> <mn>1</mn> </mrow> <mi>k</mi> </munderover> <msub> <mi>&Delta;X</mi> <mi>k</mi> </msub> <mi>&Delta;</mi> <msubsup> <mi>X</mi> <mi>k</mi> <mi>T</mi> </msubsup> <mo>+</mo> <msub> <mi>P</mi> <mi>k</mi> </msub> <mo>-</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mn>2</mn> <mi>n</mi> </mrow> </munderover> <msubsup> <mi>w</mi> <mi>i</mi> <mrow> <mo>(</mo> <mi>c</mi> <mo>)</mo> </mrow> </msubsup> <mo>&times;</mo> <mrow> <mo>(</mo> <msub> <mi>X</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>&times;</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>X</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>47</mn> <mo>)</mo> </mrow> </mrow></math>
4 improved self-adaptive UKF filtering algorithm
4.1 estimation Window Range
The determination of the estimation window has certain risks, which are reflected in that the estimation window is too large, the unbiased performance of the filtering result is better, but the dynamic performance of the system model is possibly poor; the estimation window is too small, and although the change of the system model can be better reflected, the information contained in the observed value cannot be fully applied, the unbiased property of the filtering process cannot be ensured, and the divergence of filtering even caused by serious conditions cannot be ensured.
4.2 Filtering the cause of divergence and the rules for determining the estimated values for selecting the optimal Q, R matrix
Due to the fact that the prior statistical property of the noise is unknown and time-varying, the actual covariance of the noise deviates from the true value, and therefore the error of state estimation is increased, and the actual covariance is the root cause of filtering divergence.
The UKF adopts a kalman filtering frame, kalman filtering is growth memory filtering, the initial stage is very large, measurement information can be fully utilized, and a strong correction effect is provided, so that an estimation value is fast and close to an estimation state, but the estimation value is gradually reduced along with the time, and the gain K of the filtering process is gradually reducedkThe smaller the measurement data is, the weaker the correction effect of the new measurement data reflecting the real state is in the estimation, and the data saturation phenomenon is formed, which causes the filtering divergence.
According to the filtering performance analysis of the document [7] and the filtering divergence cause analysis, the optimal Q, R array estimation values are as close to converging on the true values as possible, so that the Q, R array estimation values which are closest to the true values and have more stable convergence are selected. The noise covariance is unknown and the initial value is not necessarily accurate, so the noise statistic estimator needs a certain time to estimate and adapt to achieve stability.
Therefore, we can complete the estimation of the Q, R matrix by the following steps:
the first step is as follows: judging whether convergence has been stabilized
Qk-Qk-2≤H (46)
Rk-Rk-2≤H (47)
Wherein H is a small positive integer
The second step is that: selecting a figure of merit
It is not assumed that the estimated covariance of the two algorithms is Q1k、R1k、Q2k、R2kThen, then
Q ^ k = Q 1 k + Q 2 k 2 - - - ( 48 )
R ^ k = R 1 k + R 2 k 2 - - - ( 49 )
In the formula,is the covariance estimate.
4.3 implementation of the improved adaptive UKF filtering algorithm:
1) classical UKF filtering is achieved by equations (5) and (20).
2) The estimation of the noise mean is achieved by equations (26) and (27).
3) Noise covariance estimation is performed by equations (44) and (46) and (28) and (29), and the best estimated covariance is selected as noise by comparing the results of the two according to the rule set forth in 4.2.
4) Replacing the corresponding noise statistical characteristics in 1) with the noise statistical characteristics obtained in 2) 3).
5 simulation analysis
The effectiveness of the improved adaptive UKF filtering algorithm is verified by adopting a strong nonlinear Gaussian system model of document [5 ]:
<math><mrow> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mi>x</mi> <mi>k</mi> </msub> <mo>=</mo> <mn>0.5</mn> <msub> <mi>x</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mfrac> <mrow> <mn>0.2</mn> <msub> <mi>x</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <msubsup> <mi>x</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mn>2</mn> </msubsup> </mrow> </mfrac> <mo>+</mo> <msub> <mi>&omega;</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>z</mi> <mi>k</mi> </msub> <mo>=</mo> <mn>10</mn> <msub> <mi>x</mi> <mi>k</mi> </msub> <mo>+</mo> <mfrac> <msubsup> <mi>x</mi> <mi>k</mi> <mn>2</mn> </msubsup> <mn>20</mn> </mfrac> <mo>+</mo> <msub> <mi>v</mi> <mi>k</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>50</mn> <mo>)</mo> </mrow> </mrow></math>
wherein wkAnd vkAre white gaussian noise and their constant statistical properties are as follows:
q = 1.2 Q = 0.6 - - - ( 51 )
r = 1.0 R = 0.8 - - - ( 52 )
setting the initial value of the nonlinear system sum as:
x ^ 0 = 1.1 P 0 = 0.01 - - - ( 53 )
and isAnd wkAnd vkAre not related to each other.
Considering the strongly nonlinear gaussian system model presented above, it is assumed that the measurement noise statistics are accurately known (as in equation), while the process noise statistics are unknown or inaccurate, and the initial mean and covariance are taken as:
q ^ 0 = 0.2 , Q ^ 0 = 0.5
in order to verify the superiority of the improved adaptive UKF filtering algorithm, the UKF algorithm proposed by the document [7] and the adaptive UKF algorithm proposed by the invention are respectively adopted to carry out adaptive estimation simulation on Q, and the simulation result is as follows:
still consider the above strong nonlinear gaussian system model, assuming that at this time, the system noise w and v are both gaussian noise and obey normal distribution, the process noise of the nonlinear system is accurately known (as shown in the equation) and the statistical characteristics of the measured noise are unknown or inaccurate, and the initial value mean and covariance are taken as:
r ^ 0 = 0.3 , R ^ 0 = 0.6
in order to verify the superiority of the improved adaptive UKF filtering algorithm, the UKF algorithm proposed in the document [7] and the adaptive UKF algorithm proposed by the invention are respectively adopted to carry out adaptive estimation simulation on R
While the invention has been described with reference to a preferred embodiment, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention.
Reference to the literature
[1] Lushubo, yang forever, worship loyalty. INS/GPS integrated navigation system simulation based on UKF [ J ]. science and technology and engineering, 2011,04: 773-.
[2] Field, new rock, a simplified SAGE-HUSA kalman filter [ J ] bulletin and arrow and guidance bulletin, 2011,01:75-77+84.
[3] Application of the Stone courage, Korea, Showa, adaptive UKF algorithm in target tracking [ J ]. automatic school newspaper, 2011,06: 755-.
[4] Yue Xiao Kui, Yuan Jianping an adaptive Kalman filtering algorithm [ J ] based on a maximum likelihood criterion, academic newspaper of northwest industry university, 2005,04: 469-.
[5] Wanglong, Liguangchun, QiaoXiangwei, Meng Meglong, horse wave, adaptive UKF algorithm [ J ] based on maximum likelihood criterion and maximum expectation algorithm, 2012,07:1200 + 1210.
[6] Von Johnua, Wu iron force, Marlon. high dynamics AUKF-based carrier tracking algorithm [ J ] computer engineering, 2012,16: 237-.
[7] Zhao Lin, Wang Xiao Xua, Sun Ming, D Cheng, Yan super adaptive UKF filter algorithm [ J ] based on maximum posterior estimate and exponential weighting, 2010,07: 1007-one 1019.
[8] Dengjiang Ann, Kongxiangwei, Sunxingpeng, Lucleng.an adaptive UKF filter is used to track maneuvering target [ J ]. firepower and command control, 2008, S1:56-59.
[9] The height is wide, which sea wave, Chenjinping, the self-adaptive UKF algorithm and the application thereof in the GPS/INS combined navigation [ J ]. the university of Beijing science and engineering, 2008,06:505 and 509.
[10] Hugaoge, high society, Zhao rock, a new adaptive UKF algorithm and its application in integrated navigation [ J ]. Chinese inertial technology bulletin, 2014,03: 357-.
[11] Liu, UKF algorithm and its improved algorithm study [ D ]. university of south and middle, 2009.

Claims (1)

1. An adaptive UKF filtering algorithm, characterized by comprising the steps of: the first step is as follows: judging whether convergence has been stabilized
Qk-Qk-2≤H
Rk-Rk-2≤H
Wherein H is a small positive integer;
the second step is that: selecting a figure of merit
Let the estimated covariance of the two algorithms be Q1k、R1k、Q2k、R2kThen, then
Q ^ k = Q 1 k - Q 2 k 2
R ^ k = R 1 k + R 2 k 2
In the formula,is the covariance estimate.
CN201410691143.1A 2014-11-25 2014-11-25 Self-adaptive UKF (Unscented Kalman Filter) algorithm Pending CN104539265A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410691143.1A CN104539265A (en) 2014-11-25 2014-11-25 Self-adaptive UKF (Unscented Kalman Filter) algorithm

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410691143.1A CN104539265A (en) 2014-11-25 2014-11-25 Self-adaptive UKF (Unscented Kalman Filter) algorithm

Publications (1)

Publication Number Publication Date
CN104539265A true CN104539265A (en) 2015-04-22

Family

ID=52854752

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410691143.1A Pending CN104539265A (en) 2014-11-25 2014-11-25 Self-adaptive UKF (Unscented Kalman Filter) algorithm

Country Status (1)

Country Link
CN (1) CN104539265A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107315342A (en) * 2017-07-03 2017-11-03 河北工业大学 A kind of improved Kalman filter coordinate separation machinery hand control algolithm
CN108776274A (en) * 2018-06-05 2018-11-09 重庆大学 A kind of wind electric converter fault diagnosis based on adaptive-filtering
CN108872865A (en) * 2018-05-29 2018-11-23 太原理工大学 A kind of lithium battery SOC estimation method of anti-filtering divergence
CN109117965A (en) * 2017-06-22 2019-01-01 长城汽车股份有限公司 System mode prediction meanss and method based on Kalman filter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110116609A (en) * 2010-04-19 2011-10-26 인하대학교 산학협력단 High speed slam system and method based on graphic processing unit
CN103336525A (en) * 2013-06-18 2013-10-02 哈尔滨工程大学 Convenient UKF (Unscented Kalman Filter) filtering method for high weights of stochastic system
EP2657647A1 (en) * 2012-04-23 2013-10-30 Deutsches Zentrum für Luft- und Raumfahrt e. V. Method for estimating the position and orientation using an inertial measurement unit fixed to a moving pedestrian
WO2014053747A1 (en) * 2012-10-01 2014-04-10 Snecma Multi-sensor measuring system method and system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110116609A (en) * 2010-04-19 2011-10-26 인하대학교 산학협력단 High speed slam system and method based on graphic processing unit
EP2657647A1 (en) * 2012-04-23 2013-10-30 Deutsches Zentrum für Luft- und Raumfahrt e. V. Method for estimating the position and orientation using an inertial measurement unit fixed to a moving pedestrian
WO2014053747A1 (en) * 2012-10-01 2014-04-10 Snecma Multi-sensor measuring system method and system
CN103336525A (en) * 2013-06-18 2013-10-02 哈尔滨工程大学 Convenient UKF (Unscented Kalman Filter) filtering method for high weights of stochastic system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
王璐等: ""基于极大似然准则和最大期望算法的自适应UKF算法"", 《自动化学报》 *
赵琳等: ""基于极大后验估计和指数加权的自适应UKF滤波算法"", 《自动化学报》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109117965A (en) * 2017-06-22 2019-01-01 长城汽车股份有限公司 System mode prediction meanss and method based on Kalman filter
CN107315342A (en) * 2017-07-03 2017-11-03 河北工业大学 A kind of improved Kalman filter coordinate separation machinery hand control algolithm
CN108872865A (en) * 2018-05-29 2018-11-23 太原理工大学 A kind of lithium battery SOC estimation method of anti-filtering divergence
CN108776274A (en) * 2018-06-05 2018-11-09 重庆大学 A kind of wind electric converter fault diagnosis based on adaptive-filtering
CN108776274B (en) * 2018-06-05 2020-09-08 重庆大学 Wind power converter fault diagnosis based on adaptive filtering

Similar Documents

Publication Publication Date Title
CN107561503B (en) Adaptive target tracking filtering method based on multiple fading factors
Padoan et al. Likelihood-based inference for max-stable processes
CN111985093A (en) Adaptive unscented Kalman filtering state estimation method with noise estimator
CN108470089B (en) Complex signal time delay estimation method based on least square sample fitting
CN104112079A (en) Fuzzy adaptive variational Bayesian unscented Kalman filter method
CN105306010B (en) Method for convex combination self-adapting filtering based on minimum error entropy
CN104539265A (en) Self-adaptive UKF (Unscented Kalman Filter) algorithm
CN102323602A (en) Carrier tracking loop based on self-adaptive second-order Kalman filter and filtering method of carrier tracking loop
CN107607972A (en) A kind of integer ambiguity fast acquiring method based on materialized view maintenance
CN112697215B (en) Kalman filtering parameter debugging method for ultrasonic water meter data filtering
CN111291319B (en) Mobile robot state estimation method applied to non-Gaussian noise environment
CN105068097A (en) Self-adaptive filtering method for carrier smoothed code pseudorange
CN109520503A (en) Adaptive Kalman filtering SLAM method for square root volume ambiguity
CN103500455A (en) Improved maneuvering target tracking method based on unbiased finite impulse response (UFIR) filter
Hasan et al. Adaptive α-β-filter for target tracking using real time genetic algorithm
CN110532517A (en) Gas pipeline method for parameter estimation based on improved ARUKF
CN110689108A (en) Nonlinear system state estimation method
CN104331087B (en) Robust underwater sensor network target tracking method
Wang et al. Algorithm of Gaussian sum filter based on high-order UKF for dynamic state estimation
CN103793614B (en) A kind of mutation filtering method
CN110118979A (en) The method of improved differential evolution algorithm estimation multipath parameter based on broad sense cross-entropy
CN109582915B (en) Improved nonlinear observability self-adaptive filtering method applied to pure azimuth tracking
CN110940999A (en) Self-adaptive unscented Kalman filtering method based on error model
CN106199473A (en) A kind of many b value diffusion magnetic resonance imaging optimization methods based on noise Ratio Weighted
Yan et al. An adaptive algorithm based on levenberg-marquardt method and two-factor for iterative extended Kalman filter

Legal Events

Date Code Title Description
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20150422