CN104496777A - Process for preparing benzaldehyde from phenylethylene through catalytic oxidation by adopting BuN-PMo12 - Google Patents

Process for preparing benzaldehyde from phenylethylene through catalytic oxidation by adopting BuN-PMo12 Download PDF

Info

Publication number
CN104496777A
CN104496777A CN201410779823.9A CN201410779823A CN104496777A CN 104496777 A CN104496777 A CN 104496777A CN 201410779823 A CN201410779823 A CN 201410779823A CN 104496777 A CN104496777 A CN 104496777A
Authority
CN
China
Prior art keywords
bun
pmo
pmo12
phenylethylene
catalytic oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410779823.9A
Other languages
Chinese (zh)
Inventor
李静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHENGDU KUAIDIAN TECHNOLOGY Co Ltd
Original Assignee
CHENGDU KUAIDIAN TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHENGDU KUAIDIAN TECHNOLOGY Co Ltd filed Critical CHENGDU KUAIDIAN TECHNOLOGY Co Ltd
Priority to CN201410779823.9A priority Critical patent/CN104496777A/en
Publication of CN104496777A publication Critical patent/CN104496777A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/28Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation of CHx-moieties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

The invention discloses a process for preparing benzaldehyde from phenylethylene through catalytic oxidation by adopting BuN-PMo12 and belongs to the technical field of benzaldehyde preparation. According to the process, benzaldehyde is prepared from phenylethylene through catalytic oxidation in an organic solvent system in a manner of taking hydrogen peroxide as an oxidant and taking BuN-PMo12 as a catalyst, wherein the mole ratio of phenylethylene to hydrogen peroxide to BuN-PMo12 catalyst is 1: (4-6): (0.05-0.08), the temperature of catalytic reaction is 60-75 DEG C, and the reaction pressure is normal pressure. The process for preparing benzaldehyde from phenylethylene through catalytic oxidation by adopting BuN-PMo12, disclosed by the invention, has the advantages that a method for preparing benzaldehyde through catalytic oxidation is provided, the BuN-PMo12 catalyst shows good catalysis performance, the conversion ratio and selectivity are relatively high, and the reaction conditions are mild.

Description

Cinnamic BuN-PMo12 catalyzed oxidation producing benzaldehyde technique
Technical field
The present invention relates to a kind of polyoxometallate Catalytic processes, especially a kind of cinnamic BuN-PMo12 catalyzed oxidation producing benzaldehyde technique, belongs to phenyl aldehyde preparing technical field.
Background technology
Phenyl aldehyde is the important source material of medicine, dyestuff, spices and Resin Industry, also can be used as solvent, softening agent and low-temperature grease etc.Technical benzene formaldehyde synthetic method Reactive Synthesis pressure is high, and environmental pollution is serious, the transformation efficiency of toluene and the shortcoming such as the selectivity ratios of aldehyde is lower.The research of selectivity of styrene catalyzed oxidation producing benzaldehyde has obtained certain progress, but also all there is the shortcomings such as reaction conditions requirement is high, and phenyl aldehyde yield is low.
Along with the development of basic subject and the propelling of process of industrialization, make higher requirement by the performance of catalyzer.The bifunctional " green catalyst " that heteropolyacid has both as a kind of acid-basicity and oxidation-reduction quality and receiving much concern.In the heteropoly compound of multiple configuration, Keggin-type research the most abundant, its thermostability is high, and catalytic activity makes well to show excellent catalytic performance in multiple reaction.
Summary of the invention
Goal of the invention of the present invention is: for above-mentioned Problems existing, provides a kind of and adopts BuN-PMo 12catalyzed oxidation vinylbenzene producing benzaldehyde technique, for the preparation of phenyl aldehyde.
The technical solution used in the present invention is as follows:
A kind of cinnamic BuN-PMo 12catalyzed oxidation producing benzaldehyde technique, in organic solvent system, take hydrogen peroxide as oxygenant, BuN-PMo 12for catalyzer, catalyzed oxidation vinylbenzene producing benzaldehyde, wherein said vinylbenzene, hydrogen peroxide, BuN-PMo 12the mol ratio of catalyzer is 1:4-6:0.05-0.08, and catalyzed reaction temperature is 60-75 DEG C.
Described organic solvent is acetonitrile.
The volume ratio 1:12-15 of described vinylbenzene and acetonitrile.
Described vinylbenzene, hydrogen peroxide, BuN-PMo 12the mol ratio of catalyzer is 1:5:0.07.
Described catalyzed reaction temperature is 70 DEG C.
The reaction pressure of reaction system is normal pressure.
In sum, owing to have employed technique scheme, the invention has the beneficial effects as follows:
Employing BuN-PMo of the present invention 12catalyzed oxidation vinylbenzene producing benzaldehyde technique, provides a kind of method that catalyzed oxidation prepares phenyl aldehyde, catalyst B uN-PMo 12in reaction system, cinnamic transformation efficiency can reach 99.7%, and the selectivity of phenyl aldehyde is 70.74%, catalyst B uN-PMo 12there is good catalytic performance, there is the advantage of reaction conditions gentleness.
Embodiment
All features disclosed in this specification sheets, or the step in disclosed all methods or process, except mutually exclusive feature and/or step, all can combine by any way.
Arbitrary feature disclosed in this specification sheets (comprising any accessory claim, summary), unless specifically stated otherwise, all can be replaced by other equivalences or the alternative features with similar object.That is, unless specifically stated otherwise, each feature is an example in a series of equivalence or similar characteristics.
In the present invention, BuN-PMo 12catalyzer (H 3pMo 12o 40nH 2o) synthesis: in the round-bottomed flask that 250ml is furnished with magneton stirring and reflux exchanger, by the 3.58g Na weighed 2hPO 412H 2o is dissolved in the distilled water of 20ml, with the H of 1:1 2sO 4being acidified to PH is about 2.0, then by the Na of 29.03g 2moO 42H 2o adds in flask after being dissolved in the distilled water of 5.0ml, regulate PH to 2.0, reaction solution is heated to 80 DEG C, and stirring and refluxing cooled after 3 hours, add ether again acidifying extract, after blowing away ether, solid recrystallization obtains product B uN-PMo twice 12catalyzer.
Catalyzed reaction is in the oil bath pan of band magnetic agitation, using 50ml there-necked flask (being convenient to adding and sampling in testing of oxygenant) as reaction vessel, and carry out under being equipped with reflux, add solvent, vinylbenzene, catalyzer and hydrogen peroxide in flask and react.
What adopt in the present invention is common commercially available AR raw material.
embodiment 1
Get vinylbenzene 10mmol(1.15ml), 30% hydrogen peroxide 40mmol(4ml), BuN-PMo 12catalyzer 0.05mol(0.13g), solvent acetonitrile 13.8ml, by vinylbenzene, acetonitrile, BuN-PMo 12catalyzer and hydrogen peroxide add in flask, and system is warming up to 60 DEG C, 1 hour reaction times, reaction pressure normal pressure.
embodiment 2
Get vinylbenzene 10mmol(1.15ml), 30% hydrogen peroxide 50mmol(5ml), BuN-PMo 12catalyzer 0.07mol(0.18g), solvent acetonitrile 15ml, by vinylbenzene, acetonitrile, BuN-PMo 12catalyzer and hydrogen peroxide add in flask, and system is warming up to 70 DEG C, 12 hours reaction times, reaction pressure normal pressure.
embodiment 3
Get vinylbenzene 10mmol(1.15ml), 30% hydrogen peroxide 60mmol(6ml), BuN-PMo 12catalyzer 0.08mol(0.21g), solvent acetonitrile 17.2ml, by vinylbenzene, acetonitrile, BuN-PMo 12catalyzer and hydrogen peroxide add in flask, and system is warming up to 75 DEG C, 6 hours reaction times, reaction pressure normal pressure.
The product of embodiment 1 to embodiment 3 gained is analyzed, and calculates cinnamic transformation efficiency and phenyl aldehyde selectivity.
As following table:
With each component of embodiment 2 when processing parameter for benchmark, do blank test, detected result: cinnamic transformation efficiency 35.69%, phenyl aldehyde selectivity is 32.93%.
Employing BuN-PMo of the present invention 12catalyzed oxidation vinylbenzene producing benzaldehyde technique, provides a kind of method that catalyzed oxidation prepares phenyl aldehyde, catalyst B uN-PMo 12in reaction system, cinnamic transformation efficiency can reach 99.7%, and phenyl aldehyde selectivity is 70.74%, catalyst B uN-PMo 12there is good catalytic performance, there is the advantage of reaction conditions gentleness.
The present invention is not limited to aforesaid embodiment.The present invention expands to any new feature of disclosing in this manual or any combination newly, and the step of the arbitrary new method disclosed or process or any combination newly.

Claims (5)

1. a cinnamic BuN-PMo 12catalyzed oxidation producing benzaldehyde technique, is characterized in that: in organic solvent system, take hydrogen peroxide as oxygenant, BuN-PMo 12for catalyzer, catalyzed oxidation vinylbenzene producing benzaldehyde, wherein said vinylbenzene, hydrogen peroxide, BuN-PMo 12the mol ratio of catalyzer is 1:4-6:0.05-0.08, and catalyzed reaction temperature is 60-75 DEG C, and reaction pressure is normal pressure.
2. cinnamic BuN-PMo as claimed in claim 1 12catalyzed oxidation producing benzaldehyde technique, is characterized in that: described organic solvent is acetonitrile.
3. cinnamic BuN-PMo as claimed in claim 2 12catalyzed oxidation producing benzaldehyde technique, is characterized in that: the volume ratio 1:12-15 of described vinylbenzene and acetonitrile.
4. the cinnamic BuN-PMo as described in claim 1 or 2 or 3 12catalyzed oxidation producing benzaldehyde technique, is characterized in that: described vinylbenzene, hydrogen peroxide, BuN-PMo 12the mol ratio of catalyzer is 1:5:0.07.
5. cinnamic BuN-PMo as claimed in claim 4 12catalyzed oxidation producing benzaldehyde technique, is characterized in that: described catalyzed reaction temperature is 70 DEG C.
CN201410779823.9A 2014-12-17 2014-12-17 Process for preparing benzaldehyde from phenylethylene through catalytic oxidation by adopting BuN-PMo12 Pending CN104496777A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410779823.9A CN104496777A (en) 2014-12-17 2014-12-17 Process for preparing benzaldehyde from phenylethylene through catalytic oxidation by adopting BuN-PMo12

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410779823.9A CN104496777A (en) 2014-12-17 2014-12-17 Process for preparing benzaldehyde from phenylethylene through catalytic oxidation by adopting BuN-PMo12

Publications (1)

Publication Number Publication Date
CN104496777A true CN104496777A (en) 2015-04-08

Family

ID=52938253

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410779823.9A Pending CN104496777A (en) 2014-12-17 2014-12-17 Process for preparing benzaldehyde from phenylethylene through catalytic oxidation by adopting BuN-PMo12

Country Status (1)

Country Link
CN (1) CN104496777A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111170838A (en) * 2020-01-14 2020-05-19 中北大学 Method and reaction device for preparing benzaldehyde by supergravity ozone oxidation of styrene

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5861286A (en) * 1995-01-19 1999-01-19 V. Mane Fils Biochemical process for preparing aromatic substances
CN101306986A (en) * 2008-07-11 2008-11-19 湖南大学 Process for preparing benzaldehyde by catalytic oxidation of phenylethene
CN101711994A (en) * 2009-11-19 2010-05-26 浙江大学 Heteropolyacid material, preparation method and application thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5861286A (en) * 1995-01-19 1999-01-19 V. Mane Fils Biochemical process for preparing aromatic substances
CN101306986A (en) * 2008-07-11 2008-11-19 湖南大学 Process for preparing benzaldehyde by catalytic oxidation of phenylethene
CN101711994A (en) * 2009-11-19 2010-05-26 浙江大学 Heteropolyacid material, preparation method and application thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GERASIMOS S. ARMATAS ET AL: "Highly ordered mesoporous zirconia-polyoxometalate nanocomposite materials for catalytic oxidation of alkenes", 《JOURNAL OF MATERIALS CHEMISTRY》, vol. 21, 7 January 2011 (2011-01-07) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111170838A (en) * 2020-01-14 2020-05-19 中北大学 Method and reaction device for preparing benzaldehyde by supergravity ozone oxidation of styrene
CN111170838B (en) * 2020-01-14 2023-04-14 中北大学 Method and reaction device for preparing benzaldehyde by supergravity ozone oxidation of styrene

Similar Documents

Publication Publication Date Title
Chen et al. Tuning the basicity of ionic liquids for efficient synthesis of alkylidene carbonates from CO 2 at atmospheric pressure
Wu et al. Silica-gel-supported dual acidic ionic liquids as efficient catalysts for the synthesis of polyoxymethylene dimethyl ethers
CN103588821B (en) Chiral phenylglycinol nickel complex
Luo et al. Asymmetric ring-opening of oxabenzonorbornadiene with amines promoted by a chiral iridium-monophosphine catalyst
CN103880894A (en) Method for directly synthesizing heteropoly acid material with double active centers
Malhotra et al. Application of chiral ionic liquids in the copper catalyzed enantioselective 1, 4-addition of diethylzinc to enones
CN103342627A (en) Method for selective hydrogenation synthesis of nerol and geraniol mixture by using citral in water-organic two-phase system
Soleimani et al. The efficient synthesis of 14-alkyl or aryl 14H-dibenzo [a, j] xanthenes catalyzed by bismuth (III) chloride under solvent-free conditions
CN102558230A (en) Quaternary phosphor salt acidic ionic liquid and application thereof in synthesizing benzyltoluene
CN103467313B (en) Chiral copper complex
CN104003856B (en) A kind of with formaldehyde and propionic aldehyde for the method for Methylacrylaldehyde prepared by raw material
CN104496777A (en) Process for preparing benzaldehyde from phenylethylene through catalytic oxidation by adopting BuN-PMo12
CN104496776A (en) Process for preparing benzaldehyde from phenylethylene through catalytic oxidation by adopting BuN-PMo12
CN103977839B (en) A kind of ionic organic metal tungstates epoxidation catalyst and preparation method thereof
North et al. Asymmetric cyanohydrin synthesis using an aluminium (salan) complex
CN104248978B (en) A kind of preparation method of phosphomolybdate crystal catalyst
Tortoioli et al. Chiral sulfamide-catalyzed asymmetric Michael addition of protected 3-hydroxypropanal to β-nitrostyrenes
CN103570768A (en) Cobalt-nitrogen complex
CN103570751A (en) Chiral leucinol copper complex
CN101912788B (en) Amino-containing resorcin aluminum bifunctional catalyst as well as synthetic method and application thereof
CN102633680A (en) Catalyst for preparing 3,3-diethoxyl propionitrile and preparation method of catalyst
CN103331179B (en) Catalyst used for synthesizing methyl chloride by gas-solid phase reaction and preparation method thereof
CN103274890B (en) A kind of continuous production processes of p-tert-butyltoluene
CN103191781A (en) Technology for preparing phenol by one-step catalytic oxidation of benzene through coordination of molecular sieve immobilized Schiff base and metal salt
CN104725196B (en) A kind of orthoresol coproduction 2, the synthetic method of 6-xylenol

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20150408