CN104504176A - 重力驱动两相流体回路中储液器和工质充装量的匹配方法 - Google Patents

重力驱动两相流体回路中储液器和工质充装量的匹配方法 Download PDF

Info

Publication number
CN104504176A
CN104504176A CN201410720817.6A CN201410720817A CN104504176A CN 104504176 A CN104504176 A CN 104504176A CN 201410720817 A CN201410720817 A CN 201410720817A CN 104504176 A CN104504176 A CN 104504176A
Authority
CN
China
Prior art keywords
reservoir
working medium
operating temperature
temperature
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410720817.6A
Other languages
English (en)
Other versions
CN104504176B (zh
Inventor
张红星
苗建印
何江
王录
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Spacecraft System Engineering
Original Assignee
Beijing Institute of Spacecraft System Engineering
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Spacecraft System Engineering filed Critical Beijing Institute of Spacecraft System Engineering
Priority to CN201410720817.6A priority Critical patent/CN104504176B/zh
Publication of CN104504176A publication Critical patent/CN104504176A/zh
Application granted granted Critical
Publication of CN104504176B publication Critical patent/CN104504176B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明公开了一种重力驱动两相流体回路中储液器和工质充装量的匹配方法。使用本发明能够科学、准确地获得充装量和储液器结构特征参数,流体回路能适应极宽温区的温度变化,保证流体回路正常运行,安全可靠。本发明首先基于最高、最低工作温度条件计算储液器体积和充装量,然后基于高温存贮条件校核步骤1计算结果的合理性,然后基于约束条件迭代求解储液器净空间尺寸,最后基于材料屈服和爆破性能计算储液器壁厚,最终获得满足流体回路运行要求、安装要求、恶劣环境要求的储液器结构尺寸和工质充装量。

Description

重力驱动两相流体回路中储液器和工质充装量的匹配方法
技术领域
本发明涉及航天器热控制技术领域,具体涉及一种重力驱动两相流体回路中储液器和工质充装量的匹配方法。
背景技术
在月球(或行星)着陆探测活动中,因月球表面昼夜温差大、探测器月夜期间无电能,为解决探测器月夜生存的难题,采用重力驱动两相流体回路作为舱外同位素核热源(RHU)与舱内设备间的热传输通道,从而实现舱内设备的月夜保温。两相流体回路系统组成如图1所示,包括蒸发器1(包括丝网蒸发器7、液体分流器8和蒸气汇流器9)、蒸气管路2、冷凝管路3、储液器4、液体管路6和控制阀5,其中,冷凝管路3位于储液器4重力场上方,蒸发器1位于储液器4重力场的下方、并与同位素核热源耦合安装,储液器4内液面和蒸发器1底部之间形成重力辅助高度差;储液器4通过液体管路6连接至蒸发器1入口,在液体管路6上设有控制阀5,蒸发器1出口依次通过蒸气管路2、冷凝管路3连接至储液器4,形成封闭的管路系统。月夜期间,控制阀5打开,蒸发器1中的工质吸收同位素热源的热量并相变成气体,气态的工质顺着蒸气管路2流至冷凝管路3中冷凝,经冷凝管路3将热量传导至月面探测器设备后,气态的工质冷凝为液体,流入储液器4中,液态的工质在重力的作用下,沿着液体管路6经控制阀5流入蒸发器中,形成导热回路,对天体探测器进行保温。月昼期间,通过关闭控制阀5来关闭重力驱动两相流体回路,阻断同位素核热源的热量向探测器内部传递。
考虑到月昼/月夜极端变化的热环境(月昼120℃,月夜-180℃),两相流体回路必须具备极宽温区的适应能力(-50~70℃)。这就要求储液器和工质充装量之间形成精确的匹配关系,使得系统内气液分布特征在整个工作温区内不发生明显的变化,既保证极限高温工况下储液器内有足够的空间消除液体体积膨胀的影响,同时保证极限低温工况下储液器内仍存有一定量的液体维持系统正常运行。否则,在高温时,当液体体积增大并超出系统总体积时,管路将发生爆炸,引起严重的安全事故;而在低温时,若储液器内液体量不足时,储液器和蒸发器气液界面之间的高度差(即驱动高度)下降,驱动能力随之降低,系统存在运行失效的风险。因此,储液器和充装量的匹配设计,决定了流体回路系统的工作能力,一定程度上影响了月表探测项目的成败。
然而,工程上在对二者进行设计时,不仅需要考虑极宽温区的要求,还需要满足多个设计接口的技术指标,例如不利姿态条件下具备正常工作的能力,结构安装和布局的限制,体积和重量的优化等。同时,必须充分考虑可靠性和安全性,设计结果必须留有足够的工程余量,以应对月表微重力(1/6g)条件下可能出现的各种恶劣工况。
考虑到该问题的复杂程度,传统的设计方法已不再适用。因此,需要针对此问题建立一套科学的设计方法,在复杂约束条件下准确完成设计参数的求解。
发明内容
有鉴于此,本发明提供了一种重力驱动两相流体回路中储液器和工质充装量的匹配方法,能够科学、准确地获得充装量和储液器结构特征参数,流体回路能适应极宽温区的温度变化,保证流体回路正常运行,安全可靠。
本发明的重力驱动两相流体回路中储液器和工质充装量的匹配方法,包括如下步骤:
步骤1,基于最高、最低工作温度条件计算储液器体积和充装量:
本步骤中,根据式(1)和式(2)求解储液器体积Vcc和工质充装质量m:
ρl.high(VCC+VLL)+ρv.high(VEV+VVL+VCond)=m    (1)
ρl.low(VLL+VEV+VVL+VCond+βVCC)+ρv.low(1-β)VCC=m   (2)
其中,ρl.high为最高工作温度时液态工质的密度,ρv.high为最高工作温度时气态工质的密度;ρl.low为最低工作温度时液态工质的密度,ρv.low为最低工作温度时气态工质的密度;VLL为液体管路体积,VEV为蒸发器体积,VVL为蒸气管路体积,VCond为冷凝管路体积,β为最低工作温度时储液器中液态工质体积百分比;所述最高工作温度和最低工作温度为热控技术要求的温度;
步骤2,基于高温存贮条件校核步骤1计算结果的合理性:
本步骤中,将步骤1计算获得的储液器体积Vcc和工质充装质量m代入公式(3)中,如果公式(3)成立,则转入步骤3,否则,改变外回路的结构参数或热控技术要求,返回步骤1;
ρl.lim(VLL+VEV+VVL+VCond+VCC)>m    (3)
其中,ρl.lim为极限高温存贮温度对应的液态工质的密度;
步骤3,基于约束条件迭代求解储液器净空间尺寸:
本步骤中,首先基于步骤1确定的储液器体积Vcc和储液器安装位置约束获得储液器的高度D、半径R的初步范围F1,然后根据姿态适应性约束和运行稳定性约束将储液器的高度D、半径R的范围由F1缩小为F2;其中,姿态适应性约束条件为
R ≤ K 1 - ( H 1 - H 1 cos θ + a sin θ ) sin θ - - - ( 4 )
运行稳定性约束条件为
D ≥ 4 m πK 2 1 ρ 2 ( T max ) dρ dT - - - ( 5 )
其中,H1为水平姿态下储液器液面和蒸发器底部的高度差,θ为月面倾斜角,a为蒸发器中心轴和储液器中心轴的距离,K1为工程上允许的驱动高度最大变化量,K2为温度引起的驱动高度的最大变化量,ρ(Tmax)为最高工作温度Tmax时的液态工质的密度,为液态工质密度ρ对温度T的微分;
如果储液器安装位置约束、姿态适应性约束和运行稳定性约束能够同时满足,则转入步骤4,否则,改变外回路的结构参数或热控技术要求,返回步骤1;
步骤4,基于材料屈服和爆破性能计算储液器壁厚:
本步骤中,从步骤3中计算获得的储液器的高度、半径范围F2中选择一个半径,并代入下面两个公式计算储液器壁厚:
其中,S0.2为最高工作温度时储液器材料的屈服安全系数;Sb为最高工作温度时储液器材料的爆破安全系数;σ0.2为最高工作温度时储液器材料的屈服强度;σb为最高工作温度时储液器材料的抗拉强度;δ为储液器壁厚;Pmax为最高工作温度时工质的饱和压力;为焊缝系数;
联立公式(6)、(7)获得的最小壁厚即为储液器的壁厚;
则工质充装质量为步骤1获得的工质充装质量m,储液器尺寸为步骤4中确定的储液器半径、以及该半径对应的储液器高度和壁厚尺寸。
进一步地,β=10%。
有益效果:
本发明能够科学、准确地获得工质充装量和储液器结构特征参数,使得流体回路能够在极宽温区内正常运行,安全可靠,并满足结构安装约束。
附图说明
图1为重力驱动两相流体回路结构示意图。
图2为本发明流程图。
图3为倾斜15度时的驱动高度变化量示意图。
具体实施方式
下面结合附图并举实施例,对本发明进行详细描述。
本发明提供了一种重力驱动两相流体回路中储液器和工质充装量的匹配方法。
储液器作为重力驱动两相流体回路的核心部件,其功能是:在许用的工作温度区间,通过收纳或补偿液体,维持外回路内正常的气液分布状态,保证系统稳定运行。具体而言,若系统工作在高温工况,则整个回路内液体密度减小,液体体积膨胀,这就要求储液器有足够的空间容纳由此导致的液体体积增量。反之,若系统工作在低温工况,又需要储液器内含有足够的液体,保证驱动高度不至于明显降低,即维持所需的重力驱动压力,确保工质的循环流动。因此,为满足上述要求,储液器和工质充装量需要进行匹配设计。此外,设计结果还要满足结构安装约束、恶劣姿态条件下的适应能力以及运行稳定性。总之,储液器和充装量的设计需要综合考虑各类因素。
流体回路储液器和工质充装量匹配方法流程如图2所示,具体步骤如下。
步骤1(M1):基于最热、最冷条件计算储液器体积和充装量。
在最热工作温度条件下,储液器、液体管路内充满液体,蒸发器、蒸气管路和冷凝管路内均为气体,此时,储液器中的液态工质最多,流体回路内工质的分布可按式(1)进行计算:
ρl.high(VCC+VLL)+ρv.high(VEV+VVL+VCond)=m   (1)
其中,ρl.high和ρv.high分别为最热条件下液态工质和气态工质的密度。VLL、VEV、VVL、VCond分别对应为液体管路、蒸发器、蒸气管路和冷凝管路的体积。VCC为储液器体积,m为工质充装量。
在最冷工作温度条件下,储液器内仍存有一定量的液体,整个外回路(外回路由蒸发器、蒸气管路、冷凝器和液体管路组成)均被液体充满,此时储液器中的液态工质最少,两相流体回路内工质的分布可按式2进行计算:
ρl.low(VLL+VEV+VVL+VCond+βVCC)+ρv.low(1-β)VCC=m  (2)
其中,ρl.low和ρv.low分别为最冷条件下液态工质和气态工质的密度。β为最低工作温度时储液器中液态工质体积百分比,即液态工质体积占储液器体积的百分比。通常希望在极端情况下,储液器中仍存在一定量的液态工质。由于储液器为圆柱体,其上下端面为球面,为了减小储液器中液态工质变化对储液器液体高度与蒸发器高度之间的高度差的影响,可以取β=10%。
由于蒸发器、液体管路、蒸气管路和冷凝管路受其他接口的限制(如布局、载荷、结构等),其结构尺寸相对固定,因此这些部件的体积是已知量。于是,联立式(1)和式(2),可求解得到工质充装质量m以及储液器的体积Vcc
步骤2(M2):基于高温存贮条件校核步骤1计算结果的合理性。
在某些特殊场合或任务阶段,流体回路处于静止状态,但受到外环境的影响,整体温度可能维持在较高水平。此时,必须确保液体体积膨胀后,仍未将整个流体回路充满,否则将引发管体泄漏或爆炸。即工质充装量与流体回路容量之间应满足式(3):
ρl.lim(VLL+VEV+VVL+VCond+VCC)>m     (3)
其中,ρl.lim为极限高温存贮温度对应的液态工质的密度。
如果步骤1获得的工质充装量m和储液器体积Vcc满足式(3),则转入步骤3,否则,修改外回路的结构参数(蒸发器、蒸气管路、冷凝器和液体管路的长度、直径等)或热控技术要求(工作温度范围等),返回步骤1。
步骤3(M3):基于约束条件迭代求解储液器净空间尺寸。
步骤2虽然可以获得储液器体积,但是储液器的净空间尺寸(例如半径、高度等)并不能唯一确定。此时,需要基于安装约束、姿态适应性以及运行稳定性(驱动高度变化量)等条件进一步缩小范围。
(1)安装约束
储液器的安装位置受其他部件布局的影响,势必存在一个外轮廓的包络范围。因此,储液器高度、直径等均需满足该约束条件。
(2)姿态适应性
真实情况下,月面并非水平,探测器可能与水平面存在一定的夹角。相应的,探测器内流体回路系统的姿态也将发生改变。此时,要求系统具备一定的姿态适应能力,例如在±15°范围内正常工作。这意味着当姿态发生变化后,储液器内液面仍然高于储液器出口一定距离,如图3所示。倾斜15度时的驱动高度变化量ΔHatt可表示为式(4):
ΔHatt=H1-(H2-Rsin15°)=H1-(H1cos15°-asin15°-Rsin15°)≤K1   (4)
其中,H1为水平姿态下储液器液面和蒸发器底部的高度差,H2为倾斜姿态下液面中心位置距蒸发器底部的高度差,a为蒸发器中心轴和储液器中心轴的距离(为已知量),K1为工程上允许的驱动高度最大变化量。
通过式(4)可知,在原始液面高度H1相同时,储液器内径越小,液面变化量越小,相应的,系统姿态适应性越好。因此,该结果进一步约束了储液器的形状,即有:
(3)运行稳定性
当系统工作温度发生变化时,由于液体密度的变化将引起储液器内液面位置发生改变(假设外回路工质的分布状态不变),进而导致驱动高度发生变化。为保证运行的稳定性,通常希望驱动高度的变化量ΔHtemp小于某一值。若忽略蒸气的质量,则在温度T条件下,储液器液面距储液器出口的高度为:
其中,V外回路为外回路液体所占体积,D为储液器内径。因此,该高度随温度的变化量可表示为:
d ( h temp ) dT = - 4 m πD 2 1 ρ 2 ( T ) dρ dT ≤ K 2 - - - ( 6 )
其中,K2为温度引起的驱动高度的最大变化量,为液态工质密度ρ对温度T的微分。由式(6)可以看出,储液器内径D越大,则温度对于驱动高度的影响越小,考虑到最高工作温度时液态工质的密度最小,则有:
D ≥ 4 m πK 2 1 ρ 2 ( T max ) dρ dT
综上所述,受到上述3项约束条件的限制,储液器净尺寸参数已经被束缚在一个很小的范围内。工程上,可在此基础上进行匹配选择。
如果储液器净尺寸参数不能同时满足上述3个条件,则修改外回路的结构参数或热控技术要求,返回步骤1。
步骤4(M4):基于材料屈服/爆破性能计算储液器壁厚。
由步骤3可以确定储液器的净尺寸范围,然后可以从该范围内选择一个半径,根据储液器管壁材料的屈服安全系数和爆破安全系数进一步确定储液器的壁厚δ。具体方法为:
(1)在最高使用温度条件下,储液器材料的屈服安全系数S0.2不小于1.5,如下式(7):
(2)在最高使用温度条件下,储液器材料的爆破安全系数Sb不小于2.0,如下式(8):
其中δ为容器壁厚,Pmax为回路内工质最高使用温度对应的饱和压力,R为容器半径,为焊缝系数(电子束焊接取0.8),σ0.2为最高工作温度时储液器材料的屈服强度;σb为最高工作温度时储液器材料的抗拉强度。联立式(7)和(8),可以得到壁厚的最小值δmin
至此,由步骤1确定的工质充装质量m即为所求的工质充装质量,步骤4中确定的储液器半径以及该半径对应的高度、壁厚即为所求的储液器实际结构尺寸。
综上所述,以上仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (2)

1.一种重力驱动两相流体回路中储液器和工质充装量的匹配方法,所述重力驱动两相流体回路由蒸发器、蒸汽管路、冷凝管路、储液器、控制阀和液体管路组成,其中,除储液器以外的部件组成外回路,其特征在于,包括如下步骤:
步骤1,基于最高、最低工作温度条件计算储液器体积和充装量:
本步骤中,根据式(1)和式(2)求解储液器体积Vcc和工质充装质量m:
ρl.high(VCC+VLL)+ρv.high(VEV+VVL+VCond)=m           (1) 
ρl.low(VLL+VEV+VVL+VCond+βVCC)+ρv.low(1-β)VCC=m        (2) 
其中,ρl.high为最高工作温度时液态工质的密度,ρv.high为最高工作温度时气态工质的密度;ρl.low为最低工作温度时液态工质的密度,ρv.low为最低工作温度时气态工质的密度;VLL为液体管路体积,VEV为蒸发器体积,VVL为蒸气管路体积,VCond为冷凝管路体积,β为最低工作温度时储液器中液态工质体积百分比;所述最高工作温度和最低工作温度为热控技术要求的温度;
步骤2,基于高温存贮条件校核步骤1计算结果的合理性:
本步骤中,将步骤1计算获得的储液器体积Vcc和工质充装质量m代入公式(3)中,如果公式(3)成立,则转入步骤3,否则,改变外回路的结构参数或热控技术要求,返回步骤1;
ρl.lim(VLL+VEV+VVL+VCond+VCC)>m          (3) 
其中,ρl.lim为极限高温存贮温度对应的液态工质的密度;
步骤3,基于约束条件迭代求解储液器净空间尺寸:
本步骤中,首先基于步骤1确定的储液器体积Vcc和储液器安装位置约束获得储液器的高度D、半径R的初步范围F1,然后根据姿态适应性约束和运行稳 定性约束将储液器的高度D、半径R的范围由F1缩小为F2;其中,姿态适应性约束条件为
运行稳定性约束条件为
其中,H1为水平姿态下储液器液面和蒸发器底部的高度差,θ为月面倾斜角,a为蒸发器中心轴和储液器中心轴的距离,K1为工程上允许的驱动高度最大变化量,K2为温度引起的驱动高度的最大变化量,ρ(Tmax)为最高工作温度Tmax时的液态工质的密度,为液态工质密度ρ对温度T的微分;
如果储液器安装位置约束、姿态适应性约束和运行稳定性约束能够同时满足,则转入步骤4,否则,改变外回路的结构参数或热控技术要求,返回步骤1;
步骤4,基于材料屈服和爆破性能计算储液器壁厚:
本步骤中,从步骤3中计算获得的储液器的高度、半径范围F2中选择一个半径,并代入下面两个公式计算储液器壁厚:
其中,S0.2为最高工作温度时储液器材料的屈服安全系数;Sb为最高工作温度时储液器材料的爆破安全系数;σ0.2为最高工作温度时储液器材料的屈服强度;σb为最高工作温度时储液器材料的抗拉强度;δ为储液器壁厚;Pmax为最高 工作温度时工质的饱和压力;为焊缝系数;
联立公式(6)、(7)获得的最小壁厚即为储液器的壁厚;
则工质充装质量为步骤1获得的工质充装质量m,储液器尺寸为步骤4中确定的储液器半径、以及该半径对应的储液器高度和壁厚尺寸。
2.如权利要求1所述的流体回路储液器和工质充装量匹配方法,其特征在于,β=10%。
CN201410720817.6A 2014-12-02 2014-12-02 重力驱动两相流体回路中储液器和工质充装量的匹配方法 Active CN104504176B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410720817.6A CN104504176B (zh) 2014-12-02 2014-12-02 重力驱动两相流体回路中储液器和工质充装量的匹配方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410720817.6A CN104504176B (zh) 2014-12-02 2014-12-02 重力驱动两相流体回路中储液器和工质充装量的匹配方法

Publications (2)

Publication Number Publication Date
CN104504176A true CN104504176A (zh) 2015-04-08
CN104504176B CN104504176B (zh) 2016-05-04

Family

ID=52945573

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410720817.6A Active CN104504176B (zh) 2014-12-02 2014-12-02 重力驱动两相流体回路中储液器和工质充装量的匹配方法

Country Status (1)

Country Link
CN (1) CN104504176B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106325322A (zh) * 2016-09-22 2017-01-11 北京空间飞行器总体设计部 一种泵驱两相流体回路用两级控温装置
CN112818468A (zh) * 2021-01-29 2021-05-18 北京空间飞行器总体设计部 一种环路热管储液器容积与工质量匹配设计方法
CN113092145A (zh) * 2021-02-26 2021-07-09 北京空间飞行器总体设计部 一种月面工质排放等效试验装置及方法
CN113135304A (zh) * 2021-04-26 2021-07-20 上海卫星工程研究所 一种计算储液器回排量的流体回路充装方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101270930A (zh) * 2007-02-26 2008-09-24 泰勒斯公司 航天器上搭载热控制装置
CN101633411A (zh) * 2009-08-24 2010-01-27 哈尔滨工业大学 航天器热控制和液体动量轮一体化执行机构
FR2981338A1 (fr) * 2011-10-12 2013-04-19 Sme Procede et dispositif de delivrance, en dehors d'un reservoir, d'un agent liquide ou gelifie
CN103344143A (zh) * 2013-06-08 2013-10-09 北京航空航天大学 一种环路热管用蒸发器和储液器及其应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101270930A (zh) * 2007-02-26 2008-09-24 泰勒斯公司 航天器上搭载热控制装置
CN101633411A (zh) * 2009-08-24 2010-01-27 哈尔滨工业大学 航天器热控制和液体动量轮一体化执行机构
FR2981338A1 (fr) * 2011-10-12 2013-04-19 Sme Procede et dispositif de delivrance, en dehors d'un reservoir, d'un agent liquide ou gelifie
CN103344143A (zh) * 2013-06-08 2013-10-09 北京航空航天大学 一种环路热管用蒸发器和储液器及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张红星,等.: "双储液器环路热管的设计与实验研究", 《中国空间科学技术》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106325322A (zh) * 2016-09-22 2017-01-11 北京空间飞行器总体设计部 一种泵驱两相流体回路用两级控温装置
CN112818468A (zh) * 2021-01-29 2021-05-18 北京空间飞行器总体设计部 一种环路热管储液器容积与工质量匹配设计方法
CN113092145A (zh) * 2021-02-26 2021-07-09 北京空间飞行器总体设计部 一种月面工质排放等效试验装置及方法
CN113135304A (zh) * 2021-04-26 2021-07-20 上海卫星工程研究所 一种计算储液器回排量的流体回路充装方法

Also Published As

Publication number Publication date
CN104504176B (zh) 2016-05-04

Similar Documents

Publication Publication Date Title
CN104504176A (zh) 重力驱动两相流体回路中储液器和工质充装量的匹配方法
Cao et al. Preliminary study on variable conductance loop thermosyphons
Hartwig et al. Pulse chilldown tests of a tank-to-tank liquid hydrogen propellant transfer line
Parker Modeling of loop heat pipes with applications to spacecraft thermal control
Hoang et al. Heat and mass transfer in loop heat pipes
CN112014422B (zh) 环路热管性能的检测方法、装置、存储介质及电子设备
CN111651851A (zh) 安全壳求解方法及安全壳求解器
Ku Introduction to heat pipes
CN105674640B (zh) 空调系统制冷剂充注量匹配调节装置及方法
CN108932984A (zh) 一种双流体熔盐快堆溢流罐系统及其控制方法
CN104613804B (zh) 弯折管件及具有该弯折管件的半导体制冷冰箱
Sment et al. Optimization of Storage Bin Geometry for High Temperature Particle-Based CSP Systems
Swerdling et al. Design, fabrication and testing of a thermal diode
Khan et al. Spherical tanks for use in thermal energy storage systems
Ku et al. The Hybrid Capillary Pumped Loop
Kassemi et al. Effect of residual noncondensables on pressurization and pressure control of a zero-boil-off tank in microgravity
Stark et al. Fluid management systems technology summaries
CN107560249A (zh) 一种冷媒浮球阀
SHAUBACH et al. High performance flexible heat pipes
CN104504241B (zh) 一种不凝气体对部分重力驱动两相流体回路影响分析方法
DEGROFF et al. Development status of a two-phase thermal management system for large spacecraft
Chen et al. Two-phase active thermal control systems for spacecrafts
O'Neill et al. Microgravity Demonstration of a Hybrid Screen Channel Liquid Acquisition Device for Transfer of Cryogenic Fluids
CN106641689B (zh) 一种恒压式液氨罐及罐车
Swanson Advanced two-phase heat transfer systems

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant