CN104528787A - Method for preparing small-particle-size aluminium oxide powder - Google Patents
Method for preparing small-particle-size aluminium oxide powder Download PDFInfo
- Publication number
- CN104528787A CN104528787A CN201410799593.2A CN201410799593A CN104528787A CN 104528787 A CN104528787 A CN 104528787A CN 201410799593 A CN201410799593 A CN 201410799593A CN 104528787 A CN104528787 A CN 104528787A
- Authority
- CN
- China
- Prior art keywords
- alumina powder
- concentration
- powder
- grain size
- fine grain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000843 powder Substances 0.000 title claims abstract description 96
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 title claims abstract description 81
- 238000000034 method Methods 0.000 title claims abstract description 45
- 239000002245 particle Substances 0.000 claims abstract description 29
- 239000002994 raw material Substances 0.000 claims abstract description 23
- 239000013078 crystal Substances 0.000 claims abstract description 20
- 229910000039 hydrogen halide Inorganic materials 0.000 claims abstract description 17
- 239000012433 hydrogen halide Substances 0.000 claims abstract description 17
- 230000007704 transition Effects 0.000 claims abstract description 15
- 239000000203 mixture Substances 0.000 claims abstract description 12
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 claims abstract description 9
- 238000001354 calcination Methods 0.000 claims description 63
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 34
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 25
- -1 aluminum halide Chemical class 0.000 claims description 16
- 229910021529 ammonia Inorganic materials 0.000 claims description 15
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 12
- 239000004375 Dextrin Substances 0.000 claims description 11
- 229920001353 Dextrin Polymers 0.000 claims description 11
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 11
- 235000019425 dextrin Nutrition 0.000 claims description 11
- 239000001257 hydrogen Substances 0.000 claims description 11
- 229910052739 hydrogen Inorganic materials 0.000 claims description 11
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 11
- 229910052782 aluminium Inorganic materials 0.000 claims description 10
- 229910052757 nitrogen Inorganic materials 0.000 claims description 10
- 239000000460 chlorine Substances 0.000 claims description 9
- 150000001875 compounds Chemical class 0.000 claims description 9
- 239000003966 growth inhibitor Substances 0.000 claims description 8
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 claims description 7
- 238000003837 high-temperature calcination Methods 0.000 claims description 7
- 238000000498 ball milling Methods 0.000 claims description 6
- 239000003795 chemical substances by application Substances 0.000 claims description 6
- QPJVMBTYPHYUOC-UHFFFAOYSA-N methyl benzoate Chemical compound COC(=O)C1=CC=CC=C1 QPJVMBTYPHYUOC-UHFFFAOYSA-N 0.000 claims description 6
- 238000003756 stirring Methods 0.000 claims description 6
- 150000002366 halogen compounds Chemical class 0.000 claims description 5
- GDDNTTHUKVNJRA-UHFFFAOYSA-N 3-bromo-3,3-difluoroprop-1-ene Chemical compound FC(F)(Br)C=C GDDNTTHUKVNJRA-UHFFFAOYSA-N 0.000 claims description 4
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 4
- KBKZYWOOZPIUJT-UHFFFAOYSA-N azane;hypochlorous acid Chemical compound N.ClO KBKZYWOOZPIUJT-UHFFFAOYSA-N 0.000 claims description 4
- XSIFPSYPOVKYCO-UHFFFAOYSA-N butyl benzoate Chemical compound CCCCOC(=O)C1=CC=CC=C1 XSIFPSYPOVKYCO-UHFFFAOYSA-N 0.000 claims description 4
- 229910052726 zirconium Inorganic materials 0.000 claims description 4
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims description 3
- IPBVNPXQWQGGJP-UHFFFAOYSA-N acetic acid phenyl ester Natural products CC(=O)OC1=CC=CC=C1 IPBVNPXQWQGGJP-UHFFFAOYSA-N 0.000 claims description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- 229910052801 chlorine Inorganic materials 0.000 claims description 3
- 239000011777 magnesium Substances 0.000 claims description 3
- 229940095102 methyl benzoate Drugs 0.000 claims description 3
- 229940049953 phenylacetate Drugs 0.000 claims description 3
- WLJVXDMOQOGPHL-UHFFFAOYSA-N phenylacetic acid Chemical compound OC(=O)CC1=CC=CC=C1 WLJVXDMOQOGPHL-UHFFFAOYSA-N 0.000 claims description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 2
- 239000002253 acid Substances 0.000 claims description 2
- 150000002632 lipids Chemical class 0.000 claims description 2
- 229910052749 magnesium Inorganic materials 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 claims description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 2
- 239000010955 niobium Substances 0.000 claims description 2
- 229910052758 niobium Inorganic materials 0.000 claims description 2
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 2
- 150000004767 nitrides Chemical class 0.000 claims description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 2
- 239000010936 titanium Substances 0.000 claims description 2
- 229910052719 titanium Inorganic materials 0.000 claims description 2
- 229910052720 vanadium Inorganic materials 0.000 claims description 2
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 claims description 2
- 229910052727 yttrium Inorganic materials 0.000 claims description 2
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 claims description 2
- 239000000758 substrate Substances 0.000 claims 9
- 239000000470 constituent Substances 0.000 claims 2
- 239000006185 dispersion Substances 0.000 claims 2
- 230000026030 halogenation Effects 0.000 claims 2
- 238000005658 halogenation reaction Methods 0.000 claims 2
- 150000007513 acids Chemical class 0.000 claims 1
- 239000004411 aluminium Substances 0.000 claims 1
- 229910021502 aluminium hydroxide Inorganic materials 0.000 claims 1
- 239000011230 binding agent Substances 0.000 claims 1
- 238000001035 drying Methods 0.000 claims 1
- 238000013467 fragmentation Methods 0.000 claims 1
- 238000006062 fragmentation reaction Methods 0.000 claims 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 abstract description 26
- 230000008569 process Effects 0.000 abstract description 15
- 238000002360 preparation method Methods 0.000 abstract description 12
- 239000007789 gas Substances 0.000 abstract description 10
- 239000010419 fine particle Substances 0.000 abstract description 9
- 238000006243 chemical reaction Methods 0.000 abstract description 7
- 239000002270 dispersing agent Substances 0.000 abstract description 7
- 238000004033 diameter control Methods 0.000 abstract description 2
- 238000000465 moulding Methods 0.000 abstract description 2
- 239000002105 nanoparticle Substances 0.000 abstract description 2
- 230000035484 reaction time Effects 0.000 abstract description 2
- 239000012071 phase Substances 0.000 description 21
- 239000003570 air Substances 0.000 description 13
- 230000000694 effects Effects 0.000 description 7
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 6
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 6
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 6
- IRPGOXJVTQTAAN-UHFFFAOYSA-N 2,2,3,3,3-pentafluoropropanal Chemical compound FC(F)(F)C(F)(F)C=O IRPGOXJVTQTAAN-UHFFFAOYSA-N 0.000 description 5
- KLZUFWVZNOTSEM-UHFFFAOYSA-K Aluminum fluoride Inorganic materials F[Al](F)F KLZUFWVZNOTSEM-UHFFFAOYSA-K 0.000 description 5
- 229910001873 dinitrogen Inorganic materials 0.000 description 5
- 239000011363 dried mixture Substances 0.000 description 5
- 150000004820 halides Chemical class 0.000 description 5
- 238000003825 pressing Methods 0.000 description 5
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical compound Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 239000005711 Benzoic acid Substances 0.000 description 3
- 235000010233 benzoic acid Nutrition 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 229910052736 halogen Inorganic materials 0.000 description 3
- 150000002367 halogens Chemical class 0.000 description 3
- 229910000040 hydrogen fluoride Inorganic materials 0.000 description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- MXRIRQGCELJRSN-UHFFFAOYSA-N O.O.O.[Al] Chemical compound O.O.O.[Al] MXRIRQGCELJRSN-UHFFFAOYSA-N 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 229910000042 hydrogen bromide Inorganic materials 0.000 description 2
- 238000009776 industrial production Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 238000010532 solid phase synthesis reaction Methods 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- 229910019440 Mg(OH) Inorganic materials 0.000 description 1
- NIPNSKYNPDTRPC-UHFFFAOYSA-N N-[2-oxo-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 NIPNSKYNPDTRPC-UHFFFAOYSA-N 0.000 description 1
- 229910017855 NH 4 F Inorganic materials 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 239000003082 abrasive agent Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229960004365 benzoic acid Drugs 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 150000002902 organometallic compounds Chemical class 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 230000005476 size effect Effects 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 238000003746 solid phase reaction Methods 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
Landscapes
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
Abstract
本发明提供一种制备细粒径氧化铝粉末的方法,属于粉体制备及粒径控制技术领域。工艺流程为:以工业氢氧化铝或过渡相氧化铝粉末为原料,在原料粉末中添加晶种、分散剂、粒径控制组元和气相源,原料粉末混合均匀后压制成坯体。坯体在含卤化氢和粒径控制组元的气氛中进行高温煅烧,煅烧坯体破碎成粉末,二次成形后再在含较高浓度卤化氢的气氛中进行低温煅烧,得到粒径小于0.14μm,α-Al2O3的含量为100%的亚微米级或纳米级氧化铝粉末。该发明反应温度较低,反应时间较短,工艺简单,所得氧化铝粉末分散性良好。
The invention provides a method for preparing alumina powder with fine particle diameter, which belongs to the technical field of powder preparation and particle diameter control. The process flow is: use industrial aluminum hydroxide or transition phase alumina powder as raw material, add crystal seed, dispersant, particle size control component and gas phase source to the raw material powder, mix the raw material powder evenly and press it into a green body. The green body is calcined at high temperature in an atmosphere containing hydrogen halide and particle size control components, the calcined green body is broken into powder, and after secondary molding, it is calcined at a low temperature in an atmosphere containing a higher concentration of hydrogen halide to obtain a particle size of less than 0.14 μm, the content of α-Al 2 O 3 is 100% sub-micron or nano-sized alumina powder. The invention has low reaction temperature, short reaction time, simple process and good dispersibility of the obtained alumina powder.
Description
技术领域technical field
本发明属于粉体制备及粒径控制技术领域,特别提供了一种制备细粒径氧化铝粉末的方法。The invention belongs to the technical field of powder preparation and particle size control, and particularly provides a method for preparing alumina powder with fine particle size.
背景技术Background technique
细粒径氧化铝粉末(亚微米及纳米级氧化铝粉末)除了具有熔点高、硬度大、强度高和耐腐蚀等特点,还具有显著的表面效应、小尺寸效应、量子效应、宏观量子隧道效应以及高烧结活性,表现出一系列优异的电、磁、光、力学和化学宏观特性,在磨料、刀具、复合材料、微电子、化工、宇航工业、精细陶瓷等领域有广阔的应用前景。细粒径氧化铝粉末的制备主要有固相合成法、化学热解法、非晶晶化法、溶胶-凝胶法、液相沉淀法等方法。固相法是将铝或铝盐研磨锻烧,发生固相反应后,直接得到细粒径氧化铝粉末。气相法以金属单质、卤化物、氢化物或有机金属化合物为原料,通过气相加热分解和化学反应合成细颗粒氧化铝。液相沉淀法是在溶液状态下,通过化学反应使原料中的有效成分生成沉淀,再经过滤、洗涤、干燥、热分解制备细粒径氧化铝。细粒径的制备存在粒径和形貌较难控制、工艺复杂、成本较高等问题。Fine particle size alumina powder (submicron and nanoscale alumina powder) not only has the characteristics of high melting point, high hardness, high strength and corrosion resistance, but also has significant surface effect, small size effect, quantum effect, and macroscopic quantum tunneling effect. As well as high sintering activity, it exhibits a series of excellent electrical, magnetic, optical, mechanical and chemical macroscopic properties, and has broad application prospects in abrasives, cutting tools, composite materials, microelectronics, chemicals, aerospace industry, fine ceramics and other fields. The preparation of fine particle size alumina powder mainly includes solid phase synthesis method, chemical pyrolysis method, amorphous crystallization method, sol-gel method, liquid phase precipitation method and other methods. The solid-phase method is to grind and calcinate aluminum or aluminum salt, and obtain fine-grained alumina powder directly after a solid-phase reaction occurs. The gas-phase method uses metal element, halide, hydride or organometallic compound as raw material, and synthesizes fine-grained alumina through gas-phase thermal decomposition and chemical reaction. The liquid-phase precipitation method is to precipitate the active ingredients in the raw materials through a chemical reaction in a solution state, and then filter, wash, dry, and thermally decompose to prepare fine-grained alumina. The preparation of fine particle size has problems such as difficult control of particle size and shape, complicated process, and high cost.
中国专利CN1095360A公开了一种α-氧化铝粉末及其生产方法,在含有晶种和/或形状控制剂的条件下与含氯化氢或卤素的保护气氛中进行煅烧,得到细粒径和特殊结构的氧化铝粉末。所得细粒径氧化铝粉末的粒径为0.6~3.7μm,较难制备粒径更细小(<0.6μm)的粉末。中国专利CN1386705A公开了一种α-氧化铝细粉及其制备方法,将α-Al2O3前体、籽晶和晶粒长大抑制剂的混合物在含HCl的气氛中于600~1000℃直接煅烧,得到细粒径氧化铝粉末,其中α-Al2O3的含量大于90%。该方法煅烧温度较低,α-Al2O3的含量不高。中国专利CN102009993A公开了一种两段焙烧法(低温煅烧+高温煅烧)制备亚微米级氧化铝的方法,先在400~900℃低温煅烧得到活性氧化铝,然后在1100~1400℃高温煅烧,得到亚微米氧化铝粉末,氧化铝粉末的粒径为0.4~0.8μm。低温(<900℃)煅烧时,氧化铝仍以过渡相氧化铝的形式存在,过渡相氧化铝之间的相变属于位移式相变,不破坏化学键,晶体内的缺陷少,活化效果不显著。高温煅烧时,氧化铝容易发生长大,较难获得纳米级的氧化铝粉末。本发明综合利用添加晶种和/或形状控制剂,采用特殊设计的含卤化氢和/或氟化物(氟化铝)的烧结气氛,并对粉末进行两次制坯和两次煅烧(高温煅烧+低温煅烧)。高温煅烧时,颗粒发生重建式相变,颗粒局部收缩,表面形成大量细小裂纹等缺陷,活化效果显著,为低温煅烧时的破碎奠定基础。低温煅烧时,颗粒在含卤化氢的气氛中进一步破碎。高温煅烧+低温煅烧方式在上述机制及其它一些原理仍不清楚的机制作用下,破碎效果更佳,从而制备出粒径小于0.14μm的亚微米级或纳米级氧化铝粉末。Chinese patent CN1095360A discloses a kind of α-alumina powder and its production method. It is calcined in a protective atmosphere containing hydrogen chloride or halogen under the condition of containing seed crystals and/or shape control agents to obtain fine particle size and special structure. Aluminum oxide powder. The particle size of the fine-grained alumina powder obtained is 0.6-3.7 μm, and it is difficult to prepare a powder with a finer particle size (<0.6 μm). Chinese patent CN1386705A discloses a fine powder of α-alumina and its preparation method. The mixture of α-Al 2 O 3 precursor, seed crystal and grain growth inhibitor is heated at 600-1000°C in an atmosphere containing HCl Calcined directly to obtain fine-grained alumina powder, in which the content of α-Al 2 O 3 is greater than 90%. In this method, the calcination temperature is lower, and the content of α-Al 2 O 3 is not high. Chinese patent CN102009993A discloses a two-stage calcination method (low-temperature calcination + high-temperature calcination) to prepare submicron-sized alumina. Activated alumina is first calcined at a low temperature of 400-900°C, and then calcined at a high temperature of 1100-1400°C to obtain Submicron alumina powder, the particle size of alumina powder is 0.4-0.8μm. When calcined at low temperature (<900°C), alumina still exists in the form of transition phase alumina, and the phase transition between transition phase alumina is a displacement phase transition, which does not destroy chemical bonds. There are few defects in the crystal and the activation effect is not significant. . When calcined at high temperature, alumina tends to grow and it is difficult to obtain nano-sized alumina powder. The present invention comprehensively utilizes the addition of seed crystals and/or shape control agents, adopts a specially designed sintering atmosphere containing hydrogen halide and/or fluoride (aluminum fluoride), and performs two rounds of compacting and two calcinations on the powder (high-temperature calcination + low temperature calcination). When calcined at high temperature, the particles undergo a reconstruction phase transition, the particles shrink locally, and a large number of small cracks and other defects are formed on the surface. During low-temperature calcination, the particles are further broken up in an atmosphere containing hydrogen halide. The high-temperature calcination + low-temperature calcination method has a better crushing effect under the action of the above mechanism and other mechanisms whose principles are still unclear, so that submicron or nanoscale alumina powder with a particle size of less than 0.14 μm can be prepared.
发明内容Contents of the invention
本发明的目的在于提供一种制备细粒径氧化铝粉末的方法,具体包括如下步骤:The object of the present invention is to provide a kind of method for preparing fine-grained aluminum oxide powder, specifically comprises the following steps:
1、原料混合:以工业氢氧化铝或过渡相氧化铝粉末为原料,在原料粉末中添加0.5~4.5wt.%晶种、0.1~1.5wt.%分散剂、0.01~1.2wt.%晶粒长大抑制剂、0~0.5wt.%气相源,采用搅拌或球磨的方式混合均匀后在50~80℃烘干3~5小时,得到混合料;1. Raw material mixing: use industrial aluminum hydroxide or transition phase alumina powder as raw material, add 0.5~4.5wt.% seed crystal, 0.1~1.5wt.% dispersant, 0.01~1.2wt.% crystal grain to the raw material powder Growth inhibitor, 0-0.5wt.% gas phase source, mixed uniformly by stirring or ball milling, and then dried at 50-80°C for 3-5 hours to obtain a mixture;
所述的过渡相氧化铝为γ-Al2O3、δ-Al2O3、ζ-Al2O3、η-Al2O3、θ-Al2O3、κ-Al2O3和χ-Al2O3中的一种或几种。The transition phase alumina is γ-Al 2 O 3 , δ-Al 2 O 3 , ζ-Al 2 O 3 , η-Al 2 O 3 , θ- Al 2 O 3 , κ-Al 2 O 3 and One or more of χ-Al 2 O 3 .
所述的晶种为平均粒径小于30nm的铝、钛、锆、钒的氧化物、氮化物、碳化物或碳氮化物。The seed crystals are oxides, nitrides, carbides or carbonitrides of aluminum, titanium, zirconium and vanadium with an average particle size of less than 30 nm.
所述的晶粒长大抑制剂用于细粒径氧化铝粉末的制备,包括镁、钇、锆、铌等金属的化合物及混合物,如YCl3、Nb2O3、ZrO2、Mg(OH)Cl、MgO和MgCl2中的一种或几种。The grain growth inhibitor is used in the preparation of fine-grained alumina powder, including compounds and mixtures of metals such as magnesium, yttrium, zirconium, and niobium, such as YCl 3 , Nb 2 O 3 , ZrO 2 , Mg(OH ) One or more of Cl, MgO and MgCl 2 .
所述的分散剂为分子量在120~600范围内,含有甲基和苯环的酸类或脂类,例如乙酸苯酯、苯甲酸、苯甲酸甲酯、苯甲酸正丁酯等。The dispersant is an acid or lipid with a molecular weight in the range of 120-600, containing methyl and benzene rings, such as phenyl acetate, benzoic acid, methyl benzoate, n-butyl benzoate and the like.
2、一次制坯:在烘干后的混合料中添加2.5~5wt.%糊精或聚乙烯醇,在560~800MPa的压力下成形,得到一次坯体;2. Primary billet making: add 2.5-5wt.% dextrin or polyvinyl alcohol to the dried mixture, and shape it under a pressure of 560-800MPa to obtain a primary billet;
3、一次煅烧:一次坯体在含卤化氢和粒径控制组元的气氛中进行高温煅烧,煅烧温度为1160~1300℃,煅烧时间为2~3小时,得到一次煅烧坯体;所述粒径控制组元是卤化铝;3. Primary calcination: the primary body is calcined at a high temperature in an atmosphere containing hydrogen halide and particle size control components, the calcination temperature is 1160-1300°C, and the calcination time is 2-3 hours to obtain a primary calcined body; The diameter control component is an aluminum halide;
所述的含卤化氢和粒径控制组元的气氛为卤化氢、氨气、卤化铝、氢气、氮气和空气的混合气相,气相中卤化氢的浓度为0.1~1.0%、氨气的浓度为1.1~1.5%、卤化铝的浓度为1~2%、氢气的浓度为3~5%、氮气的浓度为6-10%、余量为空气。The atmosphere containing hydrogen halides and particle size control components is a mixed gas phase of hydrogen halides, ammonia, aluminum halides, hydrogen, nitrogen and air, the concentration of hydrogen halides in the gas phase is 0.1 to 1.0%, and the concentration of ammonia is 1.1-1.5%, the concentration of aluminum halide is 1-2%, the concentration of hydrogen is 3-5%, the concentration of nitrogen is 6-10%, and the balance is air.
一次煅烧时,也可以将卤化氨和卤素化合物预先添加到混合料中,在高温下分解得到卤化氢、氨气、氮气、氯气或卤化铝。卤素化合物为高氯酸铵、次氯酸铵、六氟铝酸盐等。During primary calcination, ammonia halide and halogen compound can also be pre-added to the mixture, and decomposed at high temperature to obtain hydrogen halide, ammonia, nitrogen, chlorine or aluminum halide. The halogen compound is ammonium perchlorate, ammonium hypochlorite, hexafluoroaluminate and the like.
对于工业化生产,煅烧(包括一次坯体煅烧和二次坯体煅烧)可用隧道窑、旋转窑或推进式炉以连续方式进行。For industrial production, calcination (including primary green body calcination and secondary green body calcination) can be carried out in a continuous manner with tunnel kiln, rotary kiln or pusher furnace.
4、二次制坯:将一次煅烧坯体破碎成粉末,并在破碎粉末中添加2.5~5wt.%糊精或聚乙烯醇,在560~800MPa的压力下成形,得到二次坯体;4. Secondary billet making: crush the primary calcined green body into powder, add 2.5-5wt.% dextrin or polyvinyl alcohol to the crushed powder, and shape it under a pressure of 560-800 MPa to obtain a secondary green body;
5、二次煅烧:将二次坯体进行低温煅烧,煅烧温度为510~900℃,煅烧时间为2~5小时。二次煅烧后得到二次煅烧坯体,二次煅烧坯体破碎后得到粒径小于0.14μm,α-Al2O3的含量为100%的氧化铝粉末,细粒径氧化铝的形貌如图2所示。5. Secondary calcination: The secondary green body is calcined at a low temperature, the calcination temperature is 510-900°C, and the calcination time is 2-5 hours. After the secondary calcination, the secondary calcined green body is obtained. After the secondary calcined green body is broken, the alumina powder with a particle size of less than 0.14 μm and a content of α-Al 2 O 3 of 100% is obtained. The appearance of the fine particle size alumina is as follows: Figure 2 shows.
二次煅烧时采用含较高浓度卤化氢气体的气氛,其中卤化氢的浓度为1.6~2.0%、氨气的浓度为2.3~3%、氢气的浓度为8~10%、氮气的浓度为11~13%、余量为空气。During the secondary calcination, an atmosphere containing a relatively high concentration of hydrogen halide gas is used, wherein the concentration of hydrogen halide is 1.6-2.0%, the concentration of ammonia gas is 2.3-3%, the concentration of hydrogen gas is 8-10%, and the concentration of nitrogen gas is 11%. ~13%, the balance is air.
二次煅烧时,也可以将卤化氨、高氯酸铵或次氯酸铵预先添加到混合料中,在高温下分解得到卤化氢、氨气、氮气或氯气。During the secondary calcination, the ammonium halide, ammonium perchlorate or ammonium hypochlorite can also be pre-added to the mixture and decomposed at high temperature to obtain hydrogen halide, ammonia, nitrogen or chlorine.
本发明将氢氧化铝或过渡氧化铝粉末在含有卤素和卤素化合物气体的气氛中进行高温+低温两阶段煅烧。高温煅烧过程中,卤化物分子破坏了原氧化铝晶体内部原子的规则排列,形成Al3+离子空位,加速了Al3+离子的扩散速度和Al2O3的晶相转变。在相变过程中,形貌控制剂参与相变反应,生成的气相化合物中间产物促进原子迁移,有利于晶相转变和晶体生长。低温煅烧过程中,具有较高活性和较多缺陷的氧化铝粉末在含较高浓度的卤化物气相的气氛中煅烧后将进一步细化,得到分散性较好的细粒径氧化铝粉末。制坯工序通过改变压制压力来控制粉末颗粒堆积的紧密程度,对增大反应物浓度和提高化学反应速率起到至关重要的作用。在气氛中引入卤化物延长了卤化物和原料粉末的作用时间,提高了反应的均匀程度。卤素的引入降低了煅烧温度、促进氧化铝晶型转化,可以在较低的温度下实现氧化铝粉末的细化。该发明的优点是:氧化铝粉末的晶型、粒度和形貌可控,粉末均匀度高,反应过程易于控制,副反应少,工艺简单,容易实现工业化生产。In the present invention, aluminum hydroxide or transition alumina powder is calcined in two stages of high temperature and low temperature in an atmosphere containing halogen and halogen compound gas. During high-temperature calcination, halide molecules destroy the regular arrangement of atoms in the original alumina crystal, forming Al 3+ ion vacancies, which accelerate the diffusion rate of Al 3+ ions and the crystal phase transition of Al 2 O 3 . During the phase transition process, the morphology control agent participates in the phase transition reaction, and the generated gas-phase compound intermediate product promotes atom migration, which is beneficial to crystal phase transition and crystal growth. During the low-temperature calcination process, the alumina powder with higher activity and more defects will be further refined after being calcined in an atmosphere containing a higher concentration of halide gas phase to obtain fine-grained alumina powder with better dispersibility. The billet making process controls the compactness of the powder particles by changing the pressing pressure, which plays a vital role in increasing the concentration of reactants and increasing the rate of chemical reactions. Introducing the halide in the atmosphere prolongs the reaction time between the halide and the raw material powder, and improves the uniformity of the reaction. The introduction of halogen reduces the calcination temperature, promotes the crystal transformation of alumina, and can realize the refinement of alumina powder at a lower temperature. The invention has the advantages of controllable crystal form, particle size and shape of the alumina powder, high powder uniformity, easy control of the reaction process, less side reactions, simple process, and easy industrial production.
附图说明Description of drawings
图1为本发明的工艺流程图Fig. 1 is a process flow diagram of the present invention
图2为细粒径氧化铝的形貌Figure 2 shows the morphology of fine-grained alumina
具体实施方式Detailed ways
实施例1:以氢氧化铝为原料制备细粒径氧化铝粉末Example 1: Preparation of fine-grained alumina powder with aluminum hydroxide as raw material
以工业氢氧化铝粉末为原料,在原料粉末中添加0.5wt.%晶种(20nm的α-TiNC)、0.1wt.%分散剂(苯甲酸)、0.015wt.%晶粒长大抑制剂(Mg(OH)Cl),采用搅拌或球磨的方式混合均匀后在50℃烘干8小时,得到混合料。在烘干后的混合料中添加1wt.%糊精或聚乙烯醇,在600MPa的压力下成形,得到一次坯体;一次坯体进行高温煅烧,煅烧温度为1160℃,煅烧时间为8小时。一次煅烧气氛中氟化氢的浓度为0.1%、氨气的浓度为1.1%、氟化铝的浓度为1%、氢气的浓度为4%、氮气的浓度为6%、余量为空气。一次煅烧后得到一次煅烧坯体;将一次煅烧坯体破碎成粉末,并在破碎粉末中添加0.5wt.%糊精或聚乙烯醇,在560MPa的压力下成形,得到二次坯体;将二次坯体进行低温煅烧,煅烧温度为510℃,煅烧时间为2小时。二次煅烧气氛中氟化氢的浓度为1.6%、氨气的浓度为2.3%、氢气的浓度为9%、氮气的浓度为11%、余量为空气。二次煅烧后得到二次煅烧坯体,二次煅烧坯体破碎后得到细粒径氧化铝粉末。所得氧化铝粉末的平均粒径为0.09μm,α-Al2O3的含量为100%。Using industrial aluminum hydroxide powder as raw material, add 0.5wt.% seed crystal (20nm α-TiNC), 0.1wt.% dispersant (benzoic acid), 0.015wt.% grain growth inhibitor ( Mg(OH)Cl), mixed uniformly by means of stirring or ball milling, and then dried at 50° C. for 8 hours to obtain a mixture. Add 1wt.% dextrin or polyvinyl alcohol to the dried mixture, and shape it under a pressure of 600 MPa to obtain a primary green body; the primary green body is calcined at a high temperature at 1160° C. for 8 hours. The concentration of hydrogen fluoride in the primary calcination atmosphere is 0.1%, the concentration of ammonia is 1.1%, the concentration of aluminum fluoride is 1%, the concentration of hydrogen is 4%, the concentration of nitrogen is 6%, and the balance is air. After the primary calcination, the primary calcined green body is obtained; the primary calcined green body is broken into powder, and 0.5wt.% dextrin or polyvinyl alcohol is added to the crushed powder, and it is formed under a pressure of 560MPa to obtain a secondary green body; the two The secondary green body is calcined at a low temperature, the calcining temperature is 510° C., and the calcining time is 2 hours. The concentration of hydrogen fluoride in the secondary calcination atmosphere is 1.6%, the concentration of ammonia gas is 2.3%, the concentration of hydrogen gas is 9%, the concentration of nitrogen gas is 11%, and the balance is air. A secondary calcined body is obtained after the secondary calcination, and fine-grained alumina powder is obtained after the secondary calcined body is crushed. The average particle diameter of the obtained alumina powder was 0.09 μm, and the content of α-Al 2 O 3 was 100%.
实施例2:以γ-Al2O3为原料制备细粒径氧化铝粉末Example 2: Preparation of fine-grained alumina powder using γ-Al 2 O 3 as raw material
以γ-Al2O3为原料,在原料粉末中添加1wt.%晶种(15nm的V2O5)、0.6wt.%分散剂(乙酸苯酯)、1.2wt.%晶粒长大抑制剂(MgO)和0.4wt.%气相源(次氯酸铵),采用搅拌或球磨的方式混合均匀后在80℃烘干3小时,得到混合料。在烘干后的混合料中添加2.6wt.%糊精或聚乙烯醇,在700MPa的压力下成形,得到一次坯体;一次坯体进行高温煅烧,煅烧温度为1300℃,煅烧时间为3小时。一次煅烧气氛中氯化氢的浓度为1.0%、氨气的浓度为1.5%、氟化铝的浓度为2%、氢气的浓度为5%、氮气的浓度为10%、余量为空气。一次煅烧后得到一次煅烧坯体;将一次煅烧坯体破碎成粉末,并在破碎粉末中添加2wt.%糊精或聚乙烯醇,在700MPa的压力下成形,得到二次坯体;将二次坯体进行低温煅烧,煅烧温度为700℃,煅烧时间为3小时。二次煅烧气氛中氯化氢的浓度为2%、氨气的浓度为2.5%、氢气的浓度为8%、氮气的浓度为12%、余量为空气。二次煅烧后得到二次煅烧坯体,二次煅烧坯体破碎后得到细粒径氧化铝粉末。所得氧化铝粉末的平均粒径为0.13μm,α-Al2O3的含量为100%。Using γ-Al 2 O 3 as raw material, add 1wt.% seed crystal (15nm V 2 O 5 ), 0.6wt.% dispersant (phenyl acetate), 1.2wt.% grain growth inhibitor to the raw material powder Agent (MgO) and 0.4wt.% gas phase source (ammonium hypochlorite), mixed uniformly by stirring or ball milling, and then dried at 80°C for 3 hours to obtain a mixture. Add 2.6wt.% dextrin or polyvinyl alcohol to the dried mixture and shape it under a pressure of 700MPa to obtain a primary green body; the primary green body is calcined at a high temperature at 1300°C for 3 hours . The concentration of hydrogen chloride in the primary calcination atmosphere is 1.0%, the concentration of ammonia is 1.5%, the concentration of aluminum fluoride is 2%, the concentration of hydrogen is 5%, the concentration of nitrogen is 10%, and the balance is air. After the primary calcination, the primary calcined green body is obtained; the primary calcined green body is broken into powder, and 2wt.% dextrin or polyvinyl alcohol is added to the broken powder, and it is shaped under a pressure of 700MPa to obtain the secondary green body; the secondary The green body is calcined at a low temperature, the calcining temperature is 700° C., and the calcining time is 3 hours. The concentration of hydrogen chloride in the secondary calcination atmosphere is 2%, the concentration of ammonia gas is 2.5%, the concentration of hydrogen gas is 8%, the concentration of nitrogen gas is 12%, and the balance is air. A secondary calcined body is obtained after the secondary calcination, and fine-grained alumina powder is obtained after the secondary calcined body is crushed. The average particle diameter of the obtained alumina powder was 0.13 μm, and the content of α-Al 2 O 3 was 100%.
实施例3:以氢氧化铝和NH4F为原料制备细粒径氧化铝粉末Example 3: Preparation of fine-grained alumina powder with aluminum hydroxide and NH 4 F as raw materials
以θ-Al2O3粉末为原料,在原料粉末中添加0.8wt.%晶种(15nm的α-TiO2)、1.0wt.%分散剂(苯甲酸甲酯)、0.06wt.%晶粒长大抑制剂(MgCl2),0.5wt.%气相源(NH4Cl),采用搅拌或球磨的方式混合均匀后在60℃烘干4小时,得到混合料。在烘干后的混合料中添加3wt.%糊精或聚乙烯醇,在580MPa的压力下成形,得到一次坯体;一次坯体进行高温煅烧,煅烧温度为1200℃,煅烧时间为6小时。一次煅烧气氛中溴化氢的浓度为0.5%、氨气的浓度为1.2%、氟化铝的浓度为2%、氢气的浓度为3%、氮气的浓度为8%、余量为空气。一次煅烧后得到一次煅烧坯体;将一次煅烧坯体破碎成粉末,并在破碎粉末中添加3wt.%糊精或聚乙烯醇,在600MPa的压力下成形,得到二次坯体;将二次坯体进行低温煅烧,煅烧温度为900℃,煅烧时间为12小时。二次煅烧气氛中溴化氢的浓度为1.8%、氨气的浓度为3%、氢气的浓度为10%、氮气的浓度为13%、余量为空气。二次煅烧后得到二次煅烧坯体,二次煅烧坯体破碎后得到细粒径氧化铝粉末。所得氧化铝粉末的平均粒径为0.14μm,α-Al2O3的含量为100%。Using θ-Al 2 O 3 powder as raw material, add 0.8wt.% seed crystal (15nm α-TiO 2 ), 1.0wt.% dispersant (methyl benzoate), 0.06wt.% grain Growth inhibitor (MgCl 2 ), 0.5wt.% gas phase source (NH 4 Cl), mixed uniformly by means of stirring or ball milling, and then dried at 60° C. for 4 hours to obtain a mixture. Add 3wt.% dextrin or polyvinyl alcohol to the dried mixture, and shape it under a pressure of 580 MPa to obtain a primary green body; the primary green body is calcined at a high temperature at 1200° C. for 6 hours. The concentration of hydrogen bromide in the primary calcination atmosphere is 0.5%, the concentration of ammonia is 1.2%, the concentration of aluminum fluoride is 2%, the concentration of hydrogen is 3%, the concentration of nitrogen is 8%, and the balance is air. After the primary calcination, the primary calcined green body is obtained; the primary calcined green body is broken into powder, and 3wt.% dextrin or polyvinyl alcohol is added to the broken powder, and it is formed under a pressure of 600MPa to obtain the secondary green body; the secondary The green body is calcined at a low temperature, the calcining temperature is 900° C., and the calcining time is 12 hours. The concentration of hydrogen bromide in the secondary calcination atmosphere is 1.8%, the concentration of ammonia gas is 3%, the concentration of hydrogen gas is 10%, the concentration of nitrogen gas is 13%, and the balance is air. A secondary calcined body is obtained after the secondary calcination, and fine-grained alumina powder is obtained after the secondary calcined body is crushed. The average particle diameter of the obtained alumina powder was 0.14 μm, and the content of α-Al 2 O 3 was 100%.
实施例4:以氢氧化铝和NH4Cl为原料,700MPa成形制备细粒径氧化铝粉末Example 4: Using aluminum hydroxide and NH 4 Cl as raw materials, 700MPa was formed to prepare fine-grained alumina powder
以工业氢氧化铝粉末为原料,在原料粉末中添加4.5wt.%晶种(30nm的α-Al2O3)、1.5wt.%分散剂(苯甲酸)、0.08wt.%晶粒长大抑制剂(Nb2O3),0.15wt.%气相源(高氯酸铵),采用搅拌或球磨的方式混合均匀后在70℃烘干5小时,得到混合料。在烘干后的混合料中添加2.9wt.%糊精或聚乙烯醇,在800MPa的压力下成形,得到一次坯体;一次坯体进行高温煅烧,煅烧温度为1200℃,煅烧时间为2小时。一次煅烧气氛中氯化氢的浓度为0.8%、氨气的浓度为1.3%、氟化铝的浓度为1.5%、氢气的浓度为4.5%、氮气的浓度为9.0%、余量为空气。一次煅烧后得到一次煅烧坯体;将一次煅烧坯体破碎成粉末,并在破碎粉末中添加1wt.%糊精或聚乙烯醇,在800MPa的压力下成形,得到二次坯体;将二次坯体进行低温煅烧,煅烧温度为600℃,煅烧时间为10小时。二次煅烧气氛中氯化氢的浓度为1.7%、氨气的浓度为2.3%、氢气的浓度为9%、氮气的浓度为12%、余量为空气。二次煅烧后得到二次煅烧坯体,二次煅烧坯体破碎后得到细粒径氧化铝粉末。所得氧化铝粉末的平均粒径为0.03μm,α-Al2O3的含量为100%。Using industrial aluminum hydroxide powder as raw material, add 4.5wt.% seed crystal (30nm α-Al 2 O 3 ), 1.5wt.% dispersant (benzoic acid), and 0.08wt.% grain growth to the raw material powder Inhibitor (Nb 2 O 3 ), 0.15wt.% gas phase source (ammonium perchlorate), mixed uniformly by means of stirring or ball milling, and then dried at 70° C. for 5 hours to obtain a mixture. Add 2.9wt.% dextrin or polyvinyl alcohol to the dried mixture, and shape it under a pressure of 800MPa to obtain a primary green body; the primary green body is calcined at a high temperature at 1200°C for 2 hours . The concentration of hydrogen chloride in the primary calcination atmosphere is 0.8%, the concentration of ammonia is 1.3%, the concentration of aluminum fluoride is 1.5%, the concentration of hydrogen is 4.5%, the concentration of nitrogen is 9.0%, and the balance is air. After the primary calcination, the primary calcined green body is obtained; the primary calcined green body is broken into powder, and 1wt.% dextrin or polyvinyl alcohol is added to the crushed powder, and it is formed under a pressure of 800 MPa to obtain the secondary green body; the secondary The green body is calcined at a low temperature, the calcining temperature is 600° C., and the calcining time is 10 hours. The concentration of hydrogen chloride in the secondary calcination atmosphere is 1.7%, the concentration of ammonia gas is 2.3%, the concentration of hydrogen gas is 9%, the concentration of nitrogen gas is 12%, and the balance is air. A secondary calcined body is obtained after the secondary calcination, and fine-grained alumina powder is obtained after the secondary calcined body is crushed. The average particle diameter of the obtained alumina powder was 0.03 μm, and the content of α-Al 2 O 3 was 100%.
实施例5:以氢氧化铝和NH4Cl为原料,500MPa成形制备细粒径氧化铝粉末Example 5: Aluminum hydroxide and NH 4 Cl are used as raw materials, and 500 MPa is formed to prepare fine-grained alumina powder
除了一次制坯过程中的压制压力为650MPa,二次制坯过程中的压制压力为650MPa外,按照与实施例4相同的方法制备细粒径氧化铝粉末,所得氧化铝粉末的平均粒径为0.08μm,α-Al2O3的含量为100%。Except that the pressing pressure in the primary billet making process is 650MPa, and the pressing pressure in the secondary billet making process is 650MPa, the fine-grained alumina powder is prepared according to the same method as in Example 4, and the average particle diameter of the gained alumina powder is 0.08 μm, the content of α-Al 2 O 3 is 100%.
实施例6:以氢氧化铝和NH4Cl为原料,300MPa成形制备细粒径氧化铝粉末Example 6: Using aluminum hydroxide and NH 4 Cl as raw materials, 300MPa molding to prepare fine-grained alumina powder
除了一次制坯过程中的压制压力为560MPa,二次制坯过程中的压制压力为560MPa外,按照与实施例4相同的方法制备细粒径氧化铝粉末,所得氧化铝粉末的平均粒径为0.10μm,α-Al2O3的含量为100%。Except that the pressing pressure in the primary billet making process is 560MPa, and the pressing pressure in the secondary billet making process is 560MPa, the fine-grained alumina powder is prepared according to the same method as in Example 4, and the average particle diameter of the gained alumina powder is 0.10 μm, the content of α-Al 2 O 3 is 100%.
对比实施例1:采用无压制成形的工艺制备细粒径氧化铝粉末Comparative Example 1: Preparation of fine-grained alumina powder by non-press forming process
除了无一次制坯和二次制坯工序外,按照与实施例4相同的方法制备细粒径氧化铝粉末,所得氧化铝粉末的平均粒径为0.82μm,α-Al2O3的含量为100%。Except that there is no primary billet making and secondary billet making process, fine-grained alumina powder is prepared according to the same method as in Example 4. The average particle diameter of the obtained alumina powder is 0.82 μm, and the content of α-Al 2 O 3 is 100%.
对比实施例2:采用低温煅烧+高温煅烧工艺制备细粒径氧化铝粉末Comparative Example 2: Preparation of fine-grained alumina powder by low-temperature calcination + high-temperature calcination process
除了将一次煅烧的温度改为480℃,二次煅烧的温度改为1180℃外,按照与实施例4相同的方法制备细粒径氧化铝粉末,所得氧化铝粉末的平均粒径为37μm,α-Al2O3的含量为99%。Except changing the temperature of the primary calcination to 480°C and the temperature of the secondary calcination to 1180°C, the fine-grained alumina powder was prepared according to the same method as in Example 4, and the average particle diameter of the obtained alumina powder was 37 μm, α - The content of Al 2 O 3 is 99%.
对比实施例3:采用空气煅烧工艺制备细粒径氧化铝粉末Comparative Example 3: Preparation of fine particle size alumina powder by air calcination process
除了将一次煅烧和二次煅烧都在空气气氛中进行外,按照与实施例4相同的方法制备细粒径氧化铝粉末,所得氧化铝粉末的平均粒径为2.5μm,α-Al2O3的含量为98%。Except that both the primary calcination and the secondary calcination are carried out in an air atmosphere, the fine particle size alumina powder is prepared according to the same method as in Example 4. The average particle size of the obtained alumina powder is 2.5 μm, and α-Al 2 O 3 The content is 98%.
下表为实施例1-6和对比实施例1-3的数据对照表:The following table is the data comparison table of embodiment 1-6 and comparative example 1-3:
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. For those skilled in the art, the present invention may have various modifications and changes. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included within the protection scope of the present invention.
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410799593.2A CN104528787B (en) | 2014-12-19 | 2014-12-19 | A kind of method preparing fine grain size alumina powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410799593.2A CN104528787B (en) | 2014-12-19 | 2014-12-19 | A kind of method preparing fine grain size alumina powder |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104528787A true CN104528787A (en) | 2015-04-22 |
CN104528787B CN104528787B (en) | 2016-01-20 |
Family
ID=52844482
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410799593.2A Expired - Fee Related CN104528787B (en) | 2014-12-19 | 2014-12-19 | A kind of method preparing fine grain size alumina powder |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104528787B (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109530721A (en) * | 2018-12-11 | 2019-03-29 | 湖南金昊新材料科技股份有限公司 | A kind of sub-micron aluminium powder and acieral powder preparation method |
CN109607584A (en) * | 2019-01-31 | 2019-04-12 | 东北大学 | A kind of preparation method of high temperature and ultra-low sodium alumina powder material |
CN110625109A (en) * | 2019-09-30 | 2019-12-31 | 中南大学 | A kind of preparation method of submicron aluminum base alloy powder |
CN111205070A (en) * | 2020-03-11 | 2020-05-29 | 苏州贝尔德新材料科技有限公司 | Preparation method of easily-sintered high-purity alumina |
CN114835164A (en) * | 2022-03-21 | 2022-08-02 | 厦门钨业股份有限公司 | Treatment method of tungsten oxide oversize product |
CN114988886A (en) * | 2022-06-01 | 2022-09-02 | 洛阳中超新材料股份有限公司 | Preparation method of high-purity alpha-alumina powder capable of being sintered at low temperature |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4019914A (en) * | 1973-06-27 | 1977-04-26 | Robert Bosch G.M.B.H. | Method of manufacturing α-alumina |
CN1095360A (en) * | 1993-04-13 | 1994-11-23 | 住友化学工业株式会社 | Alpha-alumina powder and production method thereof |
CN1108215A (en) * | 1993-11-25 | 1995-09-13 | 住友化学工业株式会社 | Method for producing α-alumina powder and α-alumina powder obtained by the method |
CN1386705A (en) * | 2001-05-21 | 2002-12-25 | 住友化学工业株式会社 | Alpha-alumina fine powder and method for producing same |
-
2014
- 2014-12-19 CN CN201410799593.2A patent/CN104528787B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4019914A (en) * | 1973-06-27 | 1977-04-26 | Robert Bosch G.M.B.H. | Method of manufacturing α-alumina |
CN1095360A (en) * | 1993-04-13 | 1994-11-23 | 住友化学工业株式会社 | Alpha-alumina powder and production method thereof |
CN1108215A (en) * | 1993-11-25 | 1995-09-13 | 住友化学工业株式会社 | Method for producing α-alumina powder and α-alumina powder obtained by the method |
CN1386705A (en) * | 2001-05-21 | 2002-12-25 | 住友化学工业株式会社 | Alpha-alumina fine powder and method for producing same |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109530721A (en) * | 2018-12-11 | 2019-03-29 | 湖南金昊新材料科技股份有限公司 | A kind of sub-micron aluminium powder and acieral powder preparation method |
CN109607584A (en) * | 2019-01-31 | 2019-04-12 | 东北大学 | A kind of preparation method of high temperature and ultra-low sodium alumina powder material |
CN110625109A (en) * | 2019-09-30 | 2019-12-31 | 中南大学 | A kind of preparation method of submicron aluminum base alloy powder |
CN111205070A (en) * | 2020-03-11 | 2020-05-29 | 苏州贝尔德新材料科技有限公司 | Preparation method of easily-sintered high-purity alumina |
CN114835164A (en) * | 2022-03-21 | 2022-08-02 | 厦门钨业股份有限公司 | Treatment method of tungsten oxide oversize product |
CN114835164B (en) * | 2022-03-21 | 2023-11-28 | 厦门钨业股份有限公司 | Method for treating tungsten oxide oversize material |
CN114988886A (en) * | 2022-06-01 | 2022-09-02 | 洛阳中超新材料股份有限公司 | Preparation method of high-purity alpha-alumina powder capable of being sintered at low temperature |
CN114988886B (en) * | 2022-06-01 | 2023-05-12 | 洛阳中超新材料股份有限公司 | Preparation method of high-purity alpha-alumina powder capable of being sintered at low temperature |
Also Published As
Publication number | Publication date |
---|---|
CN104528787B (en) | 2016-01-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Gillan et al. | Synthesis of refractory ceramics via rapid metathesis reactions between solid-state precursors | |
CN104528787A (en) | Method for preparing small-particle-size aluminium oxide powder | |
JP5578784B2 (en) | Alpha-aluminum oxide-based nanocrystal sintered body, method for producing the same, and use thereof | |
Tachiwaki et al. | Novel synthesis of Y3Al5O12 (YAG) leading to transparent ceramics | |
CN101462722B (en) | Method for preparing titanium carbide ceramic powder | |
Jung et al. | Co-doping effect of monovalent alkali metals on optical properties of CeO2: Eu nanophosphor prepared by spray pyrolysis and application for preparing pearlescent pigments with red emission | |
Pati et al. | Synthesis of nanocrystalline α‐alumina powder using triethanolamine | |
Gan et al. | Molten salt synthesis of YAG: Ce3+ phosphors from oxide raw materials | |
Loghman-Estarki et al. | Large scale synthesis of non-transformable tetragonal Sc2O3, Y2O3 doped ZrO2 nanopowders via the citric acid based gel method to obtain plasma sprayed coating | |
KR101691410B1 (en) | Method for Preparing Titanium Carbonitride Powder | |
Baruah et al. | Synthesis of magnesium aluminate spinel—An overview | |
Tabesh et al. | The effects of chelating agent type on the morphology and phase evolutions of alumina nanostructures | |
EP3816133A1 (en) | Method for preparing alumina-based solid solution ceramic powder by using aluminum oxygen combustion synthesis water mist process | |
JP2003089578A (en) | Light transmittable rare earth oxide sintered compact, and production method therefor | |
Gangwar et al. | Physicochemical and optical properties of one-pot combustion synthesized Pr doped La2O3/La (OH) 3 | |
US20150064094A1 (en) | Method of preparing titanium carbide powder | |
CN107777673A (en) | A kind of cube zirconium nitride powder based on low-temperature reduction and preparation method thereof | |
CN107188565A (en) | A kind of ternary system osmium tungsten diboride hard material and its preparation method and application | |
CN101462701B (en) | Method for preparing titanium nitride ceramic powder | |
JP2008063191A (en) | Method for producing metal boride fine powder | |
JPH05254830A (en) | Finely divided particles of rare earth oxides excellent in dispersibility and production process thereof | |
US20100304138A1 (en) | Boron suboxide composite material | |
Ananta | Synthesis, formation and characterization of Mg4Nb2O9 powders | |
Zhuang et al. | Additives and solvents-induced phase and morphology modification of NaYF4 for improving up-conversion emission | |
US20200207628A1 (en) | Method for preparing powdered composite carbide of tungsten and titanium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20160120 |