CN104525940A - Bismuth micron particle and manufacturing method thereof - Google Patents
Bismuth micron particle and manufacturing method thereof Download PDFInfo
- Publication number
- CN104525940A CN104525940A CN201410852761.XA CN201410852761A CN104525940A CN 104525940 A CN104525940 A CN 104525940A CN 201410852761 A CN201410852761 A CN 201410852761A CN 104525940 A CN104525940 A CN 104525940A
- Authority
- CN
- China
- Prior art keywords
- bismuth
- particle
- solution
- micron
- microparticles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052797 bismuth Inorganic materials 0.000 title claims abstract description 50
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 title claims abstract description 50
- 239000002245 particle Substances 0.000 title claims abstract description 25
- 238000004519 manufacturing process Methods 0.000 title abstract 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims abstract description 44
- 238000000034 method Methods 0.000 claims abstract description 12
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 10
- 238000003756 stirring Methods 0.000 claims abstract description 9
- 239000000126 substance Substances 0.000 claims abstract description 5
- 239000011859 microparticle Substances 0.000 claims description 24
- WOWHHFRSBJGXCM-UHFFFAOYSA-M cetyltrimethylammonium chloride Chemical group [Cl-].CCCCCCCCCCCCCCCC[N+](C)(C)C WOWHHFRSBJGXCM-UHFFFAOYSA-M 0.000 claims description 8
- RXPAJWPEYBDXOG-UHFFFAOYSA-N hydron;methyl 4-methoxypyridine-2-carboxylate;chloride Chemical group Cl.COC(=O)C1=CC(OC)=CC=N1 RXPAJWPEYBDXOG-UHFFFAOYSA-N 0.000 claims description 6
- QYIGOGBGVKONDY-UHFFFAOYSA-N 1-(2-bromo-5-chlorophenyl)-3-methylpyrazole Chemical compound N1=C(C)C=CN1C1=CC(Cl)=CC=C1Br QYIGOGBGVKONDY-UHFFFAOYSA-N 0.000 claims description 3
- 239000004094 surface-active agent Substances 0.000 claims description 2
- 238000001816 cooling Methods 0.000 abstract description 5
- 238000005406 washing Methods 0.000 abstract description 2
- 238000001035 drying Methods 0.000 abstract 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 abstract 1
- -1 polytetrafluoroethylene Polymers 0.000 abstract 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 abstract 1
- 239000004810 polytetrafluoroethylene Substances 0.000 abstract 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 10
- 230000005291 magnetic effect Effects 0.000 description 8
- 239000008367 deionised water Substances 0.000 description 5
- 229910021641 deionized water Inorganic materials 0.000 description 5
- 230000007935 neutral effect Effects 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 239000002086 nanomaterial Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000003889 chemical engineering Methods 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
Landscapes
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Abstract
Description
技术领域technical field
本发明提供了一种铋微米颗粒,具体涉及一种碱性环境下制备高巨磁效应铋微米颗粒的方法,属于化学化工、功能微纳材料技术领域。The invention provides a bismuth micron particle, in particular to a method for preparing a high giant magnetic effect bismuth micron particle in an alkaline environment, and belongs to the technical fields of chemical engineering and functional micro-nano materials.
背景技术Background technique
巨磁电阻效应是指由外加磁场引起的材料电阻的巨大变化的现象,可用于磁记录、磁头读出、磁信息存储、巨磁电阻传感器、磁电子学等信息科技领域。The giant magnetoresistance effect refers to the phenomenon of huge changes in material resistance caused by an external magnetic field, which can be used in information technology fields such as magnetic recording, magnetic head readout, magnetic information storage, giant magnetoresistance sensors, and magnetoelectronics.
铋是一种半金属,其高各向异性的费米面、低载流子浓度以及其小的载流子有效质量使得其具有独特的电学性质。由于铋具有大的费米波长以及长的载流子平均自由程,因而大量研究集中在其量子传输及尺寸限域效应。极小的载流子有效质量和平均自由程使得铋具有非常好的巨磁阻效应,铋单质包括薄膜、块体以及各种形貌的纳米材料均已被成功合成并进行研究,其涉及的合成工艺包括了化学或物理气相沉积、电化学沉积、溶液还原法等等。其中铋单质微米单晶薄膜的巨磁效应最为优良,而块体、各种形貌纳米材料的巨磁电阻均难以达到300%以上。结晶度极高的铋微米颗粒具有更长的载流子平均自由程,因而具有相对于块体材料或纳米材料更好的巨磁阻效应,而合成铋微米颗粒以及碱性条件下合成铋单质尚无文献报道。Bismuth is a semimetal with unique electrical properties due to its high anisotropic Fermi surface, low carrier concentration, and small carrier effective mass. Because bismuth has a large Fermi wavelength and a long carrier mean free path, a lot of research has focused on its quantum transport and size confinement effects. The extremely small carrier effective mass and mean free path make bismuth have a very good giant magnetoresistance effect. Bismuth elemental substances including thin films, bulks and nanomaterials with various shapes have been successfully synthesized and studied. The synthesis process includes chemical or physical vapor deposition, electrochemical deposition, solution reduction method and so on. Among them, the giant magnetic effect of bismuth elemental micron single crystal thin film is the most excellent, while the giant magnetoresistance of bulk and nanomaterials with various shapes is difficult to reach more than 300%. Bi microparticles with extremely high crystallinity have a longer mean free path of carriers, so they have a better giant magnetoresistance effect compared to bulk materials or nanomaterials, and the synthesis of bismuth microparticles and bismuth simple There is no literature report yet.
发明内容Contents of the invention
本发明提供了一种铋微米颗粒,解决了背景技术中的不足,该铋微米颗粒在低温下正巨磁阻为700%以上,室温下正巨磁阻为180%以上,其制备方法简单。The invention provides a bismuth microparticle, which solves the deficiency in the background technology. The bismuth microparticle has a positive giant magnetoresistance of more than 700% at low temperature and a positive giant magnetoresistance of more than 180% at room temperature, and its preparation method is simple.
实现本发明上述目的所采用的技术方案为:The technical scheme adopted to realize the above-mentioned purpose of the present invention is:
一种铋微米颗粒,所述的颗粒为铋单质,其粒径为1~3μm,颗粒呈球形或多面体状,采用以下方法制备:将铋源和模板剂加入乙二醇中,搅拌至完全溶解,随后边搅拌将溶液的pH值调节至大于10,待溶质完全溶解后,将溶液转移至密闭的聚四氟乙烯内衬高压反应釜中,在160~200℃的条件下反应10h以上,反应结束后将所得产物离心或过滤后,洗涤除去残留溶质后,烘干冷却即可制得铋微米颗粒。A bismuth micron particle, the particle is bismuth simple substance, the particle size is 1-3 μm, the particle is spherical or polyhedral, prepared by the following method: add bismuth source and template agent to ethylene glycol, stir until completely dissolved , and then adjust the pH value of the solution to greater than 10 while stirring. After the solute is completely dissolved, transfer the solution to a closed polytetrafluoroethylene-lined high-pressure reactor, and react at 160-200°C for more than 10 hours. After the end, the obtained product is centrifuged or filtered, washed to remove residual solute, dried and cooled to obtain bismuth microparticles.
所述的铋源为硝酸铋或醋酸铋,所述的模板剂为CTAC,或CTAC与PVP混合而成的双表面活性剂,所述铋源与模板剂的摩尔比为0.5~3:1。The bismuth source is bismuth nitrate or bismuth acetate, the template is CTAC, or a double surfactant mixed with CTAC and PVP, and the molar ratio of the bismuth source to the template is 0.5-3:1.
采用KOH的乙二醇溶液来调节溶液的pH值至大于10。The pH of the solution was adjusted to greater than 10 using KOH in ethylene glycol.
与现有技术相比,本发明所提供的铋微米颗粒的制备方法简单,于碱性条件下制备了单质铋晶体微米颗粒。其形貌较为均一,为球形或多面体,粒径为1~3μm。所制备得到的铋微米颗粒在低温下正巨磁阻达到700%,室温下巨磁阻约180%。Compared with the prior art, the preparation method of the bismuth microparticles provided by the invention is simple, and the elemental bismuth crystal microparticles are prepared under alkaline conditions. Its shape is relatively uniform, spherical or polyhedral, with a particle size of 1-3 μm. The prepared bismuth microparticles have a positive giant magnetoresistance of 700% at low temperature and a giant magnetoresistance of about 180% at room temperature.
附图说明Description of drawings
图1为本发明实施例所提供的铋微米颗粒的SEM照片;Fig. 1 is the SEM photograph of the bismuth microparticle provided by the embodiment of the present invention;
图2为本发明实施例所提供的铋微米颗粒的XRD图;Fig. 2 is the XRD figure of the bismuth microparticle provided by the embodiment of the present invention;
图3为目标产物磁场强度—磁阻曲线(T=10K,300K)。Fig. 3 is the magnetic field intensity-magnetoresistance curve (T=10K, 300K) of the target product.
具体实施方式Detailed ways
下面结合附图对本发明做详细具体的说明,但是本发明的保护范围并不局限于以下实施例。The present invention will be described in detail below in conjunction with the accompanying drawings, but the protection scope of the present invention is not limited to the following embodiments.
实施例1Example 1
本实施例中所制备的铋微米颗粒采用以下方法制得:将3mmol硝酸铋及3mmolCTAC加入到60mL乙二醇中,在500r/min下搅拌至溶解,然后向其中滴加1mol/L的KOH的乙二醇溶液,至pH大于10。得到澄清溶液,继续搅拌1h后,将溶液转移至密闭的聚四氟乙烯内衬高压反应釜中,并置于180℃鼓风烘箱中反应12h,自然冷却后取出,将所得产物抽滤,使用去离子水洗至中性,使用乙醇洗去模板剂。最后将滤得的产物于60℃真空干燥12h得到目标产物。The bismuth microparticles prepared in this example were prepared by the following method: 3 mmol bismuth nitrate and 3 mmol CTAC were added to 60 mL of ethylene glycol, stirred at 500 r/min until dissolved, and then 1 mol/L of KOH was added dropwise therein. Ethylene glycol solution, to a pH greater than 10. After obtaining a clear solution, continue stirring for 1 hour, transfer the solution to a closed polytetrafluoroethylene-lined high-pressure reactor, and place it in a blast oven at 180°C for 12 hours, take it out after natural cooling, and filter the obtained product with suction. Wash with deionized water until neutral, and use ethanol to wash away the template agent. Finally, the filtered product was vacuum-dried at 60° C. for 12 h to obtain the target product.
本实施例所提供的铋微米颗粒的场发射扫面电镜照片如图1所示,由图1中可以看出,所述的铋微米颗粒的粒径为1~3μm,颗粒呈球形或多面体状。本实施例所制备的铋微米颗粒的XRD图如图2所示。本实施例所制备的铋微米颗粒的磁场强度—磁阻曲线图如图3所示,由图3中可以看出,所述铋微米颗粒在低温(10K)下正巨磁阻为700%以上,室温(300K)下正巨磁阻为180%以上。The field emission scanning electron microscope photo of the bismuth microparticles provided in this embodiment is shown in Figure 1, as can be seen from Figure 1, the particle diameter of the bismuth microparticles is 1 to 3 μm, and the particles are spherical or polyhedral . The XRD pattern of the bismuth microparticles prepared in this example is shown in FIG. 2 . The magnetic field strength-magnetoresistance curve of the bismuth microparticles prepared in this embodiment is shown in Figure 3, as can be seen from Figure 3, the positive giant magnetoresistance of the bismuth microparticles at low temperature (10K) is more than 700% , the positive giant magnetoresistance is above 180% at room temperature (300K).
实施例2Example 2
本实施例中所制备的铋微米颗粒采用以下方法制得:将3mmol醋酸铋及2.5mmolCTAC加入到60mL乙二醇中,在500r/min下搅拌至溶解,然后向其中滴加1mol/L的KOH的乙二醇溶液,至pH大于10。得到澄清溶液,继续搅拌1h后,将溶液转移至密闭的聚四氟乙烯内衬高压反应釜中,并置于160℃鼓风烘箱中反应12h,自然冷却后取出,将所得产物抽滤,使用去离子水洗至中性,使用乙醇洗去模板剂。最后将滤得的产物于60℃真空干燥12h得到目标产物。The bismuth microparticles prepared in this example were prepared by the following method: 3 mmol bismuth acetate and 2.5 mmol CTAC were added to 60 mL of ethylene glycol, stirred at 500 r/min until dissolved, and then 1 mol/L of KOH was added dropwise ethylene glycol solution to a pH greater than 10. After obtaining a clear solution, continue stirring for 1 hour, transfer the solution to a closed polytetrafluoroethylene-lined high-pressure reactor, and place it in a blast oven at 160°C to react for 12 hours, take it out after natural cooling, and filter the obtained product with suction. Wash with deionized water until neutral, and use ethanol to wash away the template agent. Finally, the filtered product was vacuum-dried at 60° C. for 12 h to obtain the target product.
实施例3Example 3
本实施例中所制备的铋微米颗粒采用以下方法制得:将3mmol硝酸铋及1mmolCTAC加入到60mL乙二醇中,在500r/min下搅拌至溶解,然后向其中滴加1mol/L的KOH的乙二醇溶液,至pH大于10。得到澄清溶液,继续搅拌1h后,将溶液转移至密闭的聚四氟乙烯内衬高压反应釜中,并置于160℃鼓风烘箱中反应12h,自然冷却后取出,将所得产物抽滤,使用去离子水洗至中性,使用乙醇洗去模板剂。最后将滤得的产物于60℃真空干燥12h得到目标产物。The bismuth microparticles prepared in this example were prepared by the following method: 3 mmol bismuth nitrate and 1 mmol CTAC were added to 60 mL of ethylene glycol, stirred at 500 r/min until dissolved, and then 1 mol/L of KOH was added dropwise Ethylene glycol solution, to a pH greater than 10. After obtaining a clear solution, continue stirring for 1 hour, transfer the solution to a closed polytetrafluoroethylene-lined high-pressure reactor, and place it in a blast oven at 160°C to react for 12 hours, take it out after natural cooling, and filter the obtained product with suction. Wash with deionized water until neutral, and use ethanol to wash away the template agent. Finally, the filtered product was vacuum-dried at 60° C. for 12 h to obtain the target product.
实施例4Example 4
本实施例中所制备的铋微米颗粒采用以下方法制得:将3mmol硝酸铋及3mmolCTAC加入到35mL乙二醇中,在500r/min下搅拌至溶解,然后向其中滴加1mol/L的KOH的乙二醇溶液,至pH大于10。得到澄清溶液,继续搅拌1h后,将溶液转移至密闭的聚四氟乙烯内衬高压反应釜中,并置于180℃鼓风烘箱中反应24h,自然冷却后取出,将所得产物抽滤,使用去离子水洗至中性,使用乙醇洗去模板剂。最后将滤得的产物于60℃真空干燥12h得到目标产物。The bismuth microparticles prepared in this example were prepared by the following method: 3mmol bismuth nitrate and 3mmolCTAC were added to 35mL ethylene glycol, stirred at 500r/min until dissolved, and then 1mol/L of KOH was added dropwise Ethylene glycol solution, to a pH greater than 10. After obtaining a clear solution, continue to stir for 1 hour, transfer the solution to a closed polytetrafluoroethylene-lined high-pressure reactor, and place it in a blast oven at 180 ° C for 24 hours, take it out after natural cooling, and filter the obtained product with suction. Wash with deionized water until neutral, and use ethanol to wash away the template agent. Finally, the filtered product was vacuum-dried at 60° C. for 12 h to obtain the target product.
实施例5Example 5
本实施例中所制备的铋微米颗粒采用以下方法制得:将3mmol硝酸铋及3mmolCTAC和1gPVP加入到60mL乙二醇中,在500r/min下搅拌至溶解,然后向其中滴加1mol/L的KOH的乙二醇溶液,至pH大于10。得到澄清溶液,继续搅拌1h后,将溶液转移至密闭的聚四氟乙烯内衬高压反应釜中,并置于180℃鼓风烘箱中反应24h,自然冷却后取出,将所得产物使用离心机分离洗涤,转速为1500~4000r/min,离心时间为5min,使用去离子水洗至中性,使用乙醇洗去模板剂。最后将滤得的产物于60℃真空干燥12h得到目标产物。The bismuth microparticles prepared in this example were prepared by the following method: 3 mmol of bismuth nitrate, 3 mmol of CTAC and 1 g of PVP were added to 60 mL of ethylene glycol, stirred at 500 r/min until dissolved, and then 1 mol/L of KOH in ethylene glycol to a pH greater than 10. A clear solution was obtained, and after stirring for 1 hour, the solution was transferred to a closed polytetrafluoroethylene-lined high-pressure reactor, and placed in a blast oven at 180°C for 24 hours, cooled naturally, then taken out, and the obtained product was separated by a centrifuge For washing, the rotation speed is 1500-4000r/min, the centrifugation time is 5min, and the deionized water is used to wash until neutral, and the template agent is washed away with ethanol. Finally, the filtered product was vacuum-dried at 60° C. for 12 h to obtain the target product.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410852761.XA CN104525940A (en) | 2014-12-31 | 2014-12-31 | Bismuth micron particle and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410852761.XA CN104525940A (en) | 2014-12-31 | 2014-12-31 | Bismuth micron particle and manufacturing method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104525940A true CN104525940A (en) | 2015-04-22 |
Family
ID=52841671
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410852761.XA Pending CN104525940A (en) | 2014-12-31 | 2014-12-31 | Bismuth micron particle and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104525940A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104874811A (en) * | 2015-05-22 | 2015-09-02 | 武汉工程大学 | Preparing method of simple substance bismuth/bismuth compound nanocomposite with oxygen vacancies |
CN105798321A (en) * | 2016-01-29 | 2016-07-27 | 宁波工程学院 | Half-metallic bismuth nanoribbon, half-metallic bismuth nanospheres and preparation method of half-metallic bismuth nanoribbon and half-metallic bismuth nanospheres |
CN105903474A (en) * | 2016-05-12 | 2016-08-31 | 江苏华夏制漆科技有限公司 | Preparation method of magnetic Fe3O4@ elemental bismuth sphere photocatalyst |
CN107469804A (en) * | 2016-06-08 | 2017-12-15 | 中国科学院金属研究所 | A kind of titania-based composite photocatalyst material of nano particle bismuth load and its preparation method and application |
CN108421987A (en) * | 2018-03-16 | 2018-08-21 | 南京工业大学 | Preparation method of flaky elemental bismuth |
CN108436101A (en) * | 2018-04-27 | 2018-08-24 | 同济大学 | A kind of method of microwave radiation technology Fast back-projection algorithm Bi nanospheres |
CN112337498A (en) * | 2020-11-17 | 2021-02-09 | 石家庄铁道大学 | Bismuth/graphite phase carbon nitride/bismuth oxybromide composite photocatalyst and preparation method and application thereof |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1821087A (en) * | 2006-03-06 | 2006-08-23 | 湖北大学 | A kind of neodymium-doped bismuth titanate nanowire array ferroelectric storage material and its synthesis method |
WO2008003522A1 (en) * | 2006-07-05 | 2008-01-10 | Janssen Pharmaceutica N.V. | Method for producing metal nanoparticles |
CN101314183A (en) * | 2008-04-21 | 2008-12-03 | 上海大学 | Method for Synthesizing Single Crystal Bismuth Nanowires Induced by Strong Magnetic Field |
CN101569934A (en) * | 2009-05-27 | 2009-11-04 | 河南大学 | Method for preparing metal bismuth nanoparticle |
CN102211183A (en) * | 2010-04-08 | 2011-10-12 | 中国检验检疫科学研究院 | Bismuth (Bi) nanostructured material as well as preparation method and application thereof |
CN102212880A (en) * | 2010-04-08 | 2011-10-12 | 中国检验检疫科学研究院 | Elementary substance Bi nano-structured material and preparation method and application thereof |
CN102672162A (en) * | 2012-06-04 | 2012-09-19 | 中山大学 | Bismuth nanofiber three-dimensional structural material and preparation method thereof |
CN102717095A (en) * | 2012-06-20 | 2012-10-10 | 华东师范大学 | Method for preparing monodisperse bismuth nano-particles |
CN103121108A (en) * | 2011-11-21 | 2013-05-29 | 中国检验检疫科学研究院 | Bi elementary substance nanostructured materials and preparation method and application thereof |
CN103121107A (en) * | 2011-11-21 | 2013-05-29 | 中国检验检疫科学研究院 | Bismuth (Bi) simple substance nanometer structure material and preparation method and application thereof |
CN104070178A (en) * | 2014-07-01 | 2014-10-01 | 扬州大学 | Preparation method for monodisperse bismuth nano-particles with controllable particle sizes |
TW201442961A (en) * | 2013-04-25 | 2014-11-16 | 同和電子科技有限公司 | Silver-bismuth powder, electroconductive paste, and electro conductive film |
-
2014
- 2014-12-31 CN CN201410852761.XA patent/CN104525940A/en active Pending
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1821087A (en) * | 2006-03-06 | 2006-08-23 | 湖北大学 | A kind of neodymium-doped bismuth titanate nanowire array ferroelectric storage material and its synthesis method |
WO2008003522A1 (en) * | 2006-07-05 | 2008-01-10 | Janssen Pharmaceutica N.V. | Method for producing metal nanoparticles |
CN101314183A (en) * | 2008-04-21 | 2008-12-03 | 上海大学 | Method for Synthesizing Single Crystal Bismuth Nanowires Induced by Strong Magnetic Field |
CN101569934A (en) * | 2009-05-27 | 2009-11-04 | 河南大学 | Method for preparing metal bismuth nanoparticle |
CN102211183A (en) * | 2010-04-08 | 2011-10-12 | 中国检验检疫科学研究院 | Bismuth (Bi) nanostructured material as well as preparation method and application thereof |
CN102212880A (en) * | 2010-04-08 | 2011-10-12 | 中国检验检疫科学研究院 | Elementary substance Bi nano-structured material and preparation method and application thereof |
CN103121108A (en) * | 2011-11-21 | 2013-05-29 | 中国检验检疫科学研究院 | Bi elementary substance nanostructured materials and preparation method and application thereof |
CN103121107A (en) * | 2011-11-21 | 2013-05-29 | 中国检验检疫科学研究院 | Bismuth (Bi) simple substance nanometer structure material and preparation method and application thereof |
CN102672162A (en) * | 2012-06-04 | 2012-09-19 | 中山大学 | Bismuth nanofiber three-dimensional structural material and preparation method thereof |
CN102717095A (en) * | 2012-06-20 | 2012-10-10 | 华东师范大学 | Method for preparing monodisperse bismuth nano-particles |
TW201442961A (en) * | 2013-04-25 | 2014-11-16 | 同和電子科技有限公司 | Silver-bismuth powder, electroconductive paste, and electro conductive film |
CN104070178A (en) * | 2014-07-01 | 2014-10-01 | 扬州大学 | Preparation method for monodisperse bismuth nano-particles with controllable particle sizes |
Non-Patent Citations (1)
Title |
---|
马德崇: ""纳米金属铋的液相合成及性能研究"", 《中国优秀硕士学位论文全文数据库工程科技I辑》 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104874811A (en) * | 2015-05-22 | 2015-09-02 | 武汉工程大学 | Preparing method of simple substance bismuth/bismuth compound nanocomposite with oxygen vacancies |
CN105798321A (en) * | 2016-01-29 | 2016-07-27 | 宁波工程学院 | Half-metallic bismuth nanoribbon, half-metallic bismuth nanospheres and preparation method of half-metallic bismuth nanoribbon and half-metallic bismuth nanospheres |
CN105903474A (en) * | 2016-05-12 | 2016-08-31 | 江苏华夏制漆科技有限公司 | Preparation method of magnetic Fe3O4@ elemental bismuth sphere photocatalyst |
CN107469804A (en) * | 2016-06-08 | 2017-12-15 | 中国科学院金属研究所 | A kind of titania-based composite photocatalyst material of nano particle bismuth load and its preparation method and application |
CN108421987A (en) * | 2018-03-16 | 2018-08-21 | 南京工业大学 | Preparation method of flaky elemental bismuth |
CN108436101A (en) * | 2018-04-27 | 2018-08-24 | 同济大学 | A kind of method of microwave radiation technology Fast back-projection algorithm Bi nanospheres |
CN112337498A (en) * | 2020-11-17 | 2021-02-09 | 石家庄铁道大学 | Bismuth/graphite phase carbon nitride/bismuth oxybromide composite photocatalyst and preparation method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104525940A (en) | Bismuth micron particle and manufacturing method thereof | |
Dong et al. | Polyol synthesis of nanoparticles: status and options regarding metals, oxides, chalcogenides, and non-metal elements | |
CN105914345B (en) | A kind of hollow Nano transient metal sulfide/carbon composite and preparation method | |
CN104817111B (en) | A kind of room temperature aqueous phase preparation method of bismuth sulfide nanosphere | |
CN103145175B (en) | Preparation method of small-size nano-zinc oxide powder | |
CN105060351B (en) | Flower-like cobaltosic oxide material composed of nanoparticles and preparation method thereof | |
CN102633309A (en) | A hydrothermal preparation method of NiS2 with controllable morphology | |
CN105238349B (en) | A kind of Fe3O4ZnO nano composite and preparation method thereof | |
CN104174869A (en) | Method for manufacturing super-long silver nanowires | |
CN102659188A (en) | Magnetic ferric oxide micrometer flower material with multi-stage structure and preparation method thereof | |
CN104085858A (en) | Preparation method of metal oxide | |
CN103754837A (en) | Method for preparation of bismuth-containing nano-hollow ball by using porous bismuth oxide as template | |
CN105017565A (en) | Preparation method of graphene oxide shell coated sulfur microcapsule | |
CN102601384A (en) | Chemical method for preparing cobalt nickel nanoscale alloy powder | |
CN103274443A (en) | A kind of Cu2O-ZnO composite nano-structure semiconductor material of tetragonal leaf shape and preparation method thereof | |
CN105923625A (en) | Method for preparing single-oxide uniformly-loaded graphene quantum dots | |
CN103432973B (en) | A kind of preparation method of graphene-ferric oxide nano-particle composite material | |
CN101560101A (en) | Method for preparing cobalt zinc ferrite (CoxZn1-xFe2O4) magnetic nano powder by using alcohol thermal method | |
CN105314672B (en) | A kind of sol-gel process for preparing of Co-doped ZnO nanometer rods | |
CN106517360A (en) | Particle self-assembly cobaltosic oxide micron spherical powder and preparation method thereof | |
CN103193214A (en) | A kind of preparation method of Co2P nanostructure material | |
CN104478007A (en) | The preparation method of tricobalt tetroxide | |
CN103864052B (en) | Hollow carbon nanosphere material and preparation method thereof | |
CN103641072B (en) | Method for preparing transition nanometer oxide with uniform grain size by coprecipitation method | |
CN103482616B (en) | Preparation method of graphene-tin dioxide nanoparticle three-dimensional foam composite material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20150422 |
|
RJ01 | Rejection of invention patent application after publication |