CN104486767B - Dynamic ABS disturbance restraining methods based on sub-clustering in isomery cellular network - Google Patents

Dynamic ABS disturbance restraining methods based on sub-clustering in isomery cellular network Download PDF

Info

Publication number
CN104486767B
CN104486767B CN201410767493.1A CN201410767493A CN104486767B CN 104486767 B CN104486767 B CN 104486767B CN 201410767493 A CN201410767493 A CN 201410767493A CN 104486767 B CN104486767 B CN 104486767B
Authority
CN
China
Prior art keywords
mrow
msub
interference
munder
cluster
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410767493.1A
Other languages
Chinese (zh)
Other versions
CN104486767A (en
Inventor
唐伦
李克鹏
霍龙
路桥
黄琼
陈前斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University of Post and Telecommunications
Original Assignee
Chongqing University of Post and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University of Post and Telecommunications filed Critical Chongqing University of Post and Telecommunications
Priority to CN201410767493.1A priority Critical patent/CN104486767B/en
Publication of CN104486767A publication Critical patent/CN104486767A/en
Application granted granted Critical
Publication of CN104486767B publication Critical patent/CN104486767B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明涉及一种异构蜂窝网络中基于分簇的动态ABS干扰抑制方法,属于无线通信技术领域。该方法首先计算密集小蜂窝之间的干扰权重,确立小蜂窝网络间的干扰关系,即小蜂窝间是否存在干扰边,从而建立关于小蜂窝干扰关系的干扰图;然后基于建立的小蜂窝干扰图,将小蜂窝分配到K个簇中,在分配过程中保证簇间的干扰权重最大,最后为不同的簇分配不同的频带资源。为了进一步减少簇内干扰,对簇内的小蜂窝采取了交叉式动态ABS分配方法,簇内小蜂窝基于负载的大小分为两组,根据两组的负载,用户平均传输速率信息,动态的调节组间的ABS比例,从而进一步降低了簇内小蜂窝的干扰,提高了资源利用率,从而提高了系统的吞吐量。

The invention relates to a cluster-based dynamic ABS interference suppression method in a heterogeneous cellular network, which belongs to the technical field of wireless communication. This method firstly calculates the interference weight between dense small cells, establishes the interference relationship between small cell networks, that is, whether there is an interference edge between small cells, and then establishes an interference graph about the small cell interference relationship; then based on the established small cell interference graph , allocate small cells to K clusters, ensure the maximum interference weight between clusters during the allocation process, and finally allocate different frequency band resources for different clusters. In order to further reduce intra-cluster interference, a cross-type dynamic ABS allocation method is adopted for the small cells in the cluster. The small cells in the cluster are divided into two groups based on the size of the load. According to the load of the two groups, the average user transmission rate information, dynamic adjustment The ratio of ABS between groups further reduces the interference of small cells in the cluster, improves resource utilization, and thus improves system throughput.

Description

异构蜂窝网络中基于分簇的动态ABS干扰抑制方法Clustering-Based Dynamic ABS Interference Suppression Method in Heterogeneous Cellular Networks

技术领域technical field

本发明属于无线通信技术领域,涉及一种异构蜂窝网络中基于分簇的动态ABS干扰抑制方法。The invention belongs to the technical field of wireless communication, and relates to a dynamic ABS interference suppression method based on clustering in a heterogeneous cellular network.

背景技术Background technique

随着无线通信网络的发展,未来的无线网络正朝着网络智能化、宽带化、多元化、综合化的方向演进。随着智能终端的大量普及,数据业务将出现爆炸式的增长。在未来的5G网络中,数据业务将主要分布在室内和热点地区,这使得超密集网络成为实现未来5G的1000倍流量需求的主要手段之一。超密集网络能够改善网络覆盖,大幅度提升系统容量,并且对业务进行分流,具有更灵活的网络部署和更高效的频率复用。未来,面向高频段大带宽,将采用更加密集的网络方案,部署小小区/扇区将高达100个以上。With the development of wireless communication networks, the future wireless network is evolving towards network intelligence, broadband, diversification and integration. With the widespread popularity of smart terminals, data services will experience explosive growth. In the future 5G network, data services will be mainly distributed indoors and hot spots, which makes the ultra-dense network one of the main means to realize the 1000 times traffic demand of future 5G. The ultra-dense network can improve network coverage, greatly increase system capacity, and offload services, enabling more flexible network deployment and more efficient frequency reuse. In the future, more dense network solutions will be adopted for high-frequency bands and large bandwidths, and more than 100 small cells/sectors will be deployed.

与此同时,愈发密集的网络部署也使得网络拓扑更加复杂,小区间干扰已经成为制约系统容量增长的主要因素,极大地降低了网络能效。At the same time, the increasingly dense network deployment also makes the network topology more complex, and inter-cell interference has become the main factor restricting the growth of system capacity, which greatly reduces the network energy efficiency.

传统异构网络中的干扰管理方法,主要从两个角度去解决干扰的问题:第一是从频域的角度,同一时刻内通过为不同的用户分配不同资源块而避免同频段的干扰,或者一些衍生的方法,例如降低同频段某些网络节点的功率,从而降低同频之间的干扰,此类方法综合考虑频域资源的划分,算法复杂度一般较高,且单从频域的角度去分配资源,无法从时间上对系统资源做一个整体上的规划,较长时间上则造成资源的分配不合理;另一种则是从时域的角度,如eICIC技术,这种方法大多应用于降低宏蜂窝对小蜂窝的干扰实例中,对小蜂窝采用范围扩展技术,通过降低宏基站某些时隙的子帧上的功率,从而降低了对应小蜂窝子帧上的干扰,从而在某种程度上改善了小蜂窝中用户的通信质量,扩大了小蜂窝的容量,但是此种方法在小蜂窝较密集的情况下,无法较好的协调小蜂窝之间的干扰。The interference management method in the traditional heterogeneous network mainly solves the interference problem from two perspectives: the first is from the perspective of the frequency domain, by allocating different resource blocks to different users at the same time to avoid interference in the same frequency band, or Some derivative methods, such as reducing the power of some network nodes in the same frequency band, thereby reducing the interference between the same frequency, such methods comprehensively consider the division of frequency domain resources, the algorithm complexity is generally high, and only from the perspective of the frequency domain To allocate resources, it is impossible to make an overall plan for system resources in terms of time, and the allocation of resources will be unreasonable in a long period of time; the other is from the perspective of time domain, such as eICIC technology, which is mostly used In the example of reducing the interference of the macro cell to the small cell, the range extension technology is used for the small cell, by reducing the power on the subframe of some time slots of the macro base station, thereby reducing the interference on the subframe of the corresponding small cell, so that in a certain This method improves the communication quality of the users in the small cells and expands the capacity of the small cells, but this method cannot coordinate the interference between the small cells well when the small cells are dense.

因此,在未来5G的高密集蜂窝网络中,需要一种有效的干扰管理方案,使其能够有效地的降低密集蜂窝网络中的干扰,同时对密集蜂窝网络中的负载进行适当的均衡,从而极大的提高5G系统的容量,获得更好地频谱利用率,进一步提高用户的服务质量。Therefore, in the high-density cellular network of 5G in the future, an effective interference management scheme is needed, which can effectively reduce the interference in the dense cellular network, and at the same time properly balance the load in the dense cellular network, thus extremely Greatly improve the capacity of the 5G system, obtain better spectrum utilization, and further improve the quality of service for users.

发明内容Contents of the invention

有鉴于此,本发明的目的在于提供一种异构蜂窝网络中基于分簇的动态ABS干扰抑制方法,该方法能够很好的改善密集蜂窝网络中的干扰严重的问题。In view of this, the object of the present invention is to provide a cluster-based dynamic ABS interference suppression method in a heterogeneous cellular network, which can well improve the problem of severe interference in a dense cellular network.

为达到上述目的,本发明提供如下技术方案:To achieve the above object, the present invention provides the following technical solutions:

一种异构蜂窝网络中基于分簇的动态ABS干扰抑制方法,包括以下步骤:A method for suppressing dynamic ABS interference based on clustering in a heterogeneous cellular network, comprising the following steps:

步骤一:计算密集小蜂窝之间的干扰权重,确立小蜂窝网络间的干扰关系,即小蜂窝间是否存在干扰边,从而建立关于小蜂窝干扰关系的干扰图;Step 1: Calculate the interference weight between dense small cells, establish the interference relationship between the small cell networks, that is, whether there is an interference edge between the small cells, so as to establish an interference graph about the small cell interference relationship;

步骤二:基于建立的小蜂窝干扰图,将小蜂窝分配到K个簇中,在分配过程中保证簇间的干扰权重最大,最后为不同的簇分配不同的频带资源;Step 2: Based on the established small cell interference graph, allocate small cells to K clusters, ensure that the interference weight between clusters is the largest during the allocation process, and finally allocate different frequency band resources for different clusters;

步骤三:簇内的小蜂窝基于负载量,分为两组,主组G1和从组G2,其中主组G1的每个小蜂窝的负载量均要高于从组G2的每个小蜂窝负载量,根据主从组的负载为主组G1分配ABS比例为θ,从组G2分配ABS子比例为1-θ。Step 3: The small cells in the cluster are divided into two groups based on the load, the primary group G 1 and the secondary group G 2 , where the load of each small cell in the primary group G 1 is higher than that of each small cell in the secondary group G 2 According to the load of the small cells, according to the load of the master-slave group, the ABS ratio is assigned to the master group G1 as θ, and the ABS sub-ratio is assigned to the slave group G2 as 1 -θ.

进一步,步骤一中干扰权重的计算以及干扰图的建立准则和方法具体包括:Further, the calculation of the interference weight and the establishment criteria and method of the interference graph in step 1 specifically include:

1)统计小蜂窝中心范围内的用户数为N,边缘用户数为M,且M+N≠0;1) Count the number of users within the center of the small cell as N, the number of edge users as M, and M+N≠0;

2)则被小区i服务,受到小区j干扰的小蜂窝区域信道平均质量RASQij表示为:2) The average channel quality RASQ ij of the small cell area served by cell i and interfered by cell j is expressed as:

其中表示小区边缘第K个用户的SINR,表示小区中心第K个用户的SINR;in Indicates the SINR of the Kth user at the edge of the cell, Indicates the SINR of the Kth user in the center of the cell;

3)其中干扰权重若Wij≥Wth,则两个小蜂窝即存在干扰边,其中Wth为预设值,MAX(RASQij,RASQji)表示RASQij与RASQji中最大的值;3) where the interference weight If W ij ≥ W th , there is an interference edge between the two small cells, where W th is a preset value, and MAX(RASQ ij , RASQ ji ) represents the maximum value among RASQ ij and RASQ ji ;

4)依次计算每两个小蜂窝间的干扰权重即可确定干扰图G(V,E),其中V表示小蜂窝集合,E为干扰权重Wij的集合;4) The interference graph G(V, E) can be determined by sequentially calculating the interference weights between every two small cells, where V represents a set of small cells, and E is a set of interference weights W ij ;

5)周期性更新干扰图。5) Periodically update the interference map.

进一步,由步骤一可知干扰图G(V,E)中每两个小蜂窝间的干扰权重Wij,将系统频谱资源分为K个子段,R={R1,R2,...,Rk},将点集V分配到K个簇中,使得簇间权重最大,即为:Further, from step 1, the interference weight W ij between every two small cells in the interference graph G(V,E) can be known, and the system spectrum resource is divided into K sub-sections, R={R 1 ,R 2 ,..., R k }, assign the point set V to K clusters, so that the weight between clusters is the largest, that is:

步骤二具体包括:Step two specifically includes:

1)初始化:Ωk表示节点k的度,Wi为簇Ri的权重,对于簇Ri算法开始时有Wi=0,V'表示剩余的小蜂窝,根据小蜂窝点集的度降序排序,按照Ωk从大到小的顺序从V'的集合选取第一个到第K个节点依次分配到K个簇中;1) Initialization: Ω k represents the degree of node k, W i is the weight of cluster R i , for cluster R i there is when the algorithm starts There is W i = 0, and V' represents the remaining small cells, which are sorted in descending order according to the degree of the small cell point set, and the first to K nodes are selected from the set of V' in order of Ω k from large to small and assigned to In K clusters;

2)继续按照节点Ωk从大到小的顺序分配节点到K个簇中,若将节点m分配到簇Ri中,计算簇内干扰权重 2) Continue to assign nodes to K clusters according to the order of nodes Ω k from large to small. If node m is assigned to cluster R i , calculate the intra-cluster interference weight

3)选择簇内干扰权重最小的簇Rj,将节点m分配给簇Rj,此时V'=V'-m;3) Select the cluster R j with the smallest interference weight in the cluster, and assign node m to the cluster R j , at this time V'=V'-m;

4)重复上述步骤2)、3)直到剩余小蜂窝集合V'为空;4) Repeat the above steps 2), 3) until the remaining small cell set V' is empty;

5)干扰图变化时重新分簇。5) Re-cluster when the interference graph changes.

进一步,步骤三中的簇内小蜂窝基于负载和用户平均服务速率的动态ABS子帧配置方案具体包括:Further, the dynamic ABS subframe configuration scheme of small cells in the cluster based on load and user average service rate in step 3 specifically includes:

1)整个系统采用比例公平调度算法,簇内小蜂窝分为两组G1和G2,对于G1组内任意小蜂窝负载大于G2组内任意小蜂窝负载;1) The entire system adopts a proportional fair scheduling algorithm, and the small cells in the cluster are divided into two groups G 1 and G 2 , and the load of any small cell in group G 1 is greater than the load of any small cell in group G 2 ;

2)两个组使用交叉子帧配备方案,当主组G1使用正常的子帧的时候,从组G2则使用相应的ABS子帧,直到满足两组的ABS子帧数目都满足其预设值;2) The two groups use a cross subframe allocation scheme. When the main group G 1 uses normal subframes, the slave group G 2 uses the corresponding ABS subframes until the number of ABS subframes of the two groups meets its preset value;

3)假设对于小蜂窝Ci中用户j长时间平均服务速率为Rij,G1中ABS子帧配备比例为θ,则G2中ABS子帧配备比例为1-θ,0.4≤θ≤0.6;3) Assuming that the long-term average service rate of user j in small cell C i is R ij , and the allocation ratio of ABS subframes in G 1 is θ, then the allocation ratio of ABS subframes in G 2 is 1-θ, 0.4≤θ≤0.6 ;

4)对于满业务模型θ计算方法:4) Calculation method for full business model θ:

G1组内负载用G1组内用户数NumG1决定,G2组内负载用G2组内用户数NumG2决定; The load in group G1 is determined by the number of users in group G1, Num G1 , and the load in group G2 is determined by the number of users in group G2, Num G2 ;

最大吞吐量度量标准为:The maximum throughput metric is:

最优化ABS子帧分配由此可知:The optimal ABS subframe allocation can be seen from this:

5)对于非满业务模型θ计算方法:5) Calculation method for non-full business model θ:

非满业务负载由基站待传输的数据总量决定;Partial business load is determined by the total amount of data to be transmitted by the base station;

假设基站Ci准备为用户j传输的数据量为Bij,则主组G1中用户j将这些数据传送完的时间从组G2中用户j传送数据需要的时间 Assuming that the amount of data that base station C i prepares to transmit for user j is B ij , the time for user j in the main group G 1 to transmit these data Time required to transmit data from user j in group G2

总的传输时间为TΣThe total transit time is T Σ :

使故TΣ存在最小值,θopt最优比例为:make Make have Therefore, T Σ has a minimum value, and the optimal ratio of θ opt is:

6)周期性更新ABS比例θ。6) Periodically update the ABS ratio θ.

本发明的有益效果在于:本发明提供的方法通过小蜂窝干扰图建立及分簇的方案,合理的分配频谱,抑制了簇间小蜂窝的干扰;通过基于负载的动态ABS分配方法,来抑制簇内小蜂窝的干扰,并平衡簇内的负载,提高频谱的利用率。The beneficial effect of the present invention is that: the method provided by the present invention uses the small cell interference map establishment and the clustering scheme to rationally allocate the frequency spectrum, and suppresses the interference of small cells between clusters; through the load-based dynamic ABS allocation method, the cluster Interference of small cells within the cluster, and balance the load within the cluster to improve spectrum utilization.

附图说明Description of drawings

为了使本发明的目的、技术方案和有益效果更加清楚,本发明提供如下附图进行说明:In order to make the purpose, technical scheme and beneficial effect of the present invention clearer, the present invention provides the following drawings for illustration:

图1为控制信道数据信道相分离的系统架构示意图;FIG. 1 is a schematic diagram of a system architecture in which control channels and data channels are separated;

图2为本发明所述方法的整体流程示意图;Fig. 2 is the overall schematic diagram of the method of the present invention;

图3为干扰图建立示意图;Fig. 3 is a schematic diagram of establishing an interference graph;

图4为分簇流程示意图;Figure 4 is a schematic diagram of the clustering process;

图5为分簇后频谱分配示意图;FIG. 5 is a schematic diagram of spectrum allocation after clustering;

图6为动态ABS分配流程示意图;Figure 6 is a schematic diagram of a dynamic ABS allocation process;

图7为簇内ABS配置示意图。Fig. 7 is a schematic diagram of ABS configuration in a cluster.

具体实施方式detailed description

下面将结合附图,对本发明的优选实施例进行详细的描述。The preferred embodiments of the present invention will be described in detail below with reference to the accompanying drawings.

本发明适用于密集小蜂窝网络,在密集蜂窝网络中,小蜂窝之间不仅存在着干扰,宏基站对小蜂窝也存在着较强的干扰。The present invention is suitable for dense small cell network, in the dense cell network, there is not only interference between the small cells, but also strong interference between the macro base station and the small cells.

如图1所示,为了避免宏基站的干扰,采用如图1系统架构,此架构中宏蜂窝专门负载进行控制信息的广播,而小蜂窝则专门负责进行数据信息的传递。首先,UE接入一个宏蜂窝,然后在宏蜂窝的协助下,UE接入到平均接收功最高的小蜂窝。As shown in Figure 1, in order to avoid the interference of the macro base station, the system architecture shown in Figure 1 is adopted. In this architecture, the macro cell is dedicated to the broadcast of control information, while the small cell is responsible for the transmission of data information. First, the UE accesses a macro cell, and then with the assistance of the macro cell, the UE accesses the small cell with the highest average receiving power.

图2为本方法的总体流程图,从图中可以看出本方法主要分为三个主要的部分:Fig. 2 is the overall flowchart of this method, can find out from the figure that this method is mainly divided into three main parts:

步骤1:计算小蜂窝间的平均区域信道质量RASQij,得到小蜂窝间的干扰权重Wij,确立干扰图G(V,E);Step 1: Calculate the average regional channel quality RASQ ij between small cells, obtain the interference weight W ij between small cells, and establish the interference graph G(V,E);

步骤2:根据干扰图G(V,E)对小蜂窝进行分簇,并对不同的簇内的小蜂窝使用不同的频谱资源;Step 2: cluster the small cells according to the interference graph G(V,E), and use different spectrum resources for the small cells in different clusters;

步骤3:基于负载、用户平均传输速率信息对簇内小蜂窝进行动态ABS比例分配。Step 3: Based on the load and user average transmission rate information, the dynamic ABS ratio allocation is performed on the small cells in the cluster.

考虑到用户移动性,以及负载的变化,需对周期性T重复上述步骤,在较短的时间内,用户可认为静止且用户负载变化可以近似认为不变,因此将T设置为较短时间,且考虑到时间较短会增加系统开销,计算过于频繁,将T设置为1s,可根据实际情况具体调节,如用户移动速度等。Considering user mobility and load changes, the above steps need to be repeated for periodic T. In a short period of time, users can be considered stationary and user load changes can be considered to be approximately constant, so T is set to a short period of time. And considering that the short time will increase the system overhead and the calculation is too frequent, T is set to 1s, which can be adjusted according to the actual situation, such as the user's moving speed.

步骤1详细说明如下:Step 1 is detailed as follows:

步骤1.1:首先统计小蜂窝统计小蜂窝中心范围内的用户数为N,边缘用户数为M:用户测量RSRP>RSRPth则统计为中心用户;用户测量RSRP<RSRPth则统计为边缘用户;RSRPth为预设值。Step 1.1: First count the number of users in the center of the small cell as N, and the number of edge users as M: if the user measures RSRP > RSRP th , it is counted as a central user; if the user measures RSRP < RSRP th , it is counted as an edge user; RSRP th is the default value.

步骤1.2:受到小蜂窝j干扰的小蜂窝i的区域平均信道质量RASQij表示为:Step 1.2: The regional average channel quality RASQ ij of small cell i interfered by small cell j is expressed as:

其中表示边缘用户的SINR,表示小区中心用户SINR;in represents the SINR of the edge user, Indicates the user SINR of the cell center;

步骤1.3:计算两个相邻小蜂窝间的干扰权重:Step 1.3: Calculate the interference weight between two adjacent small cells:

步骤1.4:若Wij≥Wth则干扰边存在,建立以小蜂窝为顶点V,干扰权重Wij为边的干扰图G(V,E),并以周期T更新干扰图。Step 1.4: If W ij ≥ W th , the interference edge exists, establish an interference graph G(V,E) with the small cell as the vertex V, and the interference weight W ij as the edge, and update the interference graph at a period T.

图3为干扰图建立示意图Figure 3 is a schematic diagram of the establishment of interference graph

如图3所示,Mi表示小蜂窝i边缘的用户数,Ni表示小蜂窝i中心的用户数,假设小蜂窝1、2、3号之间的距离等距,即d12=d13=d23,且三个小蜂窝的发射功率P1=P2=P3As shown in Figure 3, M i represents the number of users at the edge of small cell i, and N i represents the number of users at the center of small cell i, assuming that the distances between small cells 1, 2, and 3 are equidistant, that is, d 12 =d 13 =d 23 , and the transmission power of the three small cells P 1 =P 2 =P 3 ;

三个小蜂窝总数的关系有:M1+N1=M2+N2=M3+N3The relationship between the total number of three small cells is: M 1 +N 1 =M 2 +N 2 =M 3 +N 3 ;

边缘用户数量关系有:M1<M2<M3The relationship between the number of edge users is: M 1 <M 2 <M 3 ;

由于小蜂窝中边缘用户受到的干扰较大,当小蜂窝边缘数量较多时,小蜂窝被干扰的用户集中在边缘区域;假设所有先去边缘用户的SINR相同,中心用户的SINR相同,根据上述流程不难推出有:Since the edge users in the small cell are greatly interfered, when there are many small cell edges, the interfered users of the small cell are concentrated in the edge area; assuming that the SINR of all the edge users is the same, and the SINR of the central user is the same, according to the above process It is not difficult to introduce:

对于1、2号小蜂窝有:RASQ12>RASQ21,则 For small cells 1 and 2: RASQ 12 > RASQ 21 , then

对于2、3号小蜂窝有:RASQ23>RASQ32,则 For small cells No. 2 and No. 3: RASQ 23 > RASQ 32 , then

对于1、3号小蜂窝有:RASQ12>RASQ31,则 For small cells 1 and 3: RASQ 12 > RASQ 31 , then

且W13=W23>W12And W 13 =W 23 >W 12 ;

由此可知,当用户较多分布在小区边缘时,我们将会选取小区边缘用户较多的小区作为评判干扰权重的重要依据,这样在分簇的过程中就可以较好的避免小区边缘用户较多时受到较强的干扰,导致边缘用户性能较差。It can be seen that when many users are distributed at the edge of the cell, we will select the cell with more users at the edge of the cell as an important basis for judging the interference weight. Frequently received strong interference, resulting in poor performance of edge users.

步骤2详细说明如下:Step 2 is detailed as follows:

图4为干扰图分簇的详细流程,如图所示:Figure 4 is the detailed process of clustering the interference graph, as shown in the figure:

步骤2.1:初始化:Ωk表示节点k的度,Wi为簇Ri的权重,对于簇Ri算法开始时有Wi=0;Step 2.1: Initialization: Ω k represents the degree of node k, W i is the weight of cluster R i , for cluster R i has when the algorithm starts have W i =0;

步骤2.2:V'表示剩余的小蜂窝,根据小蜂窝点集的度降序排序,另i=0;Step 2.2: V' represents the remaining small cells, sorted in descending order according to the degree of the small cell point set, and i=0;

步骤2.3:选取集合V'中Ωk最大的元素m进行分配;Step 2.3: Select the element m with the largest Ω k in the set V' for distribution;

步骤2.4:判断K个簇是否存在空集,是则继续步骤2.5,否则跳到步骤2.6;Step 2.4: Determine whether there is an empty set in the K clusters, if yes, continue to step 2.5, otherwise skip to step 2.6;

步骤2.5:将元素m分配到Ri中,i=i+1,返回步骤2.4;Step 2.5: assign element m to R i , i=i+1, return to step 2.4;

步骤2.6:计算元素m与每个簇的干扰权重选取干扰权重最小的簇,将元素m分配给这个簇;Step 2.6: Calculate the interference weight of element m with each cluster Select the cluster with the smallest interference weight, and assign element m to this cluster;

步骤2.7:重复上述步骤2.3到步骤2.5直到剩余小蜂窝集合V'为空。Step 2.7: Repeat the above steps 2.3 to 2.5 until the remaining small cell set V' is empty.

图5为分簇后频谱分配示意图:Figure 5 is a schematic diagram of spectrum allocation after clustering:

分簇结束后,簇间的干扰是最大的,簇内的干扰权重较小,因此我们对不同的簇R1、R2、R3、R4使用不同的频段1、2、3、4;就可以消除簇间较大的干扰,此时簇内依然存在着干扰,我们将在后续步骤中对簇内干扰进行抑制。After the clustering is over, the inter-cluster interference is the largest, and the intra-cluster interference weight is small, so we use different frequency bands 1, 2, 3, and 4 for different clusters R 1 , R 2 , R 3 , and R 4 ; The larger interference between clusters can be eliminated, but there is still interference within the cluster at this time, and we will suppress the interference within the cluster in the subsequent steps.

步骤3详细说明如下:Step 3 is detailed as follows:

参照图6,簇内动态ABS分配方法:Referring to Figure 6, the intra-cluster dynamic ABS allocation method:

步骤3.1:统计簇内所有用户测量SINR,用户接受功率为P,干扰总功率为I,噪声功率为N0,则SINR可表示为:Step 3.1: Statistically measure the SINR of all users in the cluster, the user acceptance power is P, the total interference power is I, and the noise power is N 0 , then the SINR can be expressed as:

步骤3.2:考虑到ABS子帧θ调节周期较短,其瞬时服务速率近似等于周期内的平均服务速率,因此平均速率的计算方法可简化如下:Step 3.2: Considering that the ABS subframe θ adjustment period is short, its instantaneous service rate is approximately equal to the average service rate within the period, so the calculation method of the average rate can be simplified as follows:

对用户测量SINR进行CQI映射,并得到其调制编码方式,根据调制编码方式,计算其传输块的大小,即可获得其服务速率R;或者可以通过香浓公式简单计算:R=log(1+SINR),即可得到平均服务速率R;Carry out CQI mapping on the SINR measured by the user, and obtain its modulation and coding method. According to the modulation and coding method, calculate the size of its transmission block, and then obtain its service rate R; or it can be simply calculated by the Shannon formula: R=log(1+ SINR), the average service rate R can be obtained;

步骤3.3:簇内的小蜂窝基于负载量,分为两组,主组G1和从组G2,其中主组G1的每个小蜂窝的负载量均要高于从组G2的每个小蜂窝负载量;Step 3.3: The small cells in the cluster are divided into two groups based on the load, the primary group G 1 and the secondary group G 2 , where the load of each small cell in the primary group G 1 is higher than that of each small cell in the secondary group G 2 small cell load;

簇内负载度量标准:In-cluster load metrics:

对于满业务模型:For full business models:

由于簇内所有用户需要传递的业务量都近似无限大,因此,我们将用户数目作为衡量负载的标准,G1组内负载用G1组内用户数决定,G2组内负载用G2组内用户数决定;Since the business volume that all users in the cluster need to transmit is approximately infinite, we use the number of users as the standard to measure the load, and the load in the G1 group is determined by the number of users in the G1 group Determine the load in G2 group by the number of users in G2 group Decide;

对于非满业务模型:For non-full business models:

簇内负载由需要小蜂窝传输的总业务量决定,此负载由具体的业务模型给出;The load in the cluster is determined by the total traffic that needs to be transmitted by small cells, and this load is given by the specific business model;

步骤3.4:根据主从组的负载为主组G1分配ABS子帧比例为θ,从组G2分配ABS子帧比例为1-θ,0.4≤θ≤0.6;Step 3.4: According to the load of the master-slave group, assign the ABS subframe ratio to the master group G 1 as θ, and assign the ABS subframe ratio to the slave group G 2 as 1-θ, 0.4≤θ≤0.6;

对于满业务模型θ计算方法:Calculation method for full business model θ:

在满业务模型下,用户要传输的总数据量是无限的,因此单位时间内的传输量即吞吐量CΣ即为度量系统性能的重要度量标准,因此建立度量标准CΣ如下,另CΣ取最大,此事θ则为最优ABS子帧比例;Under the full service model, the total amount of data to be transmitted by users is unlimited, so the transmission volume per unit time, that is, the throughput C Σ is an important metric to measure system performance, so the metric C Σ is established as follows, and C Σ Take the maximum, and θ is the optimal ABS subframe ratio;

最大吞吐量度量标准为:The maximum throughput metric is:

最优化ABS子帧分配由此可知:The optimal ABS subframe allocation can be seen from this:

对于非满业务模型θ计算方法:Calculation method for non-full business model θ:

非满业务负载由基站待传输的数据总量决定;Partial business load is determined by the total amount of data to be transmitted by the base station;

假设基站Ci准备为用户j传输的数据量为Bij,则主组G1中用户j将这些数据传送完的时间从组G2中用户j传送数据需要的时间对于非满业务模型,业务总量在动态变化,用户平均服务速率也在变化,但总的来说总的传输时间越小越好,因此建立构建总的传输时间函数TΣ,此时另TΣ最小,求出的θ的则为最ABS子帧比例;Assuming that the amount of data that base station C i prepares to transmit for user j is B ij , the time for user j in the main group G 1 to transmit these data Time required to transmit data from user j in group G2 For the non-full business model, the total amount of business is changing dynamically, and the average service rate of users is also changing, but in general, the smaller the total transmission time, the better, so the construction of the total transmission time function T Σ is established, and T Σ is the smallest, and the calculated θ is the most ABS subframe ratio;

总的传输时间为TΣThe total transit time is T Σ :

使故TΣ存在最小值,θopt最优比例为:make Make have Therefore, T Σ has a minimum value, and the optimal ratio of θ opt is:

步骤3.6:将上述求解得到ABS子帧进行配置:Step 3.6: Configure the ABS subframe obtained from the above solution:

参照图7,ABS子帧配置方案:Referring to Figure 7, the ABS subframe configuration scheme:

由上可知ABS子帧最优化模型,得到了簇内ABS子帧的分配比例θ,为了进一步降低簇内干扰,对两组使用交叉子帧配备方案:It can be seen from the above that the ABS subframe optimization model obtains the allocation ratio θ of ABS subframes in the cluster. In order to further reduce the interference in the cluster, a cross-subframe allocation scheme is used for the two groups:

在一个帧结构中,假设用于正常数据传输的子帧为8个,上述求解后G1组θ=0.4,则G2组θ=0.6,G1组中ABS子帧数目可近似为3,G2组中的ABS子帧数目可近似为4,由图7我们可以看出,当主组G1使用正常的子帧的时候,从组G2则使用相应的ABS子帧,直到满足两组的ABS子帧数目都满足其预设值。In a frame structure, assuming that there are 8 subframes used for normal data transmission, after the above solution, G 1 group θ=0.4, then G 2 group θ=0.6, and the number of ABS subframes in G 1 group can be approximately 3, The number of ABS subframes in group G2 can be approximately 4. From Figure 7 , we can see that when the main group G1 uses normal subframes, the slave group G2 uses the corresponding ABS subframes until the two groups are satisfied. The numbers of ABS subframes satisfy their preset values.

最后说明的是,以上优选实施例仅用以说明本发明的技术方案而非限制,尽管通过上述优选实施例已经对本发明进行了详细的描述,但本领域技术人员应当理解,可以在形式上和细节上对其作出各种各样的改变,而不偏离本发明权利要求书所限定的范围。Finally, it should be noted that the above preferred embodiments are only used to illustrate the technical solutions of the present invention and not to limit them. Although the present invention has been described in detail through the above preferred embodiments, those skilled in the art should understand that it can be described in terms of form and Various changes may be made in the details without departing from the scope of the invention defined by the claims.

Claims (4)

1.一种异构蜂窝网络中基于分簇的动态ABS干扰抑制方法,其特征在于:包括以下步骤:1. a dynamic ABS interference suppression method based on clustering in a heterogeneous cellular network, is characterized in that: comprise the following steps: 步骤一:计算密集小蜂窝之间的干扰权重,确立小蜂窝网络间的干扰关系,即小蜂窝间是否存在干扰边,从而建立关于小蜂窝干扰关系的干扰图;Step 1: Calculate the interference weight between dense small cells, establish the interference relationship between the small cell networks, that is, whether there is an interference edge between the small cells, so as to establish an interference graph about the small cell interference relationship; 步骤二:基于建立的小蜂窝干扰图,将小蜂窝分配到K个簇中,在分配过程中保证簇间的干扰权重最大,最后为不同的簇分配不同的频带资源;Step 2: Based on the established small cell interference graph, allocate small cells to K clusters, ensure that the interference weight between clusters is the largest during the allocation process, and finally allocate different frequency band resources for different clusters; 步骤三:簇内的小蜂窝基于负载量,分为两组,主组G1和从组G2,其中主组G1的每个小蜂窝的负载量均要高于从组G2的每个小蜂窝负载量,根据主从组的负载为主组G1分配ABS比例为θ,从组G2分配ABS子比例为1-θ。Step 3: The small cells in the cluster are divided into two groups based on the load, the primary group G 1 and the secondary group G 2 , where the load of each small cell in the primary group G 1 is higher than that of each small cell in the secondary group G 2 According to the load of the small cells, according to the load of the master-slave group, the ABS ratio is assigned to the master group G1 as θ, and the ABS sub-ratio is assigned to the slave group G2 as 1 -θ. 2.根据权利要求1所述的一种异构蜂窝网络中基于分簇的动态ABS干扰抑制方法,其特征在于:步骤一中干扰权重的计算以及干扰图的建立准则和方法具体包括:2. the dynamic ABS interference suppression method based on clustering in a kind of heterogeneous cellular network according to claim 1, it is characterized in that: the calculation of interference weight in step 1 and the establishment criterion and method of interference graph specifically comprise: 1)统计小蜂窝中心范围内的用户数为N,边缘用户数为M,且M+N≠0;1) Count the number of users within the center of the small cell as N, the number of edge users as M, and M+N≠0; 2)则被小区i服务,受到小区j干扰的小蜂窝区域信道平均质量RASQij表示为:2) The average channel quality RASQ ij of the small cell area served by cell i and interfered by cell j is expressed as: <mrow> <msub> <mi>RASQ</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <mi>M</mi> <mo>*</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>M</mi> </munderover> <mrow> <msubsup> <mi>SINR</mi> <mi>k</mi> <mi>O</mi> </msubsup> </mrow> <mo>+</mo> <mi>N</mi> <mo>*</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <mrow> <msubsup> <mi>SINR</mi> <mi>k</mi> <mi>I</mi> </msubsup> </mrow> </mrow> <msup> <mrow> <mo>(</mo> <mi>M</mi> <mo>+</mo> <mi>N</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> <mrow><msub><mi>RASQ</mi><mrow><mi>i</mi><mi>j</mi></mrow></msub><mo>=</mo><mfrac><mrow><mi>M</mi><mo>*</mo><munderover><mo>&amp;Sigma;</mo><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mi>M</mi></munderover><mrow><msubsup><mi>SINR</mi><mi>k</mi><mi>O</mi></msubsup></mrow><mo>+</mo><mi>N</mi><mo>*</mo><munderover><mo>&amp;Sigma;</mo><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mi>N</mi></munderover><mrow><msubsup><mi>SINR</mi><mi>k</mi><mi>I</mi></msubsup></mrow></mrow><msup><mrow><mo>(</mo><mi>M</mi><mo>+</mo><mi>N</mi><mo>)</mo></mrow><mn>2</mn></msup></mfrac><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mrow> 其中表示小区边缘第K个用户的SINR,表示小区中心第K个用户的SINR;in Indicates the SINR of the Kth user at the edge of the cell, Indicates the SINR of the Kth user in the center of the cell; 3)其中干扰权重含义为两个小蜂窝之间的干扰权重和它们之间的信道平均质量的最大值成反比,即两个小蜂窝之间的信道质量越好,则它们之间的干扰权重就越小;若Wij≥Wth,则两个小蜂窝即存在干扰边,其中Wth为预设值,MAX(RASQij,RASQji)表示RASQij与RASQji中最大的值;3) where the interference weight The meaning is that the interference weight between two small cells is inversely proportional to the maximum value of the channel average quality between them, that is, the better the channel quality between two small cells, the smaller the interference weight between them; if W ij ≥ W th , there is an interference edge between the two small cells, where W th is a preset value, and MAX(RASQ ij , RASQ ji ) represents the maximum value among RASQ ij and RASQ ji ; 4)依次计算每两个小蜂窝间的干扰权重即可确定干扰图G(V,E),其中V表示小蜂窝集合,E为干扰权重Wij的集合;4) The interference graph G(V, E) can be determined by sequentially calculating the interference weights between every two small cells, where V represents a set of small cells, and E is a set of interference weights W ij ; 5)周期性更新干扰图。5) Periodically update the interference map. 3.根据权利要求2所述的一种异构蜂窝网络中基于分簇的动态ABS干扰抑制方法,其特征在于:由步骤一可知干扰图G(V,E)中每两个小蜂窝间的干扰权重Wij,将系统频谱资源分为K个子段,R={R1,R2,...,Rk},将点集V分配到K个簇中,使得簇间权重最大,即为:3. the dynamic ABS interference suppression method based on clustering in a kind of heterogeneous cellular network according to claim 2, it is characterized in that: by step 1, every two small cells in the known interference graph G (V, E) Interference weight W ij , divide the system spectrum resource into K sub-segments, R={R 1 , R 2 ,..., R k }, assign the point set V to K clusters, so that the inter-cluster weight is the largest, that is for: <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>K</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> <mi>K</mi> </munderover> <munder> <mo>&amp;Sigma;</mo> <mrow> <msub> <mi>v</mi> <mn>1</mn> </msub> <mo>&amp;Element;</mo> <msub> <mi>R</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>v</mi> <mn>2</mn> </msub> <mo>&amp;Element;</mo> <msub> <mi>R</mi> <mi>j</mi> </msub> </mrow> </munder> <mi>w</mi> <mrow> <mo>(</mo> <msub> <mi>v</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>v</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> <mrow><mi>m</mi><mi>a</mi><mi>x</mi><munderover><mo>&amp;Sigma;</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>K</mi><mo>-</mo><mn>1</mn></mrow></munderover><munderover><mo>&amp;Sigma;</mo><mrow><mi>j</mi><mo>=</mo><mi>i</mi><mo>+</mo><mn>1</mn></mrow><mi>K</mi></munderover><munder><mo>&amp;Sigma;</mo><mrow><msub><mi>v</mi><mn>1</mn></msub><mo>&amp;Element;</mo><msub><mi>R</mi><mi>i</mi></msub><mo>,</mo><msub><mi>v</mi><mn>2</mn></msub><mo>&amp;Element;</mo><msub><mi>R</mi><mi>j</mi></msub></mrow></munder><mi>w</mi><mrow><mo>(</mo><msub><mi>v</mi><mn>1</mn></msub><mo>,</mo><msub><mi>v</mi><mn>2</mn></msub><mo>)</mo></mrow><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></mrow> 其中v1,v2为小蜂窝集合V中的元素;Where v 1 and v 2 are elements in the small cell set V; 步骤二具体包括:Step two specifically includes: 1)初始化:Ωk表示节点k的度,Wi为簇Ri的权重,对于簇Ri算法开始时对于有Wi=0;用集合V'表示还未分配到簇中的小基站,根据小蜂窝点集的度降序排序,按照Ωk从大到小的顺序从V'的集合选取第一个到第K个节点依次分配到K个簇中;wu,v为簇Ri内两个节点u和v之间的干扰权重;1) Initialization: Ω k represents the degree of node k, W i is the weight of cluster R i , for cluster R i there is At the beginning of the algorithm for There is W i = 0; use the set V' to represent the small base stations that have not been allocated to the cluster, sort them in descending order according to the degree of the small cell point set, and select the first one from the set of V' to The Kth node is assigned to K clusters in turn; w u, v is the interference weight between two nodes u and v in the cluster R i ; 2)继续按照节点Ωk从大到小的顺序分配节点到K个簇中,若将节点m分配到簇Ri中,计算簇内干扰权重变化值wm,u为新节点m和簇内已存在节点u之间的干扰权重;2) Continue to assign nodes to K clusters according to the order of nodes Ω k from large to small. If node m is assigned to cluster R i , calculate the change value of the interference weight in the cluster w m, u is the interference weight between the new node m and the existing node u in the cluster; 3)选择簇内干扰权重最小的簇Rj,将节点m分配给簇Rj,此时V'=V'-m;3) Select the cluster R j with the smallest interference weight in the cluster, and assign node m to the cluster R j , at this time V'=V'-m; 4)重复上述步骤2)、3)直到剩余小蜂窝集合V'为空;4) Repeat the above steps 2), 3) until the remaining small cell set V' is empty; 5)干扰图变化时重新分簇。5) Re-cluster when the interference graph changes. 4.根据权利要求1所述的一种异构蜂窝网络中基于分簇的动态ABS干扰抑制方法,其特征在于:步骤三中的簇内小蜂窝基于负载和用户平均服务速率的动态ABS子帧配置方案具体包括:4. the dynamic ABS interference suppression method based on clustering in a kind of heterogeneous cellular network according to claim 1, it is characterized in that: the small cell in the cluster in the step 3 is based on the dynamic ABS subframe of load and user average service rate The configuration scheme specifically includes: 1)整个系统采用比例公平调度算法,簇内小蜂窝分为两组G1和G2,对于G1组内任意小蜂窝负载大于G2组内任意小蜂窝负载;1) The entire system adopts a proportional fair scheduling algorithm, and the small cells in the cluster are divided into two groups G 1 and G 2 , and the load of any small cell in group G 1 is greater than the load of any small cell in group G 2 ; 2)两个组使用交叉子帧配备方案,当主组G1使用正常的子帧的时候,从组G2则使用相应的ABS子帧,直到满足两组的ABS子帧数目都满足其预设值;2) The two groups use a cross subframe allocation scheme. When the main group G 1 uses normal subframes, the slave group G 2 uses the corresponding ABS subframes until the number of ABS subframes of the two groups meets its preset value; 3)假设对于小蜂窝Ci中用户j长时间平均服务速率为Rij,G1中ABS子帧配备比例为θ,则G2中ABS子帧配备比例为1-θ,0.4≤θ≤0.6;3) Assuming that the long-term average service rate of user j in small cell C i is R ij , and the allocation ratio of ABS subframes in G 1 is θ, then the allocation ratio of ABS subframes in G 2 is 1-θ, 0.4≤θ≤0.6 ; 4)对于满业务模型θ计算方法:4) Calculation method for full business model θ: G1组内负载用G1组内用户数决定,G2组内负载用G2组内用户数决定;The load in G 1 group is used for the number of users in G 1 group Determine the load in group G2 by the number of users in group G2 Decide; 最大吞吐量度量标准为:The maximum throughput metric is: <mrow> <msub> <mi>C</mi> <mi>&amp;Sigma;</mi> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>&amp;theta;</mi> <mo>)</mo> </mrow> <mo>*</mo> <munder> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>&amp;Element;</mo> <msub> <mi>G</mi> <mn>1</mn> </msub> </mrow> </munder> <munder> <mo>&amp;Sigma;</mo> <mrow> <mi>j</mi> <mo>&amp;Element;</mo> <msub> <mi>C</mi> <mi>i</mi> </msub> </mrow> </munder> <msub> <mi>R</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>+</mo> <mi>&amp;theta;</mi> <mo>*</mo> <munder> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>&amp;Element;</mo> <msub> <mi>G</mi> <mn>2</mn> </msub> </mrow> </munder> <munder> <mo>&amp;Sigma;</mo> <mrow> <mi>j</mi> <mo>&amp;Element;</mo> <msub> <mi>C</mi> <mi>i</mi> </msub> </mrow> </munder> <msub> <mi>R</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow> <mrow><msub><mi>C</mi><mi>&amp;Sigma;</mi></msub><mo>=</mo><mrow><mo>(</mo><mn>1</mn><mo>-</mo><mi>&amp;theta;</mi><mo>)</mo></mrow><mo>*</mo><munder><mo>&amp;Sigma;</mo><mrow><mi>i</mi><mo>&amp;Element;</mo><msub><mi>G</mi><mn>1</mn></msub></mrow></munder><munder><mo>&amp;Sigma;</mo><mrow><mi>j</mi><mo>&amp;Element;</mo><msub><mi>C</mi><mi>i</mi></msub></mrow></munder><msub><mi>R</mi><mrow><mi>i</mi><mi>j</mi></mrow></msub><mo>+</mo><mi>&amp;theta;</mi><mo>*</mo><munder><mo>&amp;Sigma;</mo><mrow><mi>i</mi><mo>&amp;Element;</mo><msub><mi>G</mi><mn>2</mn></msub></mrow></munder><munder><mo>&amp;Sigma;</mo><mrow><mi>j</mi><mo>&amp;Element;</mo><msub><mi>C</mi><mi>i</mi></msub></mrow></munder><msub><mi>R</mi><mrow><mi>i</mi><mi>j</mi></mrow></msub><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></mrow> 最优化ABS子帧分配由此可知:The optimal ABS subframe allocation can be seen from this: <mrow> <msubsup> <mi>&amp;theta;</mi> <mi>&amp;Sigma;</mi> <mrow> <mi>o</mi> <mi>p</mi> <mi>t</mi> </mrow> </msubsup> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>&amp;theta;</mi> <mi>max</mi> </msub> <mo>,</mo> <munder> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>&amp;Element;</mo> <msub> <mi>G</mi> <mn>2</mn> </msub> </mrow> </munder> <munder> <mo>&amp;Sigma;</mo> <mrow> <mi>j</mi> <mo>&amp;Element;</mo> <msub> <mi>C</mi> <mi>i</mi> </msub> </mrow> </munder> <msub> <mi>R</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>&gt;</mo> <munder> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>&amp;Element;</mo> <msub> <mi>G</mi> <mn>1</mn> </msub> </mrow> </munder> <munder> <mo>&amp;Sigma;</mo> <mrow> <mi>j</mi> <mo>&amp;Element;</mo> <msub> <mi>C</mi> <mi>i</mi> </msub> </mrow> </munder> <msub> <mi>R</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>&amp;theta;</mi> <mi>min</mi> </msub> <mo>,</mo> <mi>o</mi> <mi>t</mi> <mi>h</mi> <mi>e</mi> <mi>r</mi> <mi>w</mi> <mi>i</mi> <mi>s</mi> <mi>e</mi> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow> <mrow><msubsup><mi>&amp;theta;</mi><mi>&amp;Sigma;</mi><mrow><mi>o</mi><mi>p</mi><mi>t</mi></mrow></msubsup><mo>=</mo><mfenced open = "{" close = ""><mtable><mtr><mtd><mrow><msub><mi>&amp;theta;</mi><mi>max</mi></msub><mo>,</mo><munder><mo>&amp;Sigma;</mo><mrow><mi>i</mi><mo>&amp;Element;</mo><msub><mi>G</mi><mn>2</mn></msub></mrow></munder><munder><mo>&amp;Sigma;</mo><mrow><mi>j</mi><mo>&amp;Element;</mo><msub><mi>C</mi><mi>i</mi></msub></mrow></munder><msub><mi>R</mi><mrow><mi>i</mi><mi>j</mi></mrow></msub><mo>&gt;</mo><munder><mo>&amp;Sigma;</mo><mrow><mi>i</mi><mo>&amp;Element;</mo><msub><mi>G</mi><mn>1</mn></msub></mrow></munder><munder><mo>&amp;Sigma;</mo><mrow><mi>j</mi><mo>&amp;Element;</mo><msub><mi>C</mi><mi>i</mi></msub></mrow></munder><msub><mi>R</mi><mrow><mi>i</mi><mi>j</mi></mrow></msub></mrow></mtd></mtr><mtr><mtd><mrow><msub><mi>&amp;theta;</mi><mi>min</mi></msub><mo>,</mo><mi>o</mi><mi>t</mi><mi>h</mi><mi>e</mi><mi>r</mi><mi>w</mi><mi>i</mi>><mi>s</mi><mi>e</mi></mrow></mtd></mtr></mtable></mfenced><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>4</mn><mo>)</mo></mrow></mrow> 5)对于非满业务模型θ计算方法:5) Calculation method for non-full business model θ: 非满业务负载由基站待传输的数据总量决定;Partial business load is determined by the total amount of data to be transmitted by the base station; 假设基站Ci准备为用户j传输的数据量为Bij,则主组G1中用户j将这些数据传送完的时间从组G2中用户j传送数据需要的时间 Assuming that the amount of data that base station C i prepares to transmit for user j is B ij , the time for user j in the main group G 1 to transmit these data Time required to transmit data from user j in group G2 总的传输时间为TΣThe total transit time is T Σ : <mrow> <msub> <mi>T</mi> <mi>&amp;Sigma;</mi> </msub> <mo>=</mo> <munder> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>&amp;Element;</mo> <msub> <mi>G</mi> <mn>1</mn> </msub> </mrow> </munder> <munder> <mo>&amp;Sigma;</mo> <mrow> <mi>j</mi> <mo>&amp;Element;</mo> <msub> <mi>C</mi> <mi>i</mi> </msub> </mrow> </munder> <mfrac> <msub> <mi>B</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>&amp;theta;</mi> <mo>)</mo> <msub> <mi>R</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mrow> </mfrac> <mo>+</mo> <munder> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>&amp;Element;</mo> <msub> <mi>G</mi> <mn>2</mn> </msub> </mrow> </munder> <munder> <mo>&amp;Sigma;</mo> <mrow> <mi>j</mi> <mo>&amp;Element;</mo> <msub> <mi>C</mi> <mi>i</mi> </msub> </mrow> </munder> <mfrac> <msub> <mi>B</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mrow> <mi>&amp;theta;</mi> <mo>*</mo> <msub> <mi>R</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow> <mrow><msub><mi>T</mi><mi>&amp;Sigma;</mi></msub><mo>=</mo><munder><mo>&amp;Sigma;</mo><mrow><mi>i</mi><mo>&amp;Element;</mo><msub><mi>G</mi><mn>1</mn></msub></mrow></munder><munder><mo>&amp;Sigma;</mo><mrow><mi>j</mi><mo>&amp;Element;</mo><msub><mi>C</mi><mi>i</mi></msub></mrow></munder><mfrac><msub><mi>B</mi><mrow><mi>i</mi><mi>j</mi></mrow></msub><mrow><mo>(</mo><mn>1</mn><mo>-</mo><mi>&amp;theta;</mi><mo>)</mo><msub><mi>R</mi><mrow><mi>i</mi><mi>j</mi></mrow></msub></mrow></mfrac><mo>+</mo><munder><mo>&amp;Sigma;</mo><mrow><mi>i</mi><mo>&amp;Element;</mo><msub><mi>G</mi><mn>2</mn></msub></mrow></munder><munder><mo>&amp;Sigma;</mo><mrow><mi>j</mi><mo>&amp;Element;</mo><msub><mi>C</mi><mi>i</mi></msub></mrow></munder><mfrac><msub><mi>B</mi><mrow><mi>i</mi><mi>j</mi></mrow></msub><mrow><mi>&amp;theta;</mi><mo>*</mo><msub><mi>R</mi><mrow><mi>i</mi><mi>j</mi></mrow></msub></mrow></mfrac><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>5</mn><mo>)</mo></mrow></mrow> 使故TΣ存在最小值,θopt最优比例为:make Make have Therefore, T Σ has a minimum value, and the optimal ratio of θ opt is: <mrow> <msup> <mi>&amp;theta;</mi> <mrow> <mi>o</mi> <mi>p</mi> <mi>t</mi> </mrow> </msup> <mo>=</mo> <mfrac> <msqrt> <msub> <mi>T</mi> <msub> <mi>G</mi> <mn>2</mn> </msub> </msub> </msqrt> <mrow> <msqrt> <msub> <mi>T</mi> <msub> <mi>G</mi> <mn>2</mn> </msub> </msub> </msqrt> <mo>+</mo> <msqrt> <msub> <mi>T</mi> <msub> <mi>G</mi> <mn>1</mn> </msub> </msub> </msqrt> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow> <mrow><msup><mi>&amp;theta;</mi><mrow><mi>o</mi><mi>p</mi><mi>t</mi></mrow></msup><mo>=</mo><mfrac><msqrt><msub><mi>T</mi><msub><mi>G</mi><mn>2</mn></msub></msub></msqrt><mrow><msqrt><msub><mi>T</mi><msub><mi>G</mi><mn>2</mn></msub></msub></msub>msub></msqrt><mo>+</mo><msqrt><msub><mi>T</mi><msub><mi>G</mi><mn>1</mn></msub></msub></msqrt></mrow></mfrac><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>6</mn><mo>)</mo></mrow></mrow> 6)周期性更新ABS比例θ。6) Periodically update the ABS ratio θ.
CN201410767493.1A 2014-12-12 2014-12-12 Dynamic ABS disturbance restraining methods based on sub-clustering in isomery cellular network Expired - Fee Related CN104486767B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410767493.1A CN104486767B (en) 2014-12-12 2014-12-12 Dynamic ABS disturbance restraining methods based on sub-clustering in isomery cellular network

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410767493.1A CN104486767B (en) 2014-12-12 2014-12-12 Dynamic ABS disturbance restraining methods based on sub-clustering in isomery cellular network

Publications (2)

Publication Number Publication Date
CN104486767A CN104486767A (en) 2015-04-01
CN104486767B true CN104486767B (en) 2017-12-08

Family

ID=52761257

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410767493.1A Expired - Fee Related CN104486767B (en) 2014-12-12 2014-12-12 Dynamic ABS disturbance restraining methods based on sub-clustering in isomery cellular network

Country Status (1)

Country Link
CN (1) CN104486767B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106658552B (en) * 2015-10-30 2019-09-17 普天信息技术有限公司 Interference management method, system
CN108307412B (en) * 2018-02-08 2020-08-07 北京邮电大学 User-centered ultra-dense network interference management method based on grouping game
CN108809470B (en) * 2018-07-04 2020-04-07 西安邮电大学 Clustering algorithm in ultra-dense cellular network
CN111711986B (en) * 2020-05-06 2022-06-07 哈尔滨工业大学 UC-UDN proportional fair resource allocation method in 5G communication system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2453711A1 (en) * 2010-11-15 2012-05-16 NTT DoCoMo, Inc. Method for assigning frequency subbands to a plurality of interfering nodes in a wireless communication network, controller for a wireless communication network and wireless communication network
CN104105100A (en) * 2013-04-02 2014-10-15 中国科学院计算技术研究所 Downlink interference elimination method and system based on pseudo random sub-channel selection strategy

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9198046B2 (en) * 2012-10-01 2015-11-24 Nokia Solutions And Networks Oy Enhanced metrics exchange for a wireless network

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2453711A1 (en) * 2010-11-15 2012-05-16 NTT DoCoMo, Inc. Method for assigning frequency subbands to a plurality of interfering nodes in a wireless communication network, controller for a wireless communication network and wireless communication network
CN104105100A (en) * 2013-04-02 2014-10-15 中国科学院计算技术研究所 Downlink interference elimination method and system based on pseudo random sub-channel selection strategy

Also Published As

Publication number Publication date
CN104486767A (en) 2015-04-01

Similar Documents

Publication Publication Date Title
CN107172682B (en) A method of wireless resource allocation for ultra-dense networks based on dynamic clustering
CN102026388B (en) Method for allocating radio resources under coordinated multipoint transmission/reception (CoMP) in long term evolution-advanced (LTE-A) system
CN103024921B (en) A kind of dispatching method divided into groups based on CQI feedback parameter and SINR numerical value
CN103957563B (en) Joint up-downgoing load allocation method based on enhancement type district interference coordination
CN101982991B (en) Heterogeneous service QoS based LTE network inter-cell interference ordination method
CN104902431B (en) A kind of LTE network mid-span cell D2D communication spectrum distribution methods
CN101674680A (en) Method and device for allocating bands and base station
CN103533629B (en) A kind of heterogeneous network disturbance coordination method based on particle group optimizing
CN104486767B (en) Dynamic ABS disturbance restraining methods based on sub-clustering in isomery cellular network
CN102647727B (en) Selection method of mixed cooperation cluster
CN104080091B (en) The Home eNodeB frequency spectrum distributing method being grouped in layered heterogeneous network based on load estimation
CN103281786A (en) Method for optimizing resources of family base station double-layer network based on energy efficiency
CN101765119A (en) Dynamic fractional frequency reuse method based on OFDMA wireless cellular network
CN104159314B (en) The distributed energy saving resources distribution method of heterogeneous network
CN104902484A (en) LTE inter-cell interference coordination method and device
CN105451354A (en) Method and equipment for realizing dispatching of users based on inter-cell interference coordination parameters
CN104378785B (en) The ascending-descending subframes method for reconfiguration and device of a kind of Microcell
CN103619066A (en) Method for distributing downlink interference mitigation based on distributed channel
CN103517441B (en) Method of interference coordination among cells and system thereof
CN108718453A (en) A regional networking method in a high-density WLAN scenario
CN103442365B (en) A kind of frequency multiplexing method reducing the interior CoMP system interference in station
Wang et al. Graph-based dynamic frequency reuse in Cloud-RAN
CN102742188B (en) Distributed resource allocation method and device for reducing intercell downlink interference
CN104469959A (en) A channel configuration method and system, access controller
CN104581910B (en) Small base station asynchronous Poewr control method in towards the cooperative cluster of the amorphous covering of cell

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20171208