CN104499001B - 基于特征子空间优化相对矩阵的铝电解槽况诊断方法 - Google Patents

基于特征子空间优化相对矩阵的铝电解槽况诊断方法 Download PDF

Info

Publication number
CN104499001B
CN104499001B CN201510027742.8A CN201510027742A CN104499001B CN 104499001 B CN104499001 B CN 104499001B CN 201510027742 A CN201510027742 A CN 201510027742A CN 104499001 B CN104499001 B CN 104499001B
Authority
CN
China
Prior art keywords
aluminium cell
matrix
cell condition
relative
centerdot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201510027742.8A
Other languages
English (en)
Other versions
CN104499001A (zh
Inventor
易军
黄迪
李太福
周伟
张元涛
姚立忠
田应甫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University of Science and Technology
Original Assignee
Chongqing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University of Science and Technology filed Critical Chongqing University of Science and Technology
Priority to CN201510027742.8A priority Critical patent/CN104499001B/zh
Publication of CN104499001A publication Critical patent/CN104499001A/zh
Application granted granted Critical
Publication of CN104499001B publication Critical patent/CN104499001B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/20Automatic control or regulation of cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

一种基于特征子空间优化相对矩阵的铝电解槽况诊断方法,其特征在于:一,采集原始测量样本集,对该原始测量样本集进行预处理后投影到核空间;二,对中心化矩阵K进行相对主元分析,建立铝电解槽况诊断模型,并对铝电解槽况进行诊断;三,通过细菌觅食算法在搜索区域内寻得最优相对转换矩阵;四,按步骤二所述方法,利用最优相对转换矩阵建立铝电解槽况诊断模型,实现对铝电解槽况的准确诊断。本发明充分考虑铝电解槽况非线性的特性,通过核函数,将非线性参数投影到高维线性特征空间,在核空间内借助细菌觅食法优化相对转换矩阵,进行相对主元分析,大大提高了铝电解槽况故障诊断的精确度。

Description

基于特征子空间优化相对矩阵的铝电解槽况诊断方法
技术领域
本发明涉及故障诊断领域,尤其涉及一种基于相对核主元分析的铝电解槽况故障诊断方法。
背景技术
铝电解槽是一个复杂的、特殊的冶金工业设备,因其受到槽内电场、磁场、温度场等多种物理场耦合影响,易出现阴极破损、电解质漂浮碳渣、铝液波动等病槽和异常槽况现象。异常槽况如不能准确及时地诊断并调整控制策略,将严重影响到电解槽的生产效率和使用寿命。但是,由于铝电解槽的状态参数较多,测量值不易采集,参数间呈现出非线性、强耦合性特性,给铝电解槽故障诊断带来很大困难。因此,铝电解槽况诊断一直以来都是工业控制领域研究的热点、难点。
在现有的槽况诊断方法中,主元分析(Principal Component Analysis,PCA)可以将铝电解高维的变量转换成低维主元进行槽况诊断,在保留原始数据信息的同时,利用少数几个相对独立的变量进行诊断,大大减少计算工作量,因此被广泛应用于槽况诊断中。但是,该方法在对原始矩阵进行标准化处理后,协方差矩阵的特征值大小近似相等,即原始的随机矩阵在几何上出现分布“均匀”的现象,很难提取到具有代表性的主元。中国专利申请文件“用于铝电解槽况故障诊断的优化权重相对主元分析方法”(公开号:CN103952724A)提出了一种优化权重的相对主元分析方法来进行铝电解槽故障诊断,能够利用遗传算法产生一个最优的相对转换矩阵,通过相对化处理,将“均匀”分布的量突显出来,以便更好地提取出具有代表性的主元,从而提高铝电解槽况故障诊断的精确度,但是该方法并没有考虑到铝电解槽状态参数的非线性特性,对于实际应用而言并不是最有效的方法。
现有技术的缺陷是:没有考虑到铝电解槽的状态参数是非线性的特性,在实际的铝电解故障诊断中的精确度还有待提高。
参考文献:
[1]文成林,胡静,王天真,等.相对主元分析及其在数据压缩和故障诊断中的应用研究[J].自动化学报,2008,34(9):1128-1139.
发明内容
本发明的主要目的是,提供一种基于特征子空间优化相对矩阵的铝电解槽况诊断方法,充分考虑铝电解槽状态参数的非线性特性,结合相对主元分析方法,提高铝电解槽况故障诊断的精确度。
为了实现上述目的,本发明表述了一种基于特征子空间优化相对矩阵的铝电解槽况诊断方法,其关键在于:包括下列步骤:
步骤一,采集原始测量样本集,对该原始测量样本集进行预处理后投影到核空间,包括:
第一步:随机采集n组铝电解槽况数据组成原始测量样本集每个样本含有m个独立的铝电解槽况参数采样值;
第二步:对原始测量样本集X0进行标准化处理,得到标准化后样本矩阵X;
标准化处理的目的主要是为了消除量纲不同带来的虚假变异影响,影响主元的选取。标准化处理的具体内容可参见参考文献[1]。
第三步:利用核函数,将标准化后样本矩阵X投影到高维特征空间后得到矩阵K0
核函数的种类较多,常用的核函数有:
高斯核函数:
多项式核函数:K(x,xi)=(x·xi+c)d,d=1,2,L,N
感知器核函数:K(x,xi)=tanh(β·xi+b)
投影到高维特征空间后,非线性的样本矩阵X变为线性矩阵K0,便于进行相对主元分析。
第四步:对矩阵K0进行中心化处理,得到中心化矩阵K,中心化处理按下式进行:
K=K0-InK0-K0In+InK0In
其中,
步骤二,对中心化矩阵K进行相对主元分析,建立铝电解槽况诊断模型,并对铝电解槽况进行诊断,包括:
第一步:在[0,50)范围内随机产生相对转换矩阵Λ,所述相对转换矩阵Λ为对角矩阵:
即在所述相对转换矩阵中,λi的取值范围为[0,50),其中,i=1,2,…,m。
第二步:对中心化矩阵K进行相对化转换,得到相对化样本矩阵KR=K·Λ,即:
相对化处理能够将“均匀”分布的量突显出来,便于在主元分析中提取到具有代表性的主元。
第三步:对KR进行主元分析,计算检验统计量及对应控制限实现对铝电解槽况的诊断;
检验统计量按下式计算:
其中,SPE和SPE0分别表示SPE检验统计量和对应的控制限;T2分别表示T2检验统计量和对应的控制限;
则认为铝电解槽况正常;
则认为铝电解槽况异常。
由于在工业过程监测中,利用T2与SPE进行故障诊断时,均会出现一定程度上的误报与漏报的情况,且两个统计量使用较为繁琐,因此,在实际应用时,运用一个合成指标将使得故障诊断更加简单方便。
第四步:统计铝电解槽况诊断情况,记录诊断错误的样本点个数q,按下式计算漏检率C:
步骤三,通过细菌觅食算法(Bacterial Foraging Optimization algorithm,BFO)在搜索区域内寻得最优相对转换矩阵,具体包括以下步骤:
第一步:初始化细菌觅食算法相关参数:细菌群体大小BIOsize=50,趋向次数Nc=100,趋向行为执行中前进次数NS=4,繁殖次数Nre=6,驱散次数Ned=4,执行驱散行为的概率Ped=0.25;
第二步:将诊断模型中的漏检率C作为评价函数,利用细菌觅食算法在给定范围内优化相对转换矩阵,当漏检率到达最低时,得到的相对转换矩阵即为最优;
BFO算法具有构造简单、易于理解、极易跳出局部极小值等优点。BFO算法可以通过四个寻优过程完成优化问题,即趋向、群聚、繁殖和驱散。
步骤四,按步骤二所述方法,利用最优相对转换矩阵建立铝电解槽况诊断模型,实现对铝电解槽况的准确诊断。
铝电解实际生产中,影响槽况的参数较多、参数间相关性强,且不易测量。在综合考虑现场实际参数的测量难度后,所述铝电解槽况参数可选为:系列电流、NB次数、分子比、出铝量、铝水平、电解质水平、槽温、槽电压。
本发明的有益效果是:充分考虑铝电解槽况非线性的特性,在相对主元分析方法的基础上引入核函数,将非线性空间内参数投影到高维线性特征空间内,借助细菌觅食算法对核空间内随机产生的相对转换矩阵进行优化,寻得最优相对转换矩阵,有效提取具有代表性的主元,运用检验进行故障诊断,大大提高了铝电解槽况故障诊断的精确度。
附图说明
图1为本发明的流程图;
图2为利用BFO算法实现相对转换矩阵的最优化的流程图;
图3为实施例中优化前主元分析中的检测图;
图4为实施例中投影后相对主元分析中的检测图;
图5为实施例中投影后优化相对主元分析中的检测图。
具体实施方式
下面结合附图和具体实施例对本发明做进一步详细说明。
实施例1:如图1所示,一种基于特征子空间优化相对矩阵的铝电解槽况诊断方法,包括下列步骤:
步骤一,采集原始测量样本集,对该原始测量样本集进行预处理后投影到核空间,包括:
第一步:随机采集n组铝电解槽况数据组成原始测量样本集每个样本含有m个独立的铝电解槽况参数采样值;
第二步:对原始测量样本集X0进行标准化处理,得到标准化后样本矩阵X;
第三步:利用核函数,将标准化后样本矩阵X投影到高维特征空间后得到矩阵K0
第四步:对矩阵K0进行中心化处理,得到中心化矩阵K,中心化处理按下式进行:
K=K0-InK0-K0In+InK0In
其中,
步骤二,对中心化矩阵K进行相对主元分析,建立铝电解槽况诊断模型,并对铝电解槽况进行诊断,包括:
第一步:在[0,50)范围内随机产生相对转换矩阵Λ,所述相对转换矩阵Λ为对角矩阵:
即在所述相对转换矩阵中,λi的取值范围为[0,50),其中,i=1,2,…,m。
第二步:对中心化矩阵K进行相对化转换,得到相对化样本矩阵KR=K·Λ,即:
第三步:对KR进行主元分析,计算检验统计量及对应控制限实现对铝电解槽况的诊断;
检验统计量按下式计算:
其中,SPE和SPE0分别表示SPE检验统计量和对应的控制限;T2分别表示T2检验统计量和对应的控制限;
则认为铝电解槽况正常;
则认为铝电解槽况异常。
第四步:统计铝电解槽况诊断情况,记录诊断错误的样本点个数q,按下式计算漏检率C:
步骤三,通过细菌觅食算法在搜索区域内寻得最优相对转换矩阵,具体包括以下步骤:
第一步:初始化细菌觅食算法相关参数:细菌群体大小BIOsize=50,趋向次数Nc=100,趋向行为执行中前进次数NS=4,繁殖次数Nre=6,驱散次数Ned=4,执行驱散行为的概率Ped=0.25;
第二步:将诊断模型中的漏检率C作为评价函数,利用细菌觅食算法在给定范围内优化相对转换矩阵,当漏检率到达最低时,得到的相对转换矩阵即为最优;
利用BFO算法实现相对转换矩阵的最优化如图2所示。
步骤四,按步骤二所述方法,利用最优相对转换矩阵建立铝电解槽况诊断模型,实现对铝电解槽况的准确诊断。
本实施例中,n=500,m=8;即共采集500组铝电解槽况数据,每个样本中含有8个独立的槽况数据采样值。8个独立的槽况参数分别为:系列电流、NB次数、分子比、出铝量、铝水平、电解质水平、槽温、槽电压。表1给出了500组铝电解槽况数据。
本实施例中,核函数采用高斯核函数。
表1电解槽样本数据
样本编号 1 2 …… 500
系列电流/A 1719 1719 …… 1746
NB次数 695 728 …… 646
分子比 2.56 2.54 …… 2.54
出铝量/kg 1260 1210 …… 1260
铝水平/cm 19.5 16.5 …… 17
电解质水平 18 23 …… 16
槽温/℃ 936 940 …… 939
槽电/c压m/mV 3654 3638 …… 3606
表2优化前后漏检率统计表
图3、图4、图5分别给出了采用主元分析、投影到核空间进行相对主元分析以及投影到核空间后优化相对主元分析三种方法对表1的电解槽样本数据进行槽况诊断的检测图,表2列出了三种方法的漏检率。可以看出,投影到核空间进行相对主元分析相比单纯的主元分析,漏检率明显降低;而三种方法中漏检率最低的是投影到核空间后优化相对主元分析,即本实施例采用的方法。
表3三种优化算法的迭代次数
细菌觅食法 遗传算法 粒子群优化算法
36 70 51
表3分别列出了采用细菌觅食法、遗传算法、粒子群优化算法优化相对转换矩阵时的迭代次数。可以看出,细菌觅食法相比其他两种常用的优化算法而言,迭代次数更少,收敛速度更快。

Claims (2)

1.一种基于特征子空间优化相对矩阵的铝电解槽况诊断方法,其特征在于:包括下列步骤:
步骤一,采集原始测量样本集,对该原始测量样本集进行预处理后投影到核空间,包括:
第一步:随机采集n组铝电解槽况数据组成原始测量样本集每个样本含有m个独立的铝电解槽况参数采样值;
第二步:对原始测量样本集X0进行标准化处理,得到标准化后样本矩阵X;
第三步:利用核函数,将标准化后样本矩阵X投影到高维特征空间后得到矩阵K0
第四步:对矩阵K0进行中心化处理,得到中心化矩阵K,中心化处理按下式进行:
K=K0-InK0-K0In+InK0In
其中,
步骤二,对中心化矩阵K进行相对主元分析,建立铝电解槽况诊断模型,并对铝电解槽况进行诊断,包括:
第一步:在[0,50)范围内随机产生相对转换矩阵Λ,所述相对转换矩阵Λ为对角矩阵:
Λ = λ 1 0 ... 0 0 λ 2 ... 0 · · · · · · · · · · · · 0 0 ... λ m
第二步:对中心化矩阵K进行相对化转换,得到相对化样本矩阵KR=K·Λ,即:
第三步:对KR进行主元分析,计算检验统计量及对应控制限对铝电解槽况进行诊断;
检验统计量按下式计算:
其中,SPE和SPE0分别表示SPE检验统计量和对应的控制限;T2分别表示T2检验统计量和对应的控制限;
则认为铝电解槽况正常;
则认为铝电解槽况异常;
第四步:统计铝电解槽况诊断情况,记录诊断错误的样本点个数q,按下式计算漏检率C:
C = q n × 100 %
步骤三,通过细菌觅食算法在搜索区域内寻得最优相对转换矩阵,具体包括以下步骤:
第一步:初始化细菌觅食算法相关参数:细菌群体大小BIOsize=50,趋向次数Nc=100,趋向行为执行中前进次数NS=4,繁殖次数Nre=6,驱散次数Ned=4,执行驱散行为的概率Ped=0.25;
第二步:将诊断模型中的漏检率C作为评价函数,利用细菌觅食算法在给定范围内优化相对转换矩阵,当漏检率到达最低时,得到的相对转换矩阵即为最优;
步骤四,按步骤二所述方法,利用最优相对转换矩阵建立铝电解槽况诊断模型,实现对铝电解槽况的准确诊断。
2.根据权利要求1所述的基于特征子空间优化相对矩阵的铝电解槽况诊断方法,其特征在于:所述铝电解槽况参数为:系列电流、NB次数、分子比、出铝量、铝水平、电解质水平、槽温、槽电压。
CN201510027742.8A 2015-01-20 2015-01-20 基于特征子空间优化相对矩阵的铝电解槽况诊断方法 Expired - Fee Related CN104499001B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510027742.8A CN104499001B (zh) 2015-01-20 2015-01-20 基于特征子空间优化相对矩阵的铝电解槽况诊断方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510027742.8A CN104499001B (zh) 2015-01-20 2015-01-20 基于特征子空间优化相对矩阵的铝电解槽况诊断方法

Publications (2)

Publication Number Publication Date
CN104499001A CN104499001A (zh) 2015-04-08
CN104499001B true CN104499001B (zh) 2017-03-29

Family

ID=52940450

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510027742.8A Expired - Fee Related CN104499001B (zh) 2015-01-20 2015-01-20 基于特征子空间优化相对矩阵的铝电解槽况诊断方法

Country Status (1)

Country Link
CN (1) CN104499001B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105420760B (zh) * 2015-11-06 2018-05-01 重庆科技学院 基于自适应步长细菌觅食算法的铝电解多参数优化方法
US9996074B2 (en) 2016-09-21 2018-06-12 International Business Machines Corporation System and predictive modeling method for smelting process control based on multi-source information with heterogeneous relatedness
CN108062565B (zh) * 2017-12-12 2021-12-10 重庆科技学院 基于化工te过程的双主元-动态核主元分析故障诊断方法
CN111910217B (zh) * 2020-08-24 2021-07-06 常州机电职业技术学院 高效铝电解生产智能控制系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4752362A (en) * 1987-01-27 1988-06-21 Aluminum Company Of America Detecting and estimating shorting phenomena in hall cells and control of cell anodes in response thereto
US4814050A (en) * 1986-10-06 1989-03-21 Aluminum Company Of America Estimation and control of alumina concentration in hall cells
CN101169623A (zh) * 2007-11-22 2008-04-30 东北大学 基于核主元分析贡献图的非线性过程故障辨识方法
CN103714255A (zh) * 2013-12-30 2014-04-09 北京信息科技大学 一种基于非线性故障重构的故障预测方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI20031733A0 (fi) * 2003-11-27 2003-11-27 Outokumpu Oy Menetelmä kuparielektrolyysin tilaindeksin määrittämiseksi
RU2255149C1 (ru) * 2004-05-05 2005-06-27 Общество с ограниченной ответственностью "Инженерно-технологический центр" Способ управления алюминиевым электролизером при изменении скорости растворения глинозема
RU2303658C1 (ru) * 2005-11-02 2007-07-27 Общество с ограниченной ответственностью "Русская инжиниринговая компания" Способ управления технологическим процессом в алюминиевом электролизере с обожженными анодами
CN103103570B (zh) * 2013-01-30 2015-10-28 重庆科技学院 基于主元相似性测度的铝电解槽况诊断方法
CN103345559B (zh) * 2013-07-10 2016-04-20 重庆科技学院 铝电解过程电解槽工艺能耗的动态演化建模方法
CN103952724B (zh) * 2014-04-22 2016-04-20 重庆科技学院 用于铝电解槽况故障诊断的优化权重相对主元分析方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4814050A (en) * 1986-10-06 1989-03-21 Aluminum Company Of America Estimation and control of alumina concentration in hall cells
US4752362A (en) * 1987-01-27 1988-06-21 Aluminum Company Of America Detecting and estimating shorting phenomena in hall cells and control of cell anodes in response thereto
CN101169623A (zh) * 2007-11-22 2008-04-30 东北大学 基于核主元分析贡献图的非线性过程故障辨识方法
CN103714255A (zh) * 2013-12-30 2014-04-09 北京信息科技大学 一种基于非线性故障重构的故障预测方法

Also Published As

Publication number Publication date
CN104499001A (zh) 2015-04-08

Similar Documents

Publication Publication Date Title
CN110336534B (zh) 一种基于光伏阵列电气参数时间序列特征提取的故障诊断方法
CN117093879B (zh) 一种数据中心智能化运营管理方法及系统
CN104499001B (zh) 基于特征子空间优化相对矩阵的铝电解槽况诊断方法
CN112179691B (zh) 基于对抗学习策略的机械装备运行状态异常检测系统和方法
CN112257530B (zh) 基于盲信号分离和支持向量机的滚动轴承故障诊断方法
CN111562108A (zh) 一种基于cnn和fcmc的滚动轴承智能故障诊断方法
CN101738998B (zh) 一种基于局部判别分析的工业过程监测系统及方法
Liu et al. A novel method for polymer electrolyte membrane fuel cell fault diagnosis using 2D data
CN114700587B (zh) 一种基于模糊推理和边缘计算的漏焊缺陷实时检测方法及系统
CN103952724B (zh) 用于铝电解槽况故障诊断的优化权重相对主元分析方法
Ma et al. Online fault diagnosis for open-cathode PEMFC systems based on output voltage measurements and data-driven method
CN112816881A (zh) 电池压差异常检测方法、装置及计算机存储介质
Gursel et al. Using artificial intelligence to detect human errors in nuclear power plants: A case in operation and maintenance
CN113011256B (zh) 基于小样本学习的跨类别故障诊断方法、系统及存储介质
Yang et al. Assessment of equipment operation state with improved random forest
CN117195117A (zh) 一种故障场景削减方法、装置、设备及存储介质
CN114781551B (zh) 一种基于大数据的电池多故障智能分类识别方法
CN111507374A (zh) 一种基于随机矩阵理论的电网海量数据异常检测方法
Xiang et al. Flagging implausible inspection reports of distribution transformers via anomaly detection
CN116644348A (zh) 基于传递式对抗迁移的跨机械部件故障诊断方法及装置
CN104532299B (zh) 基于相对核主元分析的铝电解槽况诊断方法
CN113672658B (zh) 基于复相关系数的电力设备在线监测错误数据识别方法
CN111638427B (zh) 一种基于核胶囊神经元覆盖的变压器故障检测方法
CN114581699A (zh) 考虑多源信息时基于深度学习模型的变压器状态评估方法
CN108508866B (zh) 基于稀疏相对判别分析的百万千瓦机组故障变量识别方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170329

Termination date: 20190120