CN104537381B - 一种基于模糊不变特征的模糊图像识别方法 - Google Patents

一种基于模糊不变特征的模糊图像识别方法 Download PDF

Info

Publication number
CN104537381B
CN104537381B CN201410844715.5A CN201410844715A CN104537381B CN 104537381 B CN104537381 B CN 104537381B CN 201410844715 A CN201410844715 A CN 201410844715A CN 104537381 B CN104537381 B CN 104537381B
Authority
CN
China
Prior art keywords
fuzzy
invariant features
image recognition
recognition method
method based
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410844715.5A
Other languages
English (en)
Other versions
CN104537381A (zh
Inventor
曹治国
肖阳
朱梦宇
解晓康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CN201410844715.5A priority Critical patent/CN104537381B/zh
Publication of CN104537381A publication Critical patent/CN104537381A/zh
Application granted granted Critical
Publication of CN104537381B publication Critical patent/CN104537381B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/241Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
    • G06F18/2411Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on the proximity to a decision surface, e.g. support vector machines
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/25Fusion techniques
    • G06F18/254Fusion techniques of classification results, e.g. of results related to same input data
    • G06F18/256Fusion techniques of classification results, e.g. of results related to same input data of results relating to different input data, e.g. multimodal recognition
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/46Descriptors for shape, contour or point-related descriptors, e.g. scale invariant feature transform [SIFT] or bags of words [BoW]; Salient regional features
    • G06V10/462Salient features, e.g. scale invariant feature transforms [SIFT]

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Physics & Mathematics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Biology (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Multimedia (AREA)
  • Image Analysis (AREA)

Abstract

本发明公开了一种基于模糊不变特征的模糊图像识别方法,属于计算机视觉、模式识别技术领域。本发明包括:分别从纹理与结构两个方面提取模糊图像的模糊不变特征;将所提取的特征采用KCCA方法进行融合;利用训练样本提取融合特征训练SVM分类器;利用训练得到的SVM分类器对模糊图像进行识别。相比于传统的模糊图像识别方法,本发明所提供的方法可以在不去图像模糊的情况下直接对模糊图像进行识别,具有识别准确率高、实时性强的特点。本发明在模糊图像识别领域中具有较高的应用价值。

Description

一种基于模糊不变特征的模糊图像识别方法
技术领域
本发明属于计算机视觉、模式识别技术领域,更具体地,涉及一种基于模糊不变特征的模糊图像识别方法。
背景技术
图像识别是计算机视觉中重要的基础研究内容,在很多领域有着广泛的应用。在实际应用中,图像中常常包含有各种外界干扰,例如几何与卷积退化,图像模糊也是其中一种。优秀的图像识别系统应该在各种不理想的成像条件下都能正常工作,目前已有很多学者展开了这方面的研究。不过,关于图像模糊条件下目标识别的研究国内外都还非常少。图像模糊主要是由目标与镜头间的相对运动、镜头散焦以及大气湍流引起图像退化而形成的。模糊图像是理想图像与成像系统的点扩展函数经卷积后形成,模糊程度主要由点扩展函数决定。
图像模糊在直观上会造成图像的边缘畸变与细节信息损失,这对后续的图像识别会产生非常不利的影响,因而降低最终的识别率。传统的模糊图像识别方法一般先对图像进行去模糊处理,在图像模糊被去除后利用现有图像特征对图像进行识别。这种方法虽然能够解决问题,但是,由于去模糊算法涉及到模糊点扩展函数的估计,而点扩展函数的估计则需要对图像进行多次反复的迭代求解,因此去模糊算法的时间复杂度普遍比较高,在实际的图像处理中需要耗费大量的时间。因此,传统方法在一些实时性要求较高的场景中有较大的局限性。
发明内容
针对现有技术的以上缺陷或改进需求,本发明提供一种基于模糊不变特征的模糊图像识别方法,其目的在于提供一种不进行图像去模糊处理,通过直接提取图像模糊不变特征进行图像识别的方法。本发明在保证高识别率的同时,避免了传统模糊图像识别中先去模糊这一步骤的实行,具有效率高,实时性和适应性强的特点。
本发明提供一种于模糊不变特征的模糊图像识别方法,包括以下步骤:
步骤1提取输入图像的纹理模糊不变特征,包括以下子步骤:
(1-1)对于所述输入图像上的每一点,在以其为中心、M×M像素点邻域内,在给定的频域点上计算短时傅里叶变换,得到向量(u1,v1)、(u2,v2)、(u3,v3)、(u4,v4),其中,(u1,v1)、(u2,v2)、(u3,v3)、(u4,v4)为所述给定的频域点,u=u1、u2、u3、u4,,v=v1、v2、v3、v4;将所述向量V中的实部与虚部分开,得到待编码向量W=[Re(V),Im(V)],其中Re(V)表示所述向量V的实部,Im(V)表示所述向量V的虚部;
(1-2)对所述待编码向量W中每一个元素进行量化,并根据以下公式对量化后的每一个元素qi进行编码,得到像素点的纹理特征值b:
(1-3)对每一个像素点均进行所述子步骤(1-1)~(1-2)的计算,将所有的纹理特征值进行直方图统计,得到所述输入图像的纹理模糊不变特征;
步骤2提取所述输入图像的结构模糊不变特征,包括以下子步骤:
(2-1)对于所述输入图像,计算其梯度幅值与方向;
(2-2)将所述输入图像划分成多个图像块,并在每一图像块内再划分成多个细胞单元,对一个图像块内每个细胞单元进行梯度直方图统计并进行串接得到所述图像块的梯度方向直方统计图,将所有图像块的梯度方向直方统计图串接得到所述梯度方向直方统计图的结构特征;
(2-3)计算所述结构特征的均值,将小于所述均值的部分归零;
(2-4)对归零后的所述结构特征进行归一化处理,得到所述结构模糊不变特征;
步骤3使用核典型相关分析方法将所述骤1和所述步骤2获得的所述纹理模糊不变特征和所述结构模糊不变特征进行融合,得到所述输入图像的融合模糊不变特征;
步骤4对清晰图像进行所述步骤1~3的计算得到所述清晰图像的融合模糊不变特征,并利用所述融合模糊不变特征训练SVM分类器;
步骤5使用经所述步骤4训练好的SVM分类器对所述输入图像的融合模糊不变特征进行识别,得到相应的识别结果。
总体而言,通过本发明所构思的以上技术方案与现有技术相比,具有以下有益效果:
(1)模糊图像识别率高:由于分别提取了图像的具有模糊不变性的纹理特征与结构特征,对模糊图像有一个全面的特征描述。采用KCCA方法将上述两种特征较好的融合在一起。因此,本方法在模糊图像上具有较高的识别率;
(2)实时性强:本方法不同于传统方法,对于模糊图像识别通过直接提取模糊不变特征,避免了去模糊的额外计算,有效的提高了方法的实时性。
附图说明
图1为本发明基于模糊不变特征的模糊图像识别方法的流程图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
图1所示为本发明基于模糊不变特征的模糊图像识别方法的流程图,具体包括以下步骤:
步骤1提取输入图像的纹理模糊不变特征,具体包括以下子步骤:
(1-1)对于输入图像g(x,y)上的每一点(x,y),取以其为中心、M×M像素点邻域为子区域N;具体而言,在本发明实施例中,M的确定可以根据给定图像的大小来确定,M需为奇数(例如,给定的图像大小为64×80像素时,M可以取值13像素)。对每一个像素点,在以其为中心的子区域N上,以下式在给定的频域点上计算短时傅里叶变换,得到(u1,v1)、(u2,v2)、(u3,v3)、(u4,v4)。其中给定的频域点为(u1,v1)=(a,0)、(u2,v2)=(0,a)、(u3,v3)=(a,a)、(u4,v4)=(a,-a),其中将向量V中的实部与虚部分开,得到待编码向量W=[Re(V),Im(V)],Re(V)表示所述向量V的实部,Im(V)表示所述向量V的虚部,其中,u=u1、u2、u3、u4,v=v1、v2、v3、v4
(1-2)对待编码向量W中每一个元素以公式进行量化,量化之后以下式对待编码向量W的每一个元素进行编码,所得到的b即为该像素点的纹理特征值,由于向量V中有4个元素,则待编码向量W中有8个元素:
其中,i为待编码向量W中的各元素的位置;
(1-3)对每一个像素点均进行上述计算,将所有的纹理特征值进行直方图统计,所得到的特征X即为图像的纹理模糊不变特征。
步骤2提取输入图像的结构模糊不变特征,具体包括以下子步骤:
(2-1)对于输入图像,以下式计算该图像的梯度幅值与方向:
θ(x,y)=arctan(Gy/Gx)
其中,m(x,y)为在像素点(x,y)处梯度的幅值;Gx为水平方向梯度,Gy为垂直方向梯度,Gx与Gy可以采用掩摸[-101]进行计算;θ(x,y)为在像素点(x,y)处梯度的方向,θ(x,y)的取值为0~π;
(2-2)将输入图像划分成多个图像块,并在每一图像块内再划分成多个细胞单元。在本发明实例中,图像块的大小为8×8像素,细胞单元的大小为4×4像素。以细胞单元为基本统计单位,建立梯度方向直方统计图。梯度方向直方统计图的建立如下:将θ(x,y)分为36个区间,对于统计区域内每个像素点以其梯度幅值为权重,按照所在梯度方向区间分布进行直方图统计。对图像块内细胞单元梯度方向直方统计图进行串接得到图像块的梯度方向直方统计图。将图像内划分的图像块的梯度方向直方统计图进行串接就得到图像的结构特征H。直方图串接均按照从左向右,从上向下的顺序进行;
(2-3)计算结构特征H的均值k,并以下式对结构特征H进行处理,将小于均值的部分归零:
其中,Hi为结构特征H上第i个位置上的值;
(2-4)对归零后的结构特征H以下式进行归一化处理,得到的Y即为结构模糊不变特征:
其中,ξ为接近于0的正数。
步骤3使用核典型相关分析(Kernel Canonical Correlation Analysis,以下简称KCCA)方法将上述步骤1和步骤2获得的两种不同的特征进行融合,得到输入图像的融合模糊不变特征。
KCCA是一种基于核理论的改进典型相关分析方法。首先将待分析变量映射到高维空间中,在高维空间中进行典型相关分析。KCCA能够有效的提取变量间的非线性关系,可以运用于非线性特征间的特征融合中。
由于对于上述步骤所提取出来的纹理模糊不变特征X与结构模糊不变特征Y,KCCA将两个特征映射至高维空间,在本发明实施例中,采用径向基函数对特征X与Y进行计算,得到相应的核矩阵KX、KY,其中,σ为径向基函数的参数,可以根据实际问题进行选择。KCCA的目的是寻找ξ与η,使其满足以下约束优化问题(即使该式的乘积最大):
maxξTKXKYη
其约束条件如下式所示:
上述约优化问题等价于求解如下所示的广义特征值问题:
求解上式所得到的ξ与η即可用于特征融合中,对于提取的纹理模糊不变特征X与结构模糊不变特征Y,采用下式进行融合,所得到的Z即为融合模糊不变特征:
本步骤的优点在于,采用KCCA可以有效的提取特征之间的非线性关系,因此可以进一步的提高最终的识别率。
步骤4根据清晰图像计算融合后的融合模糊不变特征Z,并与其对应类别训练支持向量机(Support Vector Machine,以下简称SVM)分类器,具体包括以下子步骤:
(4-1)对于给定已知类别的清晰图像,使用步骤1的方法提取其纹理模糊不变特征X;
(4-2)对于该清晰图像,使用步骤2的方法提取其结构模糊不变特征Y;
(4-3)采用KCCA方法对特征X与Y进行融合,使用步骤3的方法得到融合模糊不变特征Z;
(4-4)将得到的该融合模糊不变特征Z用于对SVM进行训练,得到相应的分类器。
步骤5使用经步骤4训练好的SVM分类器对经步骤3融合后的特征Z进行识别,从而得到相应的识别结果。
在本发明实施例中,使用SVM训练过程与识别过程中使用的核函数均为线性核函数,其定义为
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (9)

1.一种基于模糊不变特征的模糊图像识别方法,其特征在于,包括:
步骤1 提取输入图像的纹理模糊不变特征,包括以下子步骤:
(1-1)对于所述输入图像上的每一点,在以其为中心、M×M像素点邻域内,在给定的频域点上计算短时傅里叶变换,得到向量V=[G(u1,v1),G(u2,v2),G(u3,v3),G(u4,v4)],其中,(u1,v1)、(u2,v2)、(u3,v3)、(u4,v4)为所述给定的频域点,u=u1、u2、u3、u4,v=v1、v2、v3、v4;将所述向量V中的实部与虚部分开,得到待编码向量W=[Re(V),Im(V)],其中Re(V)表示所述向量V的实部,Im(V)表示所述向量V的虚部;
(1-2)对所述待编码向量W中每一个元素进行量化,并根据以下公式对量化后的每一个元素qi进行编码,得到像素点的纹理特征值b:
(1-3)对每一个像素点均进行所述子步骤(1-1)~(1-2)的计算,将所有的纹理特征值进行直方图统计,得到所述输入图像的纹理模糊不变特征;
步骤2 提取所述输入图像的结构模糊不变特征,包括以下子步骤:
(2-1)对于所述输入图像,计算其梯度幅值与方向;
(2-2)将所述输入图像划分成多个图像块,并在每一图像块内再划分成多个细胞单元,对一个图像块内每个细胞单元进行梯度直方图统计并进行串接得到所述图像块的梯度方向直方统计图,将所有图像块的梯度方向直方统计图串接得到所述梯度方向直方统计图的结构特征;
(2-3)计算所述结构特征的均值,将小于所述均值的部分归零;
(2-4)对归零后的所述结构特征进行归一化处理,得到所述结构模糊不变特征;
步骤3 使用核典型相关分析方法将所述步骤1和所述步骤2获得的所述纹理模糊不变特征和所述结构模糊不变特征进行融合,得到所述输入图像的融合模糊不变特征;
步骤4 对清晰图像进行所述步骤1~3的计算得到所述清晰图像的融合模糊不变特征,并利用所述融合模糊不变特征训练SVM分类器;
步骤5 使用经所述步骤4训练好的SVM分类器对所述输入图像的融合模糊不变特征进行识别,得到相应的识别结果。
2.如权利要求1所述的一种基于模糊不变特征的模糊图像识别方法,其特征在于,所述子步骤(1-1)中M为奇数。
3.如权利要求1或2所述的方法,其特征在于,所述子步骤(1-1)中所述给定的频域点为(u1,v1)=(a,0)、(u2,v2)=(0,a)、(u3,v3)=(a,a)、(u4,v4)=(a,-a),其中
4.如权利要求1或2所述的一种基于模糊不变特征的模糊图像识别方法,其特征在于,所述子步骤(1-2)中以公式对所述待编码向量W中的每一个元素进行量化。
5.如权利要求1所述的一种基于模糊不变特征的模糊图像识别方法,其特征在于,所述子步骤(2-1)中以下式计算所述输入图像的所述梯度幅值与所述方向:
θ(x,y)=arctan(Gy/Gx)
其中,m(x,y)为在像素点(x,y)处梯度的幅值;Gx为水平方向梯度,Gy为垂直方向梯度;θ(x,y)为在像素点(x,y)处梯度的方向。
6.如权利要求1或5所述的一种基于模糊不变特征的模糊图像识别方法,其特征在于,所述子步骤(2-2)中均以从左向右、从上向下的顺序进 行梯度方向直方统计图的串接。
7.如权利要求1或5所述的一种基于模糊不变特征的模糊图像识别方法,其特征在于,所述子步骤(2-4)中以下式对归零后的所述结构特征H进行归一化处理:
其中,ξ为接近于0的正数。
8.如权利要求1所述的一种基于模糊不变特征的模糊图像识别方法,其特征在于,所述步骤3中采用径向基函数对所述纹理模糊不变特征X和所述结构模糊不变特征Y进行计算,得到相应的核矩阵KX、KY,其中,σ为所述径向基函数的参数。
9.如权利要求1所述的一种基于模糊不变特征的模糊图像识别方法,其特征在于,所述步骤4中SVM分类器训练过程和所述步骤5中SVM分类器识别过程中使用的核函数均为线性核函数,其定义为
CN201410844715.5A 2014-12-30 2014-12-30 一种基于模糊不变特征的模糊图像识别方法 Active CN104537381B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410844715.5A CN104537381B (zh) 2014-12-30 2014-12-30 一种基于模糊不变特征的模糊图像识别方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410844715.5A CN104537381B (zh) 2014-12-30 2014-12-30 一种基于模糊不变特征的模糊图像识别方法

Publications (2)

Publication Number Publication Date
CN104537381A CN104537381A (zh) 2015-04-22
CN104537381B true CN104537381B (zh) 2017-09-12

Family

ID=52852901

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410844715.5A Active CN104537381B (zh) 2014-12-30 2014-12-30 一种基于模糊不变特征的模糊图像识别方法

Country Status (1)

Country Link
CN (1) CN104537381B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106371145A (zh) * 2015-07-23 2017-02-01 中云智慧(北京)科技有限公司 基于svm的x光图像空箱检测方法
CN106548180B (zh) * 2016-10-21 2019-04-12 华中科技大学 一种获取模糊不变图像的特征描述子的方法
CN108108670B (zh) 2017-12-04 2018-10-26 交通运输部规划研究院 一种层次化筛选的遥感图像提取港口仓库的方法
CN108985351B (zh) * 2018-06-27 2021-11-26 北京中安未来科技有限公司 一种基于梯度方向稀疏特征信息识别模糊图像的方法和装置、计算设备及存储介质
CN109325939B (zh) * 2018-08-28 2021-08-20 大连理工大学 一种高动态图像模糊检测及验证装置
CN112820071B (zh) * 2021-02-25 2023-05-05 泰康保险集团股份有限公司 一种行为识别方法和装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103413152A (zh) * 2013-07-24 2013-11-27 南京邮电大学 基于模糊分类器识别模糊图像中数字的方法
CN103886343A (zh) * 2014-04-09 2014-06-25 合肥科飞视觉科技有限公司 一种提高视觉系统对模糊图像识别能力的方法及系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9143687B2 (en) * 2012-03-14 2015-09-22 University Of Dayton Method of analyzing motion blur using double discrete wavelet transform

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103413152A (zh) * 2013-07-24 2013-11-27 南京邮电大学 基于模糊分类器识别模糊图像中数字的方法
CN103886343A (zh) * 2014-04-09 2014-06-25 合肥科飞视觉科技有限公司 一种提高视觉系统对模糊图像识别能力的方法及系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LPQ与NMF特征融合的人脸识别;朱长水 等;《信阳师范学院学报:自然科学版》;20130131;第26卷(第1期);第133-135、139页 *
核典型相关分析的融合人脸识别算法;王大伟 等;《激光与红外》;20091130;第39卷(第11期);第1241-1245页 *

Also Published As

Publication number Publication date
CN104537381A (zh) 2015-04-22

Similar Documents

Publication Publication Date Title
CN104537381B (zh) 一种基于模糊不变特征的模糊图像识别方法
KR102319177B1 (ko) 이미지 내의 객체 자세를 결정하는 방법 및 장치, 장비, 및 저장 매체
CN108537743B (zh) 一种基于生成对抗网络的面部图像增强方法
CN103530599B (zh) 一种真实人脸和图片人脸的区别方法和系统
CN112967341B (zh) 基于实景图像的室内视觉定位方法、系统、设备及存储介质
CN109614922A (zh) 一种动静态手势识别方法和系统
CN109685045B (zh) 一种运动目标视频跟踪方法及系统
CN107330390B (zh) 一种基于图像分析和深度学习的人数统计方法
CN110930411B (zh) 一种基于深度相机的人体分割方法及系统
CN109461172A (zh) 人工与深度特征联合的相关滤波视频自适应跟踪方法
CN108960404B (zh) 一种基于图像的人群计数方法及设备
CN107688829A (zh) 一种基于支持向量机的识别系统及识别方法
CN107886507B (zh) 一种基于图像背景和空间位置的显著区域检测方法
CN110827312B (zh) 一种基于协同视觉注意力神经网络的学习方法
CN104376334B (zh) 一种多尺度特征融合的行人比对方法
CN105550641B (zh) 基于多尺度线性差分纹理特征的年龄估计方法和系统
CN108021869A (zh) 一种结合高斯核函数的卷积神经网络跟踪方法
CN108537816A (zh) 一种基于超像素和背景连接先验的显著物体分割方法
CN107358189B (zh) 一种基于多视目标提取的室内环境下物体检测方法
CN111160107B (zh) 一种基于特征匹配的动态区域检测方法
CN111414938B (zh) 一种板式换热器内气泡的目标检测方法
CN107392211B (zh) 基于视觉稀疏认知的显著目标检测方法
CN112241745A (zh) 一种基于光照不变颜色空间的特征点提取方法
CN107742278A (zh) 结合l0范数和空间尺度信息的运动模糊图像盲复原方法
CN106022310B (zh) 基于htg-hog和stg特征的人体行为识别方法

Legal Events

Date Code Title Description
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant