CN104530140A - Preparation method of copper and zinc bi-coordination polymer - Google Patents

Preparation method of copper and zinc bi-coordination polymer Download PDF

Info

Publication number
CN104530140A
CN104530140A CN201410770324.3A CN201410770324A CN104530140A CN 104530140 A CN104530140 A CN 104530140A CN 201410770324 A CN201410770324 A CN 201410770324A CN 104530140 A CN104530140 A CN 104530140A
Authority
CN
China
Prior art keywords
zinc
preparation
copper
copper zinc
ligand polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410770324.3A
Other languages
Chinese (zh)
Inventor
吴国民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHANGSHU XINTENG CHEMICAL INDUSTRY Co Ltd
Original Assignee
CHANGSHU XINTENG CHEMICAL INDUSTRY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHANGSHU XINTENG CHEMICAL INDUSTRY Co Ltd filed Critical CHANGSHU XINTENG CHEMICAL INDUSTRY Co Ltd
Priority to CN201410770324.3A priority Critical patent/CN104530140A/en
Publication of CN104530140A publication Critical patent/CN104530140A/en
Pending legal-status Critical Current

Links

Abstract

The invention discloses a preparation method of a copper and zinc bi-coordination polymer. The preparation method comprises the steps of firstly, preparing a zinc complex under a solvothermal condition; and then, doping a small amount of copper ions to obtain the copper and zinc bi-coordination polymer. Compared with the existing method, the preparation method disclosed by the invention has the advantages that the reaction effect for catalyzing light degradation of rhodamine B by using a zinc complex catalyst doped with a small amount of the copper ions is better, recycling can be realized, and relatively high catalysis efficiency is kept.

Description

The preparation method of the two ligand polymer of a kind of copper zinc
Technical field
The present invention relates to the preparation method of ligand polymer, be specifically related to the preparation method of the two ligand polymer of a kind of copper zinc.
Background technology
In recent years along with the reinforcement of people's environmental protection consciousness, catalysis photodegradation pollutent has become a very active research direction of photochemistry field.Wherein rhodamine B is a kind of dyestuff with fresh pinkish synthetic, and can cause subcutis raw meat knurl, be carcinogenic substance.Rhodamine B has application at fluorescent dye, tinted shade, characteristic fireworks and firecrackers, foodstuff additive.Therefore the organic dye pollutant in degraded water body is an important problem.
At present, the main method of degraded water pollutant has physisorphtion, biological degradation method, oxidation reduction process, catalysis photodegradation method etc.Catalysis photodegradation method has the advantages such as process capacity is large, the redox medicament that by force, do not need to introduce other to the tolerance of environment.
Design and synthesis is eco-friendly, and the simple photoresponse catalyzer of synthetic method is the gordian technique of catalysis photodegradation method.But conventional nanoparticle synthesizes comparatively complicated usually as photoresponse catalyzer, the nanoparticle be synthesized may have sizes, and the recycle of metal nanoparticle has difficulties, thus makes this method be restricted in the application simultaneously.Metal complexes has higher light stability and chemical stability, nontoxic, and synthetic method is usually fairly simple, so metal complexes is a kind of desirable photoresponse catalyzer.
Summary of the invention
The object of the invention is the preparation method of the two ligand polymer of openly a kind of copper zinc.
To achieve the above object of the invention, the technical solution used in the present invention is:
A preparation method for the two ligand polymer of copper zinc, comprises the following steps:
(1) in nitrogen, zinc nitrate hexahydrate, oxalic acid, four [4-(1-imidazolyl) phenyl] methane and toluene are put into reactor, back flow reaction 51-55 hour, cooling obtains product 1;
In molar ratio, zinc nitrate hexahydrate: oxalic acid: four [4-(1-imidazolyl) phenyl] methane=2.3: 1: 2;
(2) above-mentioned product 1 is placed in the acetonitrile solution of cupric nitrate, back flow reaction 15 hours, obtain the two ligand polymer of copper zinc, its molecular formula is C 53h 36n 8o 8zn 1.1cu 0.9.
Preferably, step (1) back flow reaction 52 hours.
In technique scheme, in step (1), rate of temperature fall is 2 DEG C/h.
In technique scheme, in step (2), in molar ratio, the ratio 1: 3 of product 1 and cupric nitrate.
Two for above-mentioned copper zinc ligand polymer is added in the rhodamine B aqueous solution, catalysis photodegradation rhodamine B can be carried out under ultraviolet lamp; Rhodamine B carries out under 400W ultraviolet in catalysis photodegradation.
In technique scheme, rhodamine B carries out under 400W ultraviolet in catalysis photodegradation.
Because technique scheme is used, the present invention compared with prior art has following advantages:
The present invention under solvent thermal condition, prepares zinc coordination polymer first, then by a small amount of cupric ion of doping, obtains a kind of copper ion doped zinc coordination polymer; Products therefrom Stability Analysis of Structures, superior performance, and can reuse, can be recycled 8 times; And preparation method disclosed by the invention is simple, is conducive to high, the easy recycling of purifying, product yield of product, be applicable to industrial operation.
Embodiment
Below in conjunction with embodiment, the invention will be further described:
Embodiment one: the synthesis of copper zinc coordination polymer
(1) in nitrogen, 0.23mmol zinc nitrate hexahydrate, 0.23mmol oxalic acid, 0.2mmol tetra-[4-(1-imidazolyl) phenyl] methane and 3mL toluene are put into the heat-resistant glass tube of 20mL, back flow reaction 51 hours, slowly be down to room temperature with 2 DEG C/h of speed, obtain product 1 through filtration, distilled water wash, oven dry;
Carry out infrared analysis to product 1, result is as follows:
IR:v(KBr)/cm -13447m,3136w,1613s,1561w,1523s,1373s,1313w,1270w,1126w,1068m,966m,827m,762s,656m,561m;
(2) 0.1mmol product 1 is placed in the acetonitrile solution of 0.3mmol cupric nitrate, and is sealed in heat-resistant glass tube, back flow reaction 15 hours, obtain the two ligand polymer of copper zinc through filtration, distilled water wash, oven dry, its molecular formula is C 53h 36n 8o 8zn 1.1cu 0.9.Carry out infrared analysis to the two ligand polymer of copper zinc, result is as follows:
IR:v(KBr)/cm -13445m,3133w,1615s,1562w,1523s,1373s,1314w,1270w,1126w,1068m,966m,826m,762s,656m,561m。
Embodiment two: the synthesis of copper zinc coordination polymer
(1) in nitrogen, 0.23mmol zinc nitrate hexahydrate, 0.23mmol oxalic acid, 0.2mmol tetra-[4-(1-imidazolyl) phenyl] methane and 3mL toluene are put into the heat-resistant glass tube of 20mL, back flow reaction 55 hours, slowly be down to room temperature with 2 DEG C/h of speed, obtain product 1 through filtration, distilled water wash, oven dry;
(2) 0.1mmol product 1 is placed in the acetonitrile solution of 0.3mmol cupric nitrate, and is sealed in heat-resistant glass tube, back flow reaction 15 hours, obtain the two ligand polymer of copper zinc through filtration, distilled water wash, oven dry.
Embodiment three: the synthesis of copper zinc coordination polymer
(1) in nitrogen, 0.23mmol zinc nitrate hexahydrate, 0.23mmol oxalic acid, 0.2mmol tetra-[4-(1-imidazolyl) phenyl] methane and 3mL toluene are put into the heat-resistant glass tube of 20mL, back flow reaction 52 hours, slowly be down to room temperature with 2 DEG C/h of speed, obtain product 1 through filtration, distilled water wash, oven dry;
(2) 0.1mmol product 1 is placed in the acetonitrile solution of 0.3mmol cupric nitrate, and is sealed in heat-resistant glass tube, back flow reaction 15 hours, obtain the two ligand polymer of copper zinc through filtration, distilled water wash, oven dry.
Embodiment four: the synthesis of copper zinc coordination polymer
(1) in nitrogen, 0.23mmol zinc nitrate hexahydrate, 0.23mmol oxalic acid, 0.2mmol tetra-[4-(1-imidazolyl) phenyl] methane and 3mL toluene are put into the heat-resistant glass tube of 20mL, back flow reaction 53 hours, slowly be down to room temperature with 2 DEG C/h of speed, obtain product 1 through filtration, distilled water wash, oven dry;
(2) 0.1mmol product 1 is placed in the acetonitrile solution of 0.3mmol cupric nitrate, and is sealed in heat-resistant glass tube, back flow reaction 15 hours, obtain the two ligand polymer of copper zinc through filtration, distilled water wash, oven dry.
Embodiment five: the synthesis of copper zinc coordination polymer
(1) in nitrogen, 0.23mmol zinc nitrate hexahydrate, 0.23mmol oxalic acid, 0.2mmol tetra-[4-(1-imidazolyl) phenyl] methane and 3mL toluene are put into the heat-resistant glass tube of 20mL, back flow reaction 54 hours, slowly be down to room temperature with 2 DEG C/h of speed, obtain product 1 through filtration, distilled water wash, oven dry;
(2) 0.1mmol product 1 is placed in the acetonitrile solution of 0.3mmol cupric nitrate, and is sealed in heat-resistant glass tube, back flow reaction 15 hours, obtain the two ligand polymer of copper zinc through filtration, distilled water wash, oven dry.
Embodiment six: the synthesis of copper zinc coordination polymer
(1) in nitrogen, 0.23mmol zinc nitrate hexahydrate, 0.23mmol oxalic acid, 0.2mmol tetra-[4-(1-imidazolyl) phenyl] methane and 3mL toluene are put into the heat-resistant glass tube of 20mL, back flow reaction 52 hours, naturally be down to room temperature, obtain product 1 through filtration, distilled water wash, oven dry;
(2) 0.1mmol product 1 is placed in the acetonitrile solution of 0.3mmol cupric nitrate, and is sealed in heat-resistant glass tube, back flow reaction 15 hours, obtain the two ligand polymer of copper zinc through filtration, distilled water wash, oven dry.
Embodiment seven: the two ligand polymer catalysis photodegradation rhodamine B of copper zinc
The two ligand polymer of copper zinc of getting 1mg in 10mL concentration be 2 × 10 -4molL -1the rhodamine B aqueous solution in, under 400W ultraviolet lamp, carry out catalysis photodegradation reaction, every 30min sample 1mL, survey uv-absorbing with distilled water diluting to 10mL.The two ligand polymer catalysis photodegradation rhodamine B of copper zinc needs 4 hours.
After having degraded, two for copper zinc ligand polymer is passed through filtration, washing, dried recovered, again carry out the experiment of catalysis photodegradation rhodamine B.After 8 times recycle, the two ligand polymer catalysis photodegradation rhodamine B of copper zinc is 4.2 hours.

Claims (4)

1. a preparation method for the two ligand polymer of copper zinc, is characterized in that, comprise the following steps:
(1) in nitrogen, zinc nitrate hexahydrate, oxalic acid, four [4-(1-imidazolyl) phenyl] methane and toluene are put into reactor, back flow reaction 51-55 hour, cooling obtains product 1;
In molar ratio, zinc nitrate hexahydrate: oxalic acid: four [4-(1-imidazolyl) phenyl] methane=2.3: 1: 2;
(2) above-mentioned product 1 is placed in the acetonitrile solution of cupric nitrate, back flow reaction 15 hours, obtain the two ligand polymer of copper zinc, its molecular formula is C 53h 36n 8o 8zn 1.1cu 0.9.
2. the preparation method of the two ligand polymer of copper zinc according to claim 1, is characterized in that: step (1) back flow reaction 52 hours.
3. the preparation method of the two ligand polymer of copper zinc according to claim 1, it is characterized in that: in step (1), rate of temperature fall is 2 DEG C/h.
4. the preparation method of the two ligand polymer of copper zinc according to claim 1, is characterized in that: in step (2), in molar ratio, the ratio 1: 3 of product 1 and cupric nitrate.
CN201410770324.3A 2014-12-15 2014-12-15 Preparation method of copper and zinc bi-coordination polymer Pending CN104530140A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410770324.3A CN104530140A (en) 2014-12-15 2014-12-15 Preparation method of copper and zinc bi-coordination polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410770324.3A CN104530140A (en) 2014-12-15 2014-12-15 Preparation method of copper and zinc bi-coordination polymer

Publications (1)

Publication Number Publication Date
CN104530140A true CN104530140A (en) 2015-04-22

Family

ID=52845805

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410770324.3A Pending CN104530140A (en) 2014-12-15 2014-12-15 Preparation method of copper and zinc bi-coordination polymer

Country Status (1)

Country Link
CN (1) CN104530140A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106732481A (en) * 2017-01-10 2017-05-31 苏州大学 A kind of pertechnetate adsorbent and its synthetic method and the application in radioactive wastewater is processed
CN107501535A (en) * 2017-08-14 2017-12-22 常州大学 Zn complex catalyst of PLA and preparation method thereof is prepared for ring-opening polymerisation
CN110734554A (en) * 2019-11-23 2020-01-31 南京科技职业学院 Zn (II) three-dimensional blending coordination polymer and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104098614A (en) * 2014-07-23 2014-10-15 苏州大学 Zinc coordination polymer as well as preparation method and application thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104098614A (en) * 2014-07-23 2014-10-15 苏州大学 Zinc coordination polymer as well as preparation method and application thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUI YANG等,: "Doping copper into ZIF-67 for enhancing gas uptake capacity and visible-light-driven photocatalytic degradation of organic dye", 《J. MATER. CHEM.》 *
XIN-XIN XU等,: "Photocatalytic activity of transition-metal-ion doped coordination polymer (CP): photoresponse region extension and quantum yields enhancement via doping of transition metal ions into the framework of CPs", 《DALTON TRANSACTIONS》 *
王艳: "羧酸类配位聚合物的研究进展", 《应用化工》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106732481A (en) * 2017-01-10 2017-05-31 苏州大学 A kind of pertechnetate adsorbent and its synthetic method and the application in radioactive wastewater is processed
CN106732481B (en) * 2017-01-10 2019-04-05 苏州大学 A kind of pertechnetate adsorbent and its synthetic method and the application in processing radioactive wastewater
CN107501535A (en) * 2017-08-14 2017-12-22 常州大学 Zn complex catalyst of PLA and preparation method thereof is prepared for ring-opening polymerisation
CN110734554A (en) * 2019-11-23 2020-01-31 南京科技职业学院 Zn (II) three-dimensional blending coordination polymer and preparation method thereof
CN110734554B (en) * 2019-11-23 2021-07-27 南京科技职业学院 Zn (II) three-dimensional mixed coordination polymer and preparation method thereof

Similar Documents

Publication Publication Date Title
Shen et al. Accelerating photocatalytic hydrogen evolution and pollutant degradation by coupling organic co-catalysts with TiO2
Cherevatskaya et al. Heterogeneous photocatalysts in organic synthesis
CN109280179B (en) Covalent organic framework material, preparation method thereof and application thereof in hindered amine synthesis
CN108273555B (en) Porous crystalline core-shell hybrid material based on UiO-66@ SNW-1 and preparation method and application thereof
CN104098614A (en) Zinc coordination polymer as well as preparation method and application thereof
Sharma et al. Aggregates of the pentacenequinone derivative as reactors for the preparation of Ag@ Cu 2 O core–shell NPs: an active photocatalyst for Suzuki and Suzuki type coupling reactions
CN108097323B (en) Method for preparing imine by primary amine oxidative coupling at room temperature
CN104177319A (en) Method for preparing 2,5-furyldiformate
CN106334568A (en) Method for adopting solvothermal one-step method to synthesize Bi/BiOCl composite nanostructure
CN104530140A (en) Preparation method of copper and zinc bi-coordination polymer
CN105693490B (en) It is a kind of to aoxidize the method for preparing 2,3,5 trimethylbenzoquinones
CN104475131A (en) Visible light response type nanosheet bismuth oxychloride catalyst and preparation method thereof
CN103127958A (en) Preparation and application of metal copper porphyrin/titanium dioxide composite photocatalyst
Rumyantseva et al. Improved method of 5, 10, 15, 20-tetrakis (4-hydroxyphenyl)-porphyrins synthesis
CN104558059A (en) Copper-zinc double coordination polymer
CN114262341A (en) Method for preparing silanol by utilizing photocatalytic oxidation of silane
CN104138763A (en) Preparation method for Ag3PO4/TiOF2 composite photo-catalyst
CN106316810A (en) Preparation method for increasing synthetic yield of 1,1,3-trichloroacetone
CN112892586A (en) Preparation method of core-shell titanium-silicon molecular sieve coated zinc-cadmium alloy particle catalyst and method for preparing N, N-diethylhydroxylamine by using core-shell titanium-silicon molecular sieve coated zinc-cadmium alloy particle catalyst
CN104528873A (en) Application of copper and zinc bi-coordination polymer
CN111978538A (en) Sulfur-doped covalent triazine framework polymer, preparation method thereof and application thereof in preparation of phenol
CN102838469B (en) Preparation method for palladium acetylacetonate
CN105524016A (en) Synthetic method and application of phenothiazine and/or derivative thereof
CN102070406B (en) Method for synthesizing 3,4-dimethyl-3,4-hexamethylene glycol through photocatalysis
CN109985638A (en) A method of the spherical zine sulfide/stannic disulfide nucleocapsid heterojunction photocatalyst being bonded with visible light-responded stratiform

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20150422