CN104536009A - 一种激光红外复合的地面建筑物识别及导航方法 - Google Patents

一种激光红外复合的地面建筑物识别及导航方法 Download PDF

Info

Publication number
CN104536009A
CN104536009A CN201410844242.9A CN201410844242A CN104536009A CN 104536009 A CN104536009 A CN 104536009A CN 201410844242 A CN201410844242 A CN 201410844242A CN 104536009 A CN104536009 A CN 104536009A
Authority
CN
China
Prior art keywords
target
laser
infrared
suspected
imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410844242.9A
Other languages
English (en)
Other versions
CN104536009B (zh
Inventor
张天序
药珩
姜鹏
凡速飞
陈一梦
马文绚
郝龙伟
杨智慧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CN201410844242.9A priority Critical patent/CN104536009B/zh
Priority to PCT/CN2015/072674 priority patent/WO2016106955A1/zh
Priority to US15/106,700 priority patent/US9817107B2/en
Publication of CN104536009A publication Critical patent/CN104536009A/zh
Application granted granted Critical
Publication of CN104536009B publication Critical patent/CN104536009B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/87Combinations of systems using electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/4802Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • G01S17/18Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves wherein range gates are used
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/86Combinations of lidar systems with systems other than lidar, radar or sonar, e.g. with direction finders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/10Terrestrial scenes
    • G06V20/176Urban or other man-made structures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/933Lidar systems specially adapted for specific applications for anti-collision purposes of aircraft or spacecraft

Abstract

本发明提供一种地面建筑物识别方法,包括以下步骤:(1)航拍地面红外图像;(2)在红外图像中进行检测定位确定疑似目标;(3)对准疑似目标进行激光成像;(4)对激光成像进行距离选通以滤除前景和背景干扰;(5)在滤除干扰后的激光成像中提取疑似目标的形状特征,将其作为目标匹配要素与目标形状特征模板进行匹配,从而识别目标。本发明方法将激光成像融入到红外成像目标定位中,既利用红外成像范围大的优点,又利用激光成像的三维距离信息,有效提高建筑物的定位精确性。

Description

一种激光红外复合的地面建筑物识别及导航方法
技术领域
本发明属于成像自动目标识别技术领域,具体涉及一种地面建筑物识别方法。
背景技术
建筑物作为人造目标的重要基元,其识别可用于城市规划、监督、飞行器导航、避撞等领域。地面背景复杂,各种建筑物的大小、形状各不相同,运动平台载荷成像高度和成像角度可变,所以地面建筑物的识别定位是一项困难的任务。特别是在夜间飞行器的导航制导,单纯使用红外成像缺乏飞行场景三维距离信息,在复杂地物背景下导航效果不佳。
目前,目标识别主要是通过对红外成像进行数字化处理完成。但红外成像缺乏距离信息,无法直接获得目标场景三维信息,对于复杂背景下目标识别效果不佳。鉴于此,现有研究多从建筑物目标线特征的提取方面、对线特征多层次的感知组合方面等进行改进,例如金泰松,叶聪颖,李翠华等在“一种复杂场景下建筑目标识别方法”,计算机工程,Vol.33 No.6March 2007中提出采用基于建筑目标的竖直线特征寻找图像中存在建筑目标区域的方法提高检测识别准确率,但是由于红外图像不包含距离信息和目标三维结构信息,改进效果始终受到限制。
发明内容
本发明提供一种地面建筑物识别方法,其目的在于,本方法将激光成像融入到红外成像目标定位中,既利用红外成像范围大的优点,又利用激光成像的三维距离信息,最终实现建筑物的精确定位。
一种地面建筑物识别方法,包括以下步骤:
(1)航拍地面红外图像;
(2)在红外图像中进行检测定位确定疑似目标;
(3)对准疑似目标进行激光成像;
(4)对激光成像进行距离选通以滤除前景和背景干扰;
(5)在滤除干扰后的激光成像中提取疑似目标的形状特征,将其作为目标匹配要素与目标形状特征模板进行匹配,从而识别目标。
进一步地,所述步骤(5)还将匹配结果与红外成像中疑似目标的局部对比度特征进行融合以识别目标。
进一步地,所述步骤(5)的具体实现方式为:
计算红外成像中疑似目标的局部反差值与局部反差阈值的比值,记为疑似目标的局部对比度a;
计算目标匹配要素与目标形状特征模板的相似度b;
计算目标识别概率p=k1*a+k2*b,权重系数k1+k2=1,k1≤k2;
目标识别概率最大者即为目标识别结果。
进一步地,所述疑似目标区域的形状特征包括高宽比、矩形度、纵向对称度和区域主轴方向。
应用所述的地面建筑物识别方法的飞行器导航方法,具体为:
按照所述的地面建筑物识别方法获取建筑物目标位置;
以建筑物目标位置为原点构建建筑物目标坐标系;
在当前时刻t获取飞行器的俯仰夹角γ和航向夹角φ,计算t时刻飞行器在建筑物目标坐标系中的坐标(xt,yt,zt):xt=Lcosγsinφ,yt=Lcosγcosφ,zt=Lsinγ,其中L为时刻t飞行器与建筑物目标间的距离;
将飞行器在建筑物目标坐标中的坐标(xt,yt,zt)转换为在大地坐标中的位置。
本发明的技术效果体现在:
本发明提出了一种激光红外复合定位识别地面建筑物的方法,融合了红外成像目标识别和激光成像目标识别的优势。飞行器对建筑物目标红外成像的被动工作体制决定了其导引头输出信息中缺少与目标的距离信息和目标的三维形状信息,这使得ATR方法的研究只能在二维平面上进行,其应用受到了很大的限制。尽管有关目标的三维形状及表面材料信息丢失,但其具有帧频高、视场较大、作用距离较远等优势,可实现大面积的搜索。激光成像制导的作用距离近、帧频难以提高,而且作用距离和视场两个指标相互约束,在保作用距离的前提下,只能实现近距离小视场搜索。但是,因其能获取包含目标几何本征信息的三维距离图像和包含目标表面材料反射光谱本征信息的二维图像,以及可分割目标前后场景使复杂背景简化为简单背景的优势,这是红外制导不可比拟的。本发明激光红外复合制导充分发挥了红外制导和激光制导的优点,满足不同场合的需要。
本发明还根据建筑物特点,优化选取了红外成像目标区域特征和激光成像目标区域的特征,通过有效融合激光红外显著特征形成匹配要素。由于激光图像包含目标几何本征信息的三维距离像,所以通过激光距离像可以比红外图像更好的反映目标的形状特征。同时红外图像可以较好的反映目标与背景的的灰度差异,所以红外图像可以比激光图像更好的反映目标潜在区域相对局部感兴趣区的局部反差。本发明通过融合两种特征提高了匹配准确性。
本发明将二者复合起来的被动红外成像/主动激光雷达复合成像系统可以弥补单模系统的不足,既能满足搜索阶段较大的成像范围,又能精确地识别目标,充分发挥各自的优势,有效提高识别精确率。
附图说明
图1为本发明总体流程示意图;
图2为在俯仰角3°,高度2000米,距目标距离10220米的实时红外图像;
图3为飞行高度2000米,视场角3.5°×2.63°,待识别目标建筑物的形态学背景抑制结构元素示例,其中图3(A)距离12000米俯仰角3°,图3(B)距离10000米俯仰角2°,图3(C)距离9000米俯仰角3°,图3(D)距离8000米俯仰角4°,图3(E)距离7000米俯仰角3°,图3(F)距离6000米俯仰角4°;
图4为在俯仰角3°,高度2000米,距目标距离10220米的红外图像检测到的疑似目标;
图5为将传感器光轴移动到疑似目标中心的红外图像,其中图5(A)是将传感器光轴移动到图4中疑似目标A中心的图像,图5(B)是将传感器光轴移动到图4中疑似目标B中心的图像;
图6为俯仰角3°,高度2000米下大小为64×64激光图像,图6(A)为将传感器光轴移动到疑似目标A中心所得激光图像,图6(B)为将传感器光轴移动到疑似目标B中心所得激光图像;
图7为共光轴激光红外传感器视场示意图;
图8为俯仰角3°,高度2000米,距目标距离10220米下的激光红外复合成像图,其中,图8(A)为将光轴移动到疑似目标A中心的激光红外复合成像图,图8(B)为将光轴移动到疑似目标B中心的激光红外复合成像图;
图9为激光距离选通原理图;
图10为进行距离选通后的激光图像,其中,图10(A)为对图6(A)进行距离选通的图像,前距离波门为10400米、后距离波门为10460米,图10(B)为对图6(B)进行距离选通的图像,前距离波门为10200米、后距离波门为10230米;
图11为进行距离选通后的激光红外复合成像图,其中,图11(A)为对图8(A)进行距离选通的图像,前距离波门为10400米、后距离波门为10460米,图11(B)为对图8(B)进行距离选通的图像,前距离波门为10200米、后距离波门为10230米;
图12为对图10进行边缘检测的结果,其中,图12(A)是对图10(A)边缘检测结果示意图,图12(B)是对图10(B)边缘检测结果示意图;
图13为图12(A)的连通区域标记结果示意图;
图14为图12(B)的连通区域标记结果示意图;
图15为目标三维视图,其中,图15(A)为下视图,图15(B)为左视图,图15(c)为前视图;
图16为埃菲尔铁塔三维视图,其中,图16(A)为下视图,图16(B)为左视图,图16(c)为前视图;
图17为帕特农神庙三维视图,其中,图17(A)为下视图,图17(B)为左视图,图17(c)为前视图;
图18为激光检测结果,其中,图18(A)是检测出的感兴趣区域示意图,图18(B)是检测结果示意图;
图19为激光红外复合检测结果;
图20为飞行器在目标坐标系中的位置解算示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
下面参考图1流程以双子楼为例来说明本发明的步骤:
实例1:
(1)航拍地面红外图像。
飞行器在俯仰角3°,高度2000米,距目标距离10220米航拍的实时红外图像如图2所示。
(2)在红外图像中进行检测定位确定疑似目标。
(2.1)构建标准特征库
制作多尺度目标结构元素,不同尺度下目标结构元素如图3所示。
(2.2)图像增强步骤,对原始输入图像进行直方图均衡化,用于增强动态范围偏小的图像反差,增加像素灰度值的动态范围,从而得到增强图像整体对比度的效果。
(2.3)形态学背景抑制,选用图3(A)形态学结构元素对图2进行开运算。以滤除与目标建筑物形状和尺度明显不同的建筑物或背景,使得图像灰度级别减少。
(2.4)灰度级合并步骤,对背景抑制处理后的图像进行直方图统计,根据阈值对每个灰度值出现的次数进行判断,次数小于阈值的灰度值与最近邻的次数大于等于阈值的灰度值进行合并,这里阈值取300。
(2.5)反馈分割步骤
①对灰度级合并后的图像,将其灰度级作为门限,进行灰度级门限分割,转为二值图像;
②特征提取步骤,标记二值图像中每块区域,计算各标记区域的特征量:面积、重心、周长、高度、宽度和形状因子。
③特征匹配步骤,根据标准特征库中各个特征量对各感兴趣区域进行特征匹配,如果某感兴趣区域匹配成功则保留该区域作为下一步分类的感兴趣区域。
对图2进行红外初检测结果如图4所示,共有A、B两个第一疑似目标。
(3)对准第一疑似目标区域进行激光成像。
将传感器光轴移动到疑似目标中心:在俯仰角3°,高度2000米,距目标距离10220米下将传感器光轴移动到疑似目标A中心的红外图像如图5(A)所示,将传感器光轴移动到疑似目标B中心的红外图像如图5(B)所示。将传感器光轴移动到各疑似目标中心,得到的大小为64×64激光图像如图6所示。图6(A)为将传感器光轴移动到疑似目标A中心所得激光图像,图6(B)为将传感器光轴移动到疑似目标B中心所得激光图像。
将光轴移动到疑似目标区中心后就可以获得共光轴传感器的激光红外复合成像图,传感器的激光红外视场示意图如图7所示。在俯仰角3°,高度2000米,距目标距离10220米下的激光红外复合成像图如图8所示,其中图8(A)是将光轴移动到疑似目标A中心的激光红外复合成像图,图8(B)是将光轴移动到疑似目标B中心的激光红外复合成像图。
(4)对激光成像进行距离选通以滤除前景和背景干扰。
利用距离波门进行距离选通,滤去前景和背景干扰,激光距离波门选通原理如图9所示。对图6中激光图像进行距离选通得到结果如图10所示,其中图10(A)为对图6(A)以前距离波门10400、后距离波门10460进行距离选通的结果,图10(B)为对图6(B)以前距离波门10200米、后距离波门10230米进行距离选通的结果。进行距离选通后的激光红外复合成像图如图11所示,其中图11(A)为对图8(A)以前距离波门10400、后距离波门10460进行距离选通的结果,图11(B)为对图8(B)以前距离波门10200米、后距离波门10230米进行距离选通的结果。
(5)在滤除干扰后的激光成像中提取疑似目标的形状特征,将其作为目标匹配要素与目标形状特征模板进行匹配,从而识别目标。
(5.1)边缘分割
对进行距离选通后的激光图像进行边缘分割,抑制弱小边缘和噪声点,用模板[0.09650.40.0965]对图像进行平滑操作,然后用水平方向模板、竖直方向模板、45°方向模板、135°方向模板对图像进行四个方向上的滤波,再对滤波后的图像进行阈值分割,同时抑制面积小于1的弱小边缘和噪声点就可以得到边缘检测结果。对图10激光图像进行边缘检测结果如图12所示,其中图12(A)是对图10(A)边缘检测结果,图12(B)是对图10(B)边缘检测结果。
其中水平方向模板为
2 2 2
0 0 0
-2 -2 -2
竖直方向模板为
2 0 -2
2 0 -2
2 0 -2
45°方向模板为
0 3 0
3 0 -3
0 -3 0
135°方向模板为
0 -3 0
3 0 -3
0 3 0
(5.2)连通区域标记
对边缘分割后的图像进行连通区域标记,可以得到每个独立的疑似目标轮廓。设边缘图像的背景像素为0,目标像素为255,对其进行8邻域区域生长标记的步骤如下:
①按从上到下、从左到右的顺序扫描图像,遇到目标像素P时,标记为新的标记值L;
②以P为种子点,将其8邻域内的目标像素标记为L;
③将所有与L像素8邻域内相邻的目标像素标记为L,直到该连通区域标记完毕;
④继续按顺序扫描图像,重复前三步,直到图像中所有目标像素都标记完毕。
每个连通区域的起始点是按顺序扫描整个图像得到的,而各个连通区域的标记过程是递归调用生长函数的过程。生长函数依次扫描目标点的8邻域,若遇到新的目标点,则将当前目标点的处理过程压栈,转而扫描新目标点的8邻域,如此不断地将目标点压栈。当某一目标点的8邻域内没有新的目标点,则将其弹栈,当所有目标点都弹栈完毕,则该连通区域标记完毕。图12(A)的连通区域标记结果如图13所示,图12(B)的连通区域标记结果如图14所示。
(5.3)提取疑似目标形状特征
对图13和图14中每个疑似目标区域进行形状分析,计算各个疑似目标区域的高宽比,矩形度,纵向对称度,区域主轴方向。并与模型特征中各个特征量进行特征匹配识别,保留与模型特征最接近的感兴趣区域,获得检测结果,目标三维视图如图15所示。
目标下视图各特征量值如下表所示:
高宽比 矩形度 纵向对称度 区域主轴方向
1.7140 0.7494 180 178.1645
目标前视图各特征量值如下表所示:
高宽比 矩形度 纵向对称度 区域主轴方向
2.1955 0.8846 180 90.0371
目标左视图各特征量值如下表所示:
高宽比 矩形度 纵向对称度 区域主轴方向
3.0333 0.8052 180 90.0569
两种典型目标埃菲尔铁塔和帕特农神庙三维视图如图16,17所示。
埃菲尔铁塔下视图各特征量值如下表所示:
高宽比 矩形度 纵向对称度 区域主轴方向
1.0140 0.0494 180 98.1645
埃菲尔铁塔前视图各特征量值如下表所示:
高宽比 矩形度 纵向对称度 区域主轴方向
2.4576 0.1355 180 90.2970
埃菲尔铁塔左视图各特征量值如下表所示:
高宽比 矩形度 纵向对称度 区域主轴方向
2.4576 0.1355 180 90.2970
帕特农神庙下视图各特征量值如下表所示:
高宽比 矩形度 纵向对称度 区域主轴方向
1.9079 1 180 89.9579
帕特农神庙前视图各特征量值如下表所示:
高宽比 矩形度 纵向对称度 区域主轴方向
1.7863 0.1493 180 179.9537
帕特农神庙左视图各特征量值如下表所示:
高宽比 矩形度 纵向对称度 区域主轴方向
3.4262 0.6597 180 0.2067
疑似目标区各特征量计算结果如下表所示:
疑似目标区 高宽比 矩形度 纵向对称度 区域主轴方向
图13(A) 1.4444 0.2414 41 178.6822
图13(B) 1.5404 0.4556 163 102.6994
图14(A) 2.0154 0.4956 160 100.6244
图14(B) 1.5099 0.4729 151 104.6994
由飞行器与目标建筑物的空间位置关系可知,要选取目标建筑物前视图特征量作为特征模板,计算疑似目标各特征量与目标形状特征模板各特征量相似度如下:
通过激光图像确认检测结果如下表所示:
疑似目标区 形状特征相似度 疑似目标概率
图13(A) 0.2935 29.35%
图13(B) 0.7454 74.54%
图14(A) 0.8124 81.24%
图14(B) 0.7246 72.46%
可以得出结论疑似目标区图14(A)为目标区域,感兴趣区域如图18(A)所示,识别结果如图18(B)所示。
作为对比,疑似目标区形状特征与埃菲尔铁塔前视图形状特征相似度如下:
疑似目标区 形状特征相似度
图13(A) 0.2638
图13(B) 0.2582
图14(A) 0.2343
图14(B) 0.2009
疑似目标区形状特征与帕特农神庙前视图形状特征相似度如下:
疑似目标区 形状特征相似度
图13(A) 0.6031
图13(B) 0.3218
图14(A) 0.2501
图14(B) 0.2746
本发明提出红外引导激光进行检测识别,激光对红外初检测结果进行确认识别的方法。如图4所示,红外初检测会得到疑似目标区A和B,激光再针对疑似目标区A和B进行确认检测。提取出疑似目标区A和B的形状特征并与目标特征模板进行比对,选出与目标形状特征最接近的形状特征,将该形状所在目标区作为最终确认结果。激光红外复合检测结果如图19所示。
实例2:
作为优化,本发明还提供红外成像疑似目标区域的特征,将其与激光成像疑似目标区域的形状特征融合形成目标匹配要素。所述红外成像疑似目标区域的特征为目标潜在区域的局部反差。由于激光图像包含目标几何本征信息的三维距离像,所以通过激光距离像可以比红外图像更好的反映目标的形状特征。同时红外图像可以较好的反映目标与背景的的灰度差异,所以红外图像可以比激光图像更好的反映目标潜在区域相对局部感兴趣区的局部反差。所以本发明将红外成像疑似目标区域的目标潜在区域局部反差特征和激光成像疑似目标区域的形状特征融合起来,组成匹配要素进行最终的确认识别。
相比实例1,本实例补充了一步融合红外图像检测的特征和激光图像检测的特征。
根据红外图像计算目标潜在区域的局部反差:
在局部感兴趣区内选取目标潜在区域,目标潜在区域的形心位置为(Xt,Yt),高度为宽度为Wt m;计算目标潜在区域相对局部感兴趣区的局部反差ζ,局部反差阈值为3。局部反差ζ定义为:待识别感兴趣区内目标潜在区的灰度均值μt与整个局部感兴趣区灰度标准差σroi的比值,即 ζ = μ t σ roi ;
根据红外图像计算得出局部对比度反差特征及各疑似目标区疑似目标概率如下:
疑似目标区 局部对比度反差 疑似目标概率
图13(A) 1.8 60%
图13(B) 1.7 56.67%
图14(A) 2.5 83.33%
图14(B) 2 66.67%
激光图像检测结果如下表所示:
疑似目标区 形状特征相似度 疑似目标概率
图13(A) 0.2935 29.35%
图13(B) 0.7454 74.54%
图14(A) 0.8124 81.24%
图14(B) 0.7246 72.46%
将红外检测得到的局部对比度特征和激光检测得到的形状特征相融合,k1=k2=0.5,疑似目标概率如下:
可以得出结论疑似目标区图14(A)为目标区域,该实例通过有效融合激光红外显著特征形成匹配要素,将激光检测的形状特征和红外检测的局部对比度特征融合起来作为最终确认检测的匹配要素。相比实例1直接用激光检测的形状特征作为最终检测的匹配要素,该实例采用的方法有更加准确的识别结果,使得目标特征可以最大程度凸显出来。
应用说明:飞行器导航应用
飞行器捕获建筑物目标,根据建筑物目标经纬度信息确定飞行器自身空间位置,具体为:
获取捕获的建筑物目标信息,飞行器位置解算示意图如图20所示,以建筑物目标为原点O″构建建筑物目标坐标系O″x″y″z″;在时刻t,获取飞行器的俯仰夹角γ,航向夹角φ,则t时刻飞行器在建筑物目标坐标中的坐标(xt,yt,zt)为:xt=Lcosγsinφ,yt=Lcosγcosφ,zt=Lsinγ,其中L为时刻t飞行器与建筑物目标的距离,可通过激光测距获取。
得到飞行器在目标坐标系中的坐标后,根据目标的大地坐标计算飞行器在大地坐标系中的坐标。利用飞行器在大地坐标系中的坐标对惯性导航系统进行误差校正,实现飞行器精确导航。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (5)

1.一种地面建筑物识别方法,包括以下步骤:
(1)航拍地面红外图像;
(2)在红外图像中进行检测定位确定疑似目标;
(3)对准疑似目标进行激光成像;
(4)对激光成像进行距离选通以滤除前景和背景干扰;
(5)在滤除干扰后的激光成像中提取疑似目标的形状特征,将其作为目标匹配要素与目标形状特征模板进行匹配,从而识别目标。
2.根据权利要求1所述的地面建筑物识别方法,其特征在于,所述步骤(5)还将匹配结果与红外成像中疑似目标的局部对比度特征进行融合以识别目标。
3.根据权利要求2所述的地面建筑物识别方法,其特征在于,所述步骤(5)的具体实现方式为:
计算红外成像中疑似目标的局部反差值与局部反差阈值的比值,记为疑似目标的局部对比度a;
计算目标匹配要素与目标形状特征模板的相似度b;
计算目标识别概率p=k1*a+k2*b,权重系数k1+k2=1,k1≤k2;
目标识别概率最大者即为目标识别结果。
4.根据权利要求1或2或3所述的地面建筑物识别方法,其特征在于,所述疑似目标区域的形状特征包括高宽比、矩形度、纵向对称度和区域主轴方向。
5.应用权利要求1~4任一项权利要求所述的地面建筑物识别方法的飞行器导航方法,其特征在于,具体为:
按照权利要求1~4任一项权利要求所述的地面建筑物识别方法获取建筑物目标位置;
以建筑物目标位置为原点构建建筑物目标坐标系;
在当前时刻t获取飞行器的俯仰夹角γ和航向夹角φ,计算t时刻飞行器在建筑物目标坐标中的坐标(xt,yt,zt):xt=Lcosγsinφ,yt=Lcosγcosφ,zt=Lsinγ,其中L为时刻t飞行器与建筑物目标间的距离;
将飞行器在建筑物目标坐标系中的坐标(xt,yt,zt)转换为在大地坐标中的位置。
CN201410844242.9A 2014-12-30 2014-12-30 一种激光红外复合的地面建筑物识别及导航方法 Active CN104536009B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201410844242.9A CN104536009B (zh) 2014-12-30 2014-12-30 一种激光红外复合的地面建筑物识别及导航方法
PCT/CN2015/072674 WO2016106955A1 (zh) 2014-12-30 2015-02-10 一种激光红外复合的地面建筑物识别及导航方法
US15/106,700 US9817107B2 (en) 2014-12-30 2015-02-10 Above-ground building recognition method and navigation method combining laser and infrared

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410844242.9A CN104536009B (zh) 2014-12-30 2014-12-30 一种激光红外复合的地面建筑物识别及导航方法

Publications (2)

Publication Number Publication Date
CN104536009A true CN104536009A (zh) 2015-04-22
CN104536009B CN104536009B (zh) 2016-12-28

Family

ID=52851571

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410844242.9A Active CN104536009B (zh) 2014-12-30 2014-12-30 一种激光红外复合的地面建筑物识别及导航方法

Country Status (3)

Country Link
US (1) US9817107B2 (zh)
CN (1) CN104536009B (zh)
WO (1) WO2016106955A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105654477A (zh) * 2015-12-25 2016-06-08 华中科技大学 一种条带状地下目标的探测定位方法
CN106529452A (zh) * 2016-11-04 2017-03-22 重庆市勘测院 基于建筑三维模型的移动智能终端建筑物快速识别方法
CN106646454A (zh) * 2016-11-25 2017-05-10 上海无线电设备研究所 一种天基告警监视系统的目标快速搜索识别方法
CN108008408A (zh) * 2017-11-24 2018-05-08 北京国泰蓝盾科技有限公司 搜索跟踪成像方法、装置及系统
GB2558356A (en) * 2016-10-20 2018-07-11 Ford Global Tech Llc Lidar and vision vehicle sensing
CN108828552A (zh) * 2018-03-28 2018-11-16 郑州航空工业管理学院 一种机载脉冲激光雷达的目标检测及航迹搜索方法
CN109145474A (zh) * 2018-08-31 2019-01-04 北京晶品镜像科技有限公司 一种适用于作战仿真的红外成像设备侦察效果模拟方法
CN109784229A (zh) * 2018-12-29 2019-05-21 华中科技大学 一种地面建筑物数据融合的复合识别方法
CN112578398A (zh) * 2020-12-07 2021-03-30 中国工程物理研究院应用电子学研究所 一种双焦平面探测识别系统及探测识别方法
CN112611376A (zh) * 2020-11-30 2021-04-06 武汉工程大学 一种RGI-Lidar/SINS紧耦合AUV水下导航定位方法与系统

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109116346B (zh) * 2018-06-13 2023-01-06 扬州瑞控汽车电子有限公司 一种基于雷达的人车识别门禁系统及方法
CN109165600B (zh) * 2018-08-27 2021-11-26 浙江大丰实业股份有限公司 舞台演出人员智能搜索平台
CN109974713B (zh) * 2019-04-26 2023-04-28 安阳全丰航空植保科技股份有限公司 一种基于地表特征群的导航方法及系统
US11800206B2 (en) * 2019-07-08 2023-10-24 Calumino Pty Ltd. Hybrid cameras
CN110674763B (zh) * 2019-09-27 2022-02-11 国网四川省电力公司电力科学研究院 一种基于对称检验的输电通道杆塔图像识别方法及系统
US11222245B2 (en) * 2020-05-29 2022-01-11 Raytheon Company Systems and methods for feature extraction and artificial decision explainability
GB2612284A (en) * 2021-02-02 2023-05-03 Leonardo Mw Ltd An active imaging system
CN114964209B (zh) * 2022-05-13 2023-05-09 天健极光(北京)科技发展有限公司 基于红外阵列成像的长航时无人机自主导航方法和系统
CN114842560B (zh) * 2022-07-04 2022-09-20 广东瑞恩科技有限公司 基于计算机视觉的建筑工地人员危险行为识别方法
CN116246076B (zh) * 2022-12-28 2023-08-11 北京华清安地建筑设计有限公司 一种传统民居院落肌理特征识别应用方法和系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0603003A1 (en) * 1992-12-17 1994-06-22 Texas Instruments Incorporated An integrated LADAR/FLIR sensor
US6042050A (en) * 1999-02-16 2000-03-28 The United States Of America As Represented By The Secretary Of The Army Synthetic discriminant function automatic target recognition system augmented by LADAR
CA2250751C (en) * 1996-04-01 2002-03-12 Lockheed Martin Corporation Combined laser/flir optics system
CN102693285A (zh) * 2012-05-11 2012-09-26 北京师范大学 一种基于形状认知的三维建筑模型匹配与检索的方法
CN103499818A (zh) * 2013-10-10 2014-01-08 中国科学院上海技术物理研究所 一种红外与激光复合探测系统
CN203535224U (zh) * 2013-10-10 2014-04-09 中国科学院上海技术物理研究所 红外与激光复合探测系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102175320B (zh) 2011-01-28 2013-04-24 南京理工大学 对抗激光与红外兼容隐身的光谱学装置
US9163905B2 (en) * 2012-05-23 2015-10-20 Rosemount Aerospace Inc. Dual-mode SAL/IR imaging
CN103486906B (zh) 2013-09-06 2015-11-11 北京理工大学 一种激光、红外点源和红外成像的复合目标模拟器
CN103512579B (zh) * 2013-10-22 2016-02-10 武汉科技大学 一种基于热红外摄像机和激光测距仪的地图构建方法
CN104125372B (zh) 2014-07-29 2017-05-10 北京机械设备研究所 一种目标光电搜索探测方法
CN104181612B (zh) 2014-08-13 2016-03-30 中国人民解放军理工大学 一种红外与激光联合的地基测云方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0603003A1 (en) * 1992-12-17 1994-06-22 Texas Instruments Incorporated An integrated LADAR/FLIR sensor
CA2250751C (en) * 1996-04-01 2002-03-12 Lockheed Martin Corporation Combined laser/flir optics system
US6042050A (en) * 1999-02-16 2000-03-28 The United States Of America As Represented By The Secretary Of The Army Synthetic discriminant function automatic target recognition system augmented by LADAR
CN102693285A (zh) * 2012-05-11 2012-09-26 北京师范大学 一种基于形状认知的三维建筑模型匹配与检索的方法
CN103499818A (zh) * 2013-10-10 2014-01-08 中国科学院上海技术物理研究所 一种红外与激光复合探测系统
CN203535224U (zh) * 2013-10-10 2014-04-09 中国科学院上海技术物理研究所 红外与激光复合探测系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘伟等: "天基成像跟踪关键技术研究", 《航天电子对抗》 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105654477B (zh) * 2015-12-25 2017-11-28 华中科技大学 一种条带状地下目标的探测定位方法
CN105654477A (zh) * 2015-12-25 2016-06-08 华中科技大学 一种条带状地下目标的探测定位方法
US10629072B2 (en) 2016-10-20 2020-04-21 Ford Global Technologies, Llc LIDAR and vision vehicle sensing
GB2558356A (en) * 2016-10-20 2018-07-11 Ford Global Tech Llc Lidar and vision vehicle sensing
CN106529452A (zh) * 2016-11-04 2017-03-22 重庆市勘测院 基于建筑三维模型的移动智能终端建筑物快速识别方法
CN106646454A (zh) * 2016-11-25 2017-05-10 上海无线电设备研究所 一种天基告警监视系统的目标快速搜索识别方法
CN108008408A (zh) * 2017-11-24 2018-05-08 北京国泰蓝盾科技有限公司 搜索跟踪成像方法、装置及系统
CN108828552A (zh) * 2018-03-28 2018-11-16 郑州航空工业管理学院 一种机载脉冲激光雷达的目标检测及航迹搜索方法
CN108828552B (zh) * 2018-03-28 2020-12-15 郑州航空工业管理学院 一种机载脉冲激光雷达的目标检测及航迹搜索方法
CN109145474A (zh) * 2018-08-31 2019-01-04 北京晶品镜像科技有限公司 一种适用于作战仿真的红外成像设备侦察效果模拟方法
CN109784229A (zh) * 2018-12-29 2019-05-21 华中科技大学 一种地面建筑物数据融合的复合识别方法
CN109784229B (zh) * 2018-12-29 2020-10-30 华中科技大学 一种地面建筑物数据融合的复合识别方法
CN112611376A (zh) * 2020-11-30 2021-04-06 武汉工程大学 一种RGI-Lidar/SINS紧耦合AUV水下导航定位方法与系统
CN112611376B (zh) * 2020-11-30 2023-08-01 武汉工程大学 一种RGI-Lidar/SINS紧耦合AUV水下导航定位方法与系统
CN112578398A (zh) * 2020-12-07 2021-03-30 中国工程物理研究院应用电子学研究所 一种双焦平面探测识别系统及探测识别方法

Also Published As

Publication number Publication date
US20160363653A1 (en) 2016-12-15
CN104536009B (zh) 2016-12-28
US9817107B2 (en) 2017-11-14
WO2016106955A1 (zh) 2016-07-07

Similar Documents

Publication Publication Date Title
CN104536009B (zh) 一种激光红外复合的地面建筑物识别及导航方法
CN113359810B (zh) 一种基于多传感器的无人机着陆区域识别方法
CN103714541B (zh) 一种利用山体轮廓区域约束识别定位建筑物的方法
CN103149939B (zh) 一种基于视觉的无人机动态目标跟踪与定位方法
Chen et al. The Comparison and Application of Corner Detection Algorithms.
CN104091369B (zh) 一种无人机遥感影像建筑物三维损毁检测方法
US8385599B2 (en) System and method of detecting objects
CN103075998B (zh) 一种单目空间目标测距测角方法
CN103218787B (zh) 多源异构遥感影像控制点自动采集方法
CN107677274B (zh) 基于双目视觉的无人机自主着陆导航信息实时解算方法
CN109544612A (zh) 基于特征点几何表面描述的点云配准方法
CN111598952B (zh) 一种多尺度合作靶标设计与在线检测识别方法及系统
CN103136525B (zh) 一种利用广义Hough变换的异型扩展目标高精度定位方法
CN105069843A (zh) 一种面向城市三维建模的密集点云的快速提取方法
CN103295239A (zh) 一种基于平面基准影像的激光点云数据的自动配准方法
CN102324041B (zh) 像素归类方法、关节体姿态识别方法及鼠标指令生成方法
CN104899892A (zh) 一种快速的星图图像星点提取方法
CN115388902B (zh) 室内定位方法和系统、ar室内定位导航方法和系统
CN108871409A (zh) 一种故障检测方法和系统
CN101620672B (zh) 一种利用立体地标定位识别地面立体建筑物的方法
CN104504675A (zh) 一种主动视觉定位方法
CN103913166A (zh) 一种基于能量分布的星点提取方法
Wang Automatic extraction of building outline from high resolution aerial imagery
CN104156946A (zh) 一种空间绳系机器人抓捕区域内的障碍物检测方法
CN103488801A (zh) 一种基于地理信息空间库的机场目标检测方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant