CN104466999A - Method for determining bidding strategy of virtual power station including electric automobiles and wind turbines - Google Patents

Method for determining bidding strategy of virtual power station including electric automobiles and wind turbines Download PDF

Info

Publication number
CN104466999A
CN104466999A CN201410737843.XA CN201410737843A CN104466999A CN 104466999 A CN104466999 A CN 104466999A CN 201410737843 A CN201410737843 A CN 201410737843A CN 104466999 A CN104466999 A CN 104466999A
Authority
CN
China
Prior art keywords
mrow
msub
munder
lambda
math
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410737843.XA
Other languages
Chinese (zh)
Inventor
郭云鹏
杨甲甲
李梁
文福拴
叶乐燕
陈瑛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
State Grid Zhejiang Electric Vehicle Service Co Ltd
Original Assignee
Zhejiang University ZJU
State Grid Zhejiang Electric Vehicle Service Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU, State Grid Zhejiang Electric Vehicle Service Co Ltd filed Critical Zhejiang University ZJU
Priority to CN201410737843.XA priority Critical patent/CN104466999A/en
Publication of CN104466999A publication Critical patent/CN104466999A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

The invention discloses a method for determining a bidding strategy of a virtual power station including electric automobiles and wind turbines. On the basis that an electric automobile battery which can schedule charging and discharging is proposed to be used for energy storage to provide a backup for draught fan output fluctuation and participate in adjustment of market bidding, a mixed integer programming model with the maximum bidding total revenue in the virtual power station market as a target for electric automobile and wind power collaboration bidding is structured; then, the robust optimization theory is introduced, the structured mixed integer programming model is transformed into a robust linear programming model, an electric automobile and wind power collaboration bidding robust optimization model is structured, a solving method is given, the risk level of the bidding strategy of the virtual power station is controlled by adjusting robust control coefficients, and thus a corresponding biding strategy scheme is obtained.

Description

Method for determining bidding strategy of virtual power plant comprising electric automobile and wind generating set
Technical Field
The invention belongs to the technical field of electric power market bidding strategies, and relates to a method for determining a virtual power plant bidding strategy containing an electric automobile and a wind generating set.
Background
For a virtual power plant comprising electric vehicles and wind generating sets, because the number of the electric vehicles capable of being scheduled to be charged and discharged and the wind power output have obvious uncertainties, the uncertainties must be considered when the virtual power plant participates in bidding in the power market. In this context, how to make a bidding strategy for a virtual power plant is an important issue worth studying under the influence of the above uncertainty factor.
Disclosure of Invention
The invention aims to provide a method for determining a virtual power plant bidding strategy containing electric vehicles and wind generating sets, so as to establish the bidding strategy of the virtual power plant on the premise of uncertain factors such as the number of the electric vehicles, the wind power output and the like in the virtual power plant.
The invention discloses a method for determining a virtual power plant bidding strategy containing an electric automobile and a wind generating set, which comprises the following steps of:
1) establishing a mixed integer programming model
The electric automobile battery energy storage capable of scheduling charging and discharging is utilized, and the standby state is provided for the output fluctuation of the fan and the adjustment of market bidding is participated at the same time. Based on the method, a mixed integer programming model of electric automobile and wind power cooperative bidding is established by taking the maximum bidding total income Pmax of the virtual power plant in the power market as an objective function:
an objective function:
<math> <mrow> <mfenced open='' close=''> <mtable> <mtr> <mtd> <mi>max</mi> <mi>P</mi> <mo>=</mo> <munder> <mi>&Sigma;</mi> <mrow> <mi>t</mi> <mo>&Element;</mo> <mi>T</mi> </mrow> </munder> <msub> <mi>&lambda;</mi> <mrow> <mi>dag</mi> <mo>,</mo> <mi>e</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <msubsup> <mi>P</mi> <mrow> <mi>W</mi> <mo>,</mo> <mi>t</mi> </mrow> <mi>B</mi> </msubsup> <mi>&Delta;t</mi> <mo>+</mo> <msub> <mi>&lambda;</mi> <mi>c</mi> </msub> <munder> <mi>&Sigma;</mi> <mrow> <mi>t</mi> <mo>&Element;</mo> <mi>T</mi> </mrow> </munder> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>dri</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mi>&Delta;t</mi> <mo>+</mo> <munder> <mi>&Sigma;</mi> <mrow> <mi>t</mi> <mo>&Element;</mo> <mi>T</mi> </mrow> </munder> <mrow> <mo>(</mo> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>RU</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <msub> <mi>&lambda;</mi> <mrow> <mi>RU</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>RD</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <msub> <mi>&lambda;</mi> <mrow> <mi>RD</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>R</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>RR</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <msub> <mi>&lambda;</mi> <mrow> <mi>RR</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>+</mo> </mtd> </mtr> <mtr> <mtd> <munder> <mi>&Sigma;</mi> <mrow> <mi>t</mi> <mo>&Element;</mo> <mi>T</mi> </mrow> </munder> <mo>[</mo> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>RU</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mi>E</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>RU</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>RR</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mi>E</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>RR</mi> </msub> <mo>)</mo> </mrow> <mo>]</mo> <mi>&Delta;t</mi> <msub> <mi>&lambda;</mi> <mrow> <mi>up</mi> <mo>,</mo> <mi>e</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>-</mo> <munder> <mi>&Sigma;</mi> <mrow> <mi>t</mi> <mo>&Element;</mo> <mi>T</mi> </mrow> </munder> <msub> <mi>&lambda;</mi> <mrow> <mi>dag</mi> <mo>,</mo> <mi>e</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>&omega;</mi> <mrow> <mi>imb</mi> <mo>,</mo> <mi>ec</mi> </mrow> </msub> <msub> <mi>u</mi> <mrow> <mi>ec</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <msub> <mi>P</mi> <mrow> <mi>pl</mi> <mo>,</mo> <mi>ec</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>&omega;</mi> <mrow> <mi>imb</mi> <mo>,</mo> <mi>bl</mi> </mrow> </msub> <msub> <mi>u</mi> <mrow> <mi>bl</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <msub> <mi>P</mi> <mrow> <mi>pl</mi> <mo>,</mo> <mi>bl</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>)</mo> </mrow> <mi>&Delta;t</mi> <mo>-</mo> </mtd> </mtr> <mtr> <mtd> <mo>[</mo> <msub> <mi>&lambda;</mi> <mrow> <mi>&alpha;</mi> <mo>,</mo> <mi>e</mi> </mrow> </msub> <msub> <mi>Q</mi> <mi>c</mi> </msub> <mo>+</mo> <munder> <mi>&Sigma;</mi> <mrow> <mi>t</mi> <mo>&Element;</mo> <mi>T</mi> </mrow> </munder> <msub> <mi>&lambda;</mi> <mrow> <mi>s</mi> <mo>,</mo> <mi>e</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mi>E</mi> <mrow> <mo>(</mo> <msubsup> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>t</mi> </mrow> <mi>c</mi> </msubsup> <mo>)</mo> </mrow> <msub> <mi>u</mi> <mrow> <mi>c</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mi>&Delta;t</mi> <mo>]</mo> <mo>-</mo> <munder> <mi>&Sigma;</mi> <mrow> <mi>t</mi> <mo>&Element;</mo> <mi>T</mi> </mrow> </munder> <msub> <mi>c</mi> <mi>dis</mi> </msub> <mfrac> <mrow> <mi>e</mi> <mrow> <mo>(</mo> <msubsup> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>t</mi> </mrow> <mi>dc</mi> </msubsup> <mo>)</mo> </mrow> </mrow> <msub> <mi>&eta;</mi> <mi>dc</mi> </msub> </mfrac> <msub> <mi>u</mi> <mrow> <mi>dc</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mi>&Delta;t</mi> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </math>
constraint conditions are as follows:
udc,t+uc,t=1 (2)
uec,t+ubl,t=1 (3)
P pl , ec , t = P W , t a - P EV , W , c , t - P W , t B + P EV , W , dc , t - - - ( 4 )
P pl , bl , t = - ( P W , t a - P EV , W , c , t - P W , t B + P EV , W , dc , t ) - - - ( 5 )
E ( P EV , t c ) = P EV , RD , t E ( x RD ) + P POP , t + P EV , W , c , t - P EV , RU , t E ( x RU ) - P EV , RR , t E ( x RR ) - P EV , W , dc , t - - - ( 6 )
E ( P EV , t dc ) = - [ P EV , RD , t E ( x RD ) + P POP , t + P EV , W , c , t - P EV , RU , t E ( x RU ) - P EV , RR , t E ( x RR ) - P EV , W , dc , t ] - - - ( 7 )
<math> <mrow> <msub> <mi>Q</mi> <mi>c</mi> </msub> <mo>=</mo> <munder> <mi>&Sigma;</mi> <mrow> <mi>t</mi> <mo>&Element;</mo> <mi>T</mi> </mrow> </munder> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>ctr</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mi>S</mi> <mi>t</mi> </msub> <mo>=</mo> <msub> <mi>S</mi> <mn>0</mn> </msub> <mo>+</mo> <munder> <mi>&Sigma;</mi> <mi>t</mi> </munder> <mo>[</mo> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>ctr</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <msub> <mi>&eta;</mi> <mi>c</mi> </msub> <mo>-</mo> <mfrac> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>dri</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <msub> <mi>&eta;</mi> <mi>dc</mi> </msub> </mfrac> <mo>]</mo> <msub> <mi>&lambda;</mi> <mrow> <mi>cp</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mfrac> <mi>&Delta;t</mi> <msub> <mi>P</mi> <mi>bat</mi> </msub> </mfrac> <mo>+</mo> <munder> <mi>&Sigma;</mi> <mi>t</mi> </munder> <mo>[</mo> <mi>E</mi> <mrow> <mo>(</mo> <msubsup> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>t</mi> </mrow> <mi>c</mi> </msubsup> <mo>)</mo> </mrow> <msub> <mi>u</mi> <mrow> <mi>c</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <msub> <mi>&eta;</mi> <mi>c</mi> </msub> <mo>-</mo> <mfrac> <mrow> <mi>E</mi> <mrow> <mo>(</mo> <msubsup> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>t</mi> </mrow> <mi>dc</mi> </msubsup> <mo>)</mo> </mrow> <msub> <mi>u</mi> <mrow> <mi>dc</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> </mrow> <msub> <mi>&eta;</mi> <mi>dc</mi> </msub> </mfrac> <mo>]</mo> <mfrac> <mrow> <msub> <mi>&lambda;</mi> <mrow> <mi>cp</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mi>&Delta;t</mi> </mrow> <msub> <mi>P</mi> <mi>bat</mi> </msub> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow> </math>
St,min≤St≤St,max (10)
(PEV,RD,t+PPOP,t+PEV,ctr,t+PEV,W,c,t-PEV,W,dc,tcp,t≤PEV,max (11)
(PPOP,t+PEV,W,c,t-PEV,RU,t-PEV,RR,t-PEV,W,dc,tcp,t≥-PEV,max (12)
<math> <mrow> <msubsup> <mi>P</mi> <mrow> <mi>W</mi> <mo>,</mo> <mi>t</mi> </mrow> <mi>B</mi> </msubsup> <mo>,</mo> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>RU</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>RR</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>ctr</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>W</mi> <mo>,</mo> <mi>c</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>W</mi> <mo>,</mo> <mi>dc</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>&GreaterEqual;</mo> <mn>0</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>13</mn> <mo>)</mo> </mrow> </mrow> </math>
the income sources in the objective function mainly comprise the following electric energy provided by the fans selected in bidding in the power market:wherein λdag,e,tRepresents the price of the energy market at the day-ahead,day-ahead bidding submitted in each time period t when wind power participates in day-ahead energy market biddingCalibration force, Δ T represents the length of a single time period, T is the total time length; providing service for charging batteries of electric vehicles:wherein λ iscPrice of electricity, P, charged for the electric vehicle electricity consumption by the virtual power plantEV,dri,tDriving power consumption for the user in the time period t; the electric automobile provides the system with the service of adjusting the reserve capacity, including the service of up-regulating, down-regulating and rotating the reserve capacity:wherein, PEV,RU,t,PEV,RD,t,PEV,RR,tRespectively representing the competitive bidding values, lambda, of the up-regulation standby service, the down-regulation standby service and the rotation standby service when the electric automobile participates in the regulation of market biddingRU,tRD,tRR,tCapacity prices for up-regulation reserve, down-regulation reserve and rotation reserve of the regulation market are respectively set; the up-regulation and rotation of the electric vehicle reserve the electric energy actually called:wherein, E (x)RU)、E(xRD)、E(xRR) Calling proportions x respectively representing up-regulation standby, down-regulation standby and rotation standby of the power system in time period tRU,xRDAnd xRRIs expected value ofup,e,tAdjusting the price of the output for the electric automobile in the time t;
the economic expenditure terms in the objective function mainly comprise penalties caused by deviation of actual output and competitive output of the fan:wherein, the deviation of the actual wind power output greater than and less than the competitive bidding output is Ppl,ec,tAnd Ppl,bl,tThe corresponding penalty coefficients are respectively omegaimb,ecAnd ωimb,bl,uec,tAnd ubl,tAll are variable from 0 to 1, when Ppl,ec,t>0 hour uec,tIs 1 when Ppl,bl,t>0 hour ubl,tIs 1;cost of charging batteries of electric vehicles, where λα,eRepresenting electricity purchase price, Q, of virtual power plant from bilateral contract marketcRepresents the amount of power purchased from the contract market, λ, by the virtual power plant for charging electric vehicless,e,tRepresenting the electricity purchase price of the virtual power plant from the real-time energy market,expected value, u, representing the actual charging power of the electric vehiclec,tThe variable is 0-1, and the value is 1 when the electric automobile is in a charging state; loss cost of electric vehicle battery discharge:wherein, the discharge loss cost of the unit electric quantity of the battery of the electric automobile is cdisExpected value, eta, representing the actual discharge power of the electric vehicledcFor cell discharge efficiency, udc,tIs a variable of 0 to 1, and the value is 1 when the electric automobile is in a discharge state;
the electric vehicle state can be divided into two states of charging and discharging, and the case of neither charging nor discharging is used as a special case where the charging and discharging power is 0, so that the constraint represented by the formula (2) needs to be included, and similarly, the deviation P between the actual output of the fan and the competitive output of the fan in the time period tpl,ec,tAnd Ppl,bl,tCannot be positive at the same time, and therefore, the constraint represented by the formula (3) needs to be included;
equations (4) and (5) are constraints related to the fan, and describe the vertical deviation of the actual output and the competitive bidding output of the fan;representing the actual output of the fan, PEV,W,c,tAnd PEV,W,dc,tRespectively shows that the electric automobile takes charging and discharging as wind powerProviding a backup force.
Equation (6) -equation (12) are constraints related to electric vehicles, equation (6) and equation (7) give expected values of electric vehicle charging and discharging power, respectively, and equation (8) represents the amount of electricity purchased by the virtual power plant in the bilateral contract market for charging the electric vehicle; p in formula (7)POP,tRepresents the planned charge and discharge power of the electric vehicle.
With StRepresenting the SOC value of the battery of the electric vehicle in the time period t, and the formula (9) is used for calculating the SOC of the electric vehicle in the time period t, wherein S0Representing the initial state of the battery, the SOC has a minimum value S since the electric vehicle has driving requirements and considering that complete discharge of the battery is to be avoided in order to extend the battery life as much as possiblet,minConstraining; the SOC has a maximum value S because the full charge of the battery of the electric vehicle cannot be achieved due to aging of the battery and the liket,maxConstraint, wherein the equation (10) represents SOC upper and lower limit constraints of the electric vehicle battery at different time intervals t;
in addition, the maximum charge and discharge power P of the electric automobile is also required to be satisfiedEV,maxConstraints, see equations (11) and (12); in the formula (11), PEV,ctr,tA contract charge power representing a decomposition of the contract charge into time periods t; lambda [ alpha ]cp,tAnd the adjustment coefficient of the schedule is shown when one electric vehicle is out of schedule because other electric vehicles cannot be scheduled in the time period t.
The formula (13) defines that the values of the model decision variables are all non-negative values;
2) introducing a robust optimization theory, and converting the mixed integer programming model constructed in the step 1) into a robust linear programming model:
an objective function:
max w (14)
constraint conditions are as follows:
<math> <mrow> <mfenced open='' close=''> <mtable> <mtr> <mtd> <mi>w</mi> <mo>-</mo> <munder> <mi>&Sigma;</mi> <mrow> <mi>t</mi> <mo>&Element;</mo> <mi>T</mi> </mrow> </munder> <msub> <mover> <mi>&lambda;</mi> <mo>&OverBar;</mo> </mover> <mrow> <mi>dag</mi> <mo>,</mo> <mi>e</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <msubsup> <mi>P</mi> <mrow> <mi>W</mi> <mo>,</mo> <mi>t</mi> </mrow> <mi>B</mi> </msubsup> <mi>&Delta;t</mi> <mo>-</mo> <msub> <mi>&lambda;</mi> <mi>c</mi> </msub> <munder> <mi>&Sigma;</mi> <mrow> <mi>t</mi> <mo>&Element;</mo> <mi>T</mi> </mrow> </munder> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>dri</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mi>&Delta;t</mi> <mo>-</mo> <munder> <mi>&Sigma;</mi> <mrow> <mi>t</mi> <mo>&Element;</mo> <mi>T</mi> </mrow> </munder> <mrow> <mo>(</mo> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>RU</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <msub> <mover> <mi>&lambda;</mi> <mo>&OverBar;</mo> </mover> <mrow> <mi>RU</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>RD</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <msub> <mover> <mi>&lambda;</mi> <mo>&OverBar;</mo> </mover> <mrow> <mi>RD</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>RR</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <msub> <mover> <mi>&lambda;</mi> <mo>&OverBar;</mo> </mover> <mrow> <mi>RR</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>-</mo> </mtd> </mtr> <mtr> <mtd> <munder> <mi>&Sigma;</mi> <mrow> <mi>t</mi> <mo>&Element;</mo> <mi>T</mi> </mrow> </munder> <mo>[</mo> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>RU</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mi>E</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>RU</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>RR</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mi>E</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>RR</mi> </msub> <mo>)</mo> </mrow> <mo>]</mo> <mi>&Delta;t</mi> <msub> <mi>&theta;</mi> <mrow> <mi>up</mi> <mo>,</mo> <mi>e</mi> </mrow> </msub> <msub> <mover> <mi>&lambda;</mi> <mo>&OverBar;</mo> </mover> <mrow> <mi>g</mi> <mo>,</mo> <mi>e</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>+</mo> <munder> <mi>&Sigma;</mi> <mrow> <mi>t</mi> <mo>&Element;</mo> <mi>T</mi> </mrow> </munder> <msub> <mover> <mi>&lambda;</mi> <mo>&OverBar;</mo> </mover> <mrow> <mi>dag</mi> <mo>,</mo> <mi>e</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>&omega;</mi> <mrow> <mi>imb</mi> <mo>,</mo> <mi>ec</mi> </mrow> </msub> <msub> <mi>P</mi> <mrow> <mi>pl</mi> <mo>,</mo> <mi>ec</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>&omega;</mi> <mrow> <mi>imb</mi> <mo>,</mo> <mi>bl</mi> </mrow> </msub> <msub> <mi>P</mi> <mrow> <mi>pl</mi> <mo>,</mo> <mi>bl</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>)</mo> </mrow> <mi>&Delta;t</mi> <mo>+</mo> <msub> <mi>&lambda;</mi> <mrow> <mi>&alpha;</mi> <mo>,</mo> <mi>e</mi> </mrow> </msub> <msub> <mi>Q</mi> <mi>c</mi> </msub> <mo>+</mo> </mtd> </mtr> <mtr> <mtd> <munder> <mi>&Sigma;</mi> <mrow> <mi>t</mi> <mo>&Element;</mo> <mi>T</mi> </mrow> </munder> <msub> <mover> <mi>&lambda;</mi> <mo>&OverBar;</mo> </mover> <mrow> <mi>s</mi> <mo>,</mo> <mi>e</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mi>E</mi> <mrow> <mo>(</mo> <msubsup> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>t</mi> </mrow> <mi>c</mi> </msubsup> <mo>)</mo> </mrow> <mi>&Delta;t</mi> <mo>+</mo> <munder> <mi>&Sigma;</mi> <mrow> <mi>t</mi> <mo>&Element;</mo> <mi>T</mi> </mrow> </munder> <msub> <mi>c</mi> <mi>dis</mi> </msub> <mfrac> <mrow> <mi>E</mi> <mrow> <mo>(</mo> <msubsup> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>t</mi> </mrow> <mi>dc</mi> </msubsup> <mo>)</mo> </mrow> </mrow> <msub> <mi>&eta;</mi> <mi>dc</mi> </msub> </mfrac> <mi>&Delta;t</mi> <mo>+</mo> <msub> <mi>&Gamma;</mi> <mn>1</mn> </msub> <msub> <mi>p</mi> <mn>1</mn> </msub> <mo>+</mo> <munder> <mi>&Sigma;</mi> <mrow> <mi>t</mi> <mo>&Element;</mo> <mi>T</mi> </mrow> </munder> <mrow> <mo>(</mo> <msub> <mi>q</mi> <mrow> <mi>W</mi> <mo>,</mo> <mi>B</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>q</mi> <mrow> <mi>RU</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>q</mi> <mrow> <mi>RD</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>q</mi> <mrow> <mi>RR</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>q</mi> <mrow> <mi>pl</mi> <mo>,</mo> <mi>ec</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>q</mi> <mrow> <mi>pl</mi> <mo>,</mo> <mi>bl</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>q</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>c</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>&le;</mo> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>15</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mi>p</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>q</mi> <mrow> <mi>W</mi> <mo>,</mo> <mi>B</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>&GreaterEqual;</mo> <mrow> <mo>(</mo> <msub> <mover> <mi>&lambda;</mi> <mo>^</mo> </mover> <mrow> <mi>dag</mi> <mo>,</mo> <mi>e</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mi>&Delta;t</mi> <mo>)</mo> </mrow> <msub> <mi>y</mi> <mrow> <mi>W</mi> <mo>,</mo> <mi>B</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>16</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mi>p</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>q</mi> <mrow> <mi>RU</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>&GreaterEqual;</mo> <mo>[</mo> <msub> <mover> <mi>&lambda;</mi> <mo>^</mo> </mover> <mrow> <mi>RU</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>+</mo> <mi>E</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>RU</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>&theta;</mi> <mrow> <mi>up</mi> <mo>,</mo> <mi>e</mi> </mrow> </msub> <msub> <mover> <mi>&lambda;</mi> <mo>^</mo> </mover> <mrow> <mi>g</mi> <mo>,</mo> <mi>e</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mi>&Delta;t</mi> <mo>]</mo> <msub> <mi>y</mi> <mrow> <mi>RU</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>17</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mi>p</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>q</mi> <mrow> <mi>RD</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>&GreaterEqual;</mo> <msub> <mover> <mi>&lambda;</mi> <mo>^</mo> </mover> <mrow> <mi>RD</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <msub> <mi>y</mi> <mrow> <mi>RD</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>18</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mi>p</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>q</mi> <mrow> <mi>RR</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>&GreaterEqual;</mo> <mo>[</mo> <msub> <mover> <mi>&lambda;</mi> <mo>^</mo> </mover> <mrow> <mi>RR</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>+</mo> <mi>E</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>RR</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>&theta;</mi> <mrow> <mi>up</mi> <mo>,</mo> <mi>e</mi> </mrow> </msub> <msub> <mover> <mi>&lambda;</mi> <mo>^</mo> </mover> <mrow> <mi>g</mi> <mo>,</mo> <mi>e</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mi>&Delta;t</mi> <mo>]</mo> <msub> <mi>y</mi> <mrow> <mi>RR</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>19</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mi>p</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>q</mi> <mrow> <mi>pl</mi> <mo>,</mo> <mi>ec</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>&GreaterEqual;</mo> <mrow> <mo>(</mo> <msub> <mi>&omega;</mi> <mrow> <mi>imb</mi> <mo>,</mo> <mi>ec</mi> </mrow> </msub> <msub> <mover> <mi>&lambda;</mi> <mo>^</mo> </mover> <mrow> <mi>dag</mi> <mo>,</mo> <mi>e</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mi>&Delta;t</mi> <mo>)</mo> </mrow> <msub> <mi>y</mi> <mrow> <mi>pl</mi> <mo>,</mo> <mi>ec</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>20</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mi>p</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>q</mi> <mrow> <mi>pl</mi> <mo>,</mo> <mi>bl</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>&GreaterEqual;</mo> <mrow> <mo>(</mo> <msub> <mi>&omega;</mi> <mrow> <mi>imb</mi> <mo>,</mo> <mi>bl</mi> </mrow> </msub> <msub> <mover> <mi>&lambda;</mi> <mo>^</mo> </mover> <mrow> <mi>dag</mi> <mo>,</mo> <mi>e</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mi>&Delta;t</mi> <mo>)</mo> </mrow> <msub> <mi>y</mi> <mrow> <mi>pl</mi> <mo>,</mo> <mi>bl</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>21</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mi>p</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>q</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>c</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>&GreaterEqual;</mo> <msub> <mover> <mi>&lambda;</mi> <mo>^</mo> </mover> <mrow> <mi>g</mi> <mo>,</mo> <mi>e</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <msub> <mi>&Delta;ty</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>c</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>22</mn> <mo>)</mo> </mrow> </mrow> </math>
-y≤P≤y (23)
P = ( P W , t B , P EV , RU , t , P EV , RD , t P EV , RR , t , P pl , ec , t , P pl . bl . t , E ( P EV , t c ) ) - - - ( 24 )
y=(yW,B,t,yRU,t,yRD,t,yRR,t,ypl,ec,t,ypl,bl,t,yEV,c,t) (25)
p1,qW,B,t,qRU,t,qRD,t,qRR,t,qpl,ec,t,qpl,bl,t,qEV,c,t≥0 (26)
<math> <mrow> <mi>E</mi> <mrow> <mo>(</mo> <msubsup> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>t</mi> </mrow> <mi>c</mi> </msubsup> <mo>)</mo> </mrow> <mo>&GreaterEqual;</mo> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>RD</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mi>E</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>RD</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>P</mi> <mrow> <mi>POP</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>W</mi> <mo>,</mo> <mi>c</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>RU</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mi>E</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>RU</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>RR</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mi>E</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>RR</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>W</mi> <mo>,</mo> <mi>dc</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>27</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <mi>E</mi> <mrow> <mo>(</mo> <msubsup> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>t</mi> </mrow> <mi>dc</mi> </msubsup> <mo>)</mo> </mrow> <mo>&GreaterEqual;</mo> <mo>-</mo> <mo>[</mo> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>RD</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mi>E</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>RD</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>P</mi> <mrow> <mi>POP</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>W</mi> <mo>,</mo> <mi>c</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>RU</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mi>E</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>RU</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>RR</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mi>E</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>RR</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>W</mi> <mo>,</mo> <mi>dc</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>]</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>28</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mi>S</mi> <mi>t</mi> </msub> <mo>=</mo> <msub> <mi>S</mi> <mn>0</mn> </msub> <mo>+</mo> <munder> <mi>&Sigma;</mi> <mi>t</mi> </munder> <mo>[</mo> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>ctr</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <msub> <mi>&eta;</mi> <mi>c</mi> </msub> <mo>-</mo> <mfrac> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>dri</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <msub> <mi>&eta;</mi> <mi>dc</mi> </msub> </mfrac> <mo>]</mo> <msub> <mi>&lambda;</mi> <mrow> <mi>cp</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mfrac> <mi>&Delta;t</mi> <msub> <mi>P</mi> <mi>bat</mi> </msub> </mfrac> <mo>+</mo> <munder> <mi>&Sigma;</mi> <mi>t</mi> </munder> <mo>[</mo> <mi>E</mi> <mrow> <mo>(</mo> <msubsup> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>t</mi> </mrow> <mi>c</mi> </msubsup> <mo>)</mo> </mrow> <msub> <mi>u</mi> <mrow> <mi>c</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <msub> <mi>&eta;</mi> <mi>c</mi> </msub> <mo>-</mo> <mfrac> <mrow> <mi>E</mi> <mrow> <mo>(</mo> <msubsup> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>t</mi> </mrow> <mi>dc</mi> </msubsup> <mo>)</mo> </mrow> <msub> <mi>u</mi> <mrow> <mi>dc</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> </mrow> <msub> <mi>&eta;</mi> <mi>dc</mi> </msub> </mfrac> <mo>]</mo> <mfrac> <mrow> <msub> <mi>&lambda;</mi> <mrow> <mi>cp</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mi>&Delta;t</mi> </mrow> <msub> <mi>P</mi> <mi>bat</mi> </msub> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>29</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msubsup> <mi>P</mi> <mrow> <mi>W</mi> <mo>,</mo> <mi>t</mi> </mrow> <mi>B</mi> </msubsup> <mo>&le;</mo> <msub> <mi>Z</mi> <msub> <mi>&epsiv;</mi> <mrow> <mi>up</mi> <mo>,</mo> <mi>W</mi> </mrow> </msub> </msub> <msub> <mi>&sigma;</mi> <mrow> <mi>up</mi> <mo>,</mo> <mi>W</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>&mu;</mi> <mrow> <mi>up</mi> <mo>,</mo> <mi>W</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>30</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msubsup> <mi>P</mi> <mrow> <mi>W</mi> <mo>,</mo> <mi>t</mi> </mrow> <mi>B</mi> </msubsup> <mo>&le;</mo> <msub> <mi>Z</mi> <msub> <mrow> <mn>1</mn> <mo>-</mo> <mi>&epsiv;</mi> </mrow> <mrow> <mi>low</mi> <mo>,</mo> <mi>W</mi> </mrow> </msub> </msub> <msub> <mi>&sigma;</mi> <mrow> <mi>low</mi> <mo>,</mo> <mi>W</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>&mu;</mi> <mrow> <mi>low</mi> <mo>,</mo> <mi>W</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>31</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mi>P</mi> <mrow> <mi>pl</mi> <mo>.</mo> <mi>ec</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>W</mi> <mo>,</mo> <mi>c</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>+</mo> <msubsup> <mi>P</mi> <mrow> <mi>W</mi> <mo>,</mo> <mi>t</mi> </mrow> <mi>B</mi> </msubsup> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>W</mi> <mo>,</mo> <mi>dc</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>&GreaterEqual;</mo> <msub> <mi>z</mi> <msub> <mrow> <mn>1</mn> <mo>-</mo> <mi>&epsiv;</mi> </mrow> <mrow> <mi>pl</mi> <mo>.</mo> <mi>ec</mi> </mrow> </msub> </msub> <msub> <mi>&sigma;</mi> <mrow> <mi>a</mi> <mo>,</mo> <mi>W</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>&mu;</mi> <mrow> <mi>a</mi> <mo>,</mo> <mi>W</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>32</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>W</mi> <mo>,</mo> <mi>c</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>+</mo> <msubsup> <mi>P</mi> <mrow> <mi>W</mi> <mo>,</mo> <mi>t</mi> </mrow> <mi>B</mi> </msubsup> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>W</mi> <mo>,</mo> <mi>dc</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>pl</mi> <mo>,</mo> <mi>bl</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>&le;</mo> <msub> <mi>z</mi> <msub> <mi>&epsiv;&epsiv;</mi> <mrow> <mi>pl</mi> <mo>.</mo> <mi>ec</mi> </mrow> </msub> </msub> <msub> <mi>&sigma;</mi> <mrow> <mi>a</mi> <mo>,</mo> <mi>W</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>&mu;</mi> <mrow> <mi>a</mi> <mo>,</mo> <mi>W</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>33</mn> <mo>)</mo> </mrow> </mrow> </math>
in the formula: w is an objective function, and P is a vector formed by decision variables; y is a vector consisting of auxiliary decision variables introduced by the dual transformation; thetaup,eIs an adjustment factor; pbatRepresenting equivalent capacity of all electric vehicle batteries in the virtual power plant; mu.sa,W,tAnd σa,W,tAre respectively asIs normally distributed with an expected value and a standard deviation Plow,W,t(ii) a Fan competitive bidding outputUpper and lower limits P ofup,W,tAnd Plow,W,tAre all random variables, muup,W,t,σup,W,tAnd mulow,W,t,σlow,W,tAre respectively Pup,W,tExpected value and standard deviation of the sum.up,Wlow,Wpl,ecpl,blRepresenting the probability that the opportunistic constraint holds. z is a radical of The upper quantile of the standard normal distribution isRespectively represent the upper side of a standard normal distributionup,W、1-low,W、1-pl,ecpl,blAre divided into dots. Day-ahead energy market price λdag,e,tUpper adjustment reserve capacity price lambdaRU,tLowering reserve capacity price lambdaRD,tPrice lambda of reserve capacity in rotationRR,tFrom the electricity purchase price lambda of the real-time energy market of the virtual power plants,e,tPower price lambda for power generation and network accessg,e,tPredictions can be made from historical data and are assumed to be all in the intervalAn internal variation. Wherein,a predicted value representing the electricity price is displayed,and represents the power price fluctuation interval radius.
In the robust collaborative bidding model, the charging and discharging power constraint of the electric vehicle is an equation (27) and an equation (28), the SOC constraint is an equation (29), equations (30) and (31) are respectively an upper limit constraint and a lower limit constraint of fan bidding output, equations (32) and (33) are deviation constraints of the fan bidding output and actual output, and the other constraints, namely the forms of equations (10) to (13), are unchanged;
the decision variables include: competitive bidding output of wind power in day-ahead energy marketRegulated reserve and spinning reserve bid capacities, i.e., P, for electric vehicles in the regulated marketEV,RU,t,PEV,RD,tAnd PEV,RR,t(ii) a Standby P provided by electric automobile for stabilizing output fluctuation of fanEV,W,c,tAnd PEV,W,dc,t(ii) a Planned charging power P of electric vehiclePOP,t(ii) a Contract electric quantity charging power P of electric automobileEV,ctr,t(ii) a Decision variable P added by model linearization transformationpl,ec,t,Ppl,bl,tAndauxiliary decision variable p introduced by dual transformation1Q and y, wherein q ═ q (q)W,B,t,qRU,t,qRD,t,qRR,t,qpl,ec,t,qpl,bl,t,qEV,c,t),y=(yW,B,t,yRU,t,yRD,t,yRR,t,ypl,ec,t,ypl,bl,t,yEV,c,t) (ii) a Robust control coefficient of1
3) And controlling the risk level of the virtual power plant bidding strategy by adjusting the robust control coefficient to obtain a corresponding bidding strategy scheme.
The method has the beneficial effects that the example results show that a series of virtual power plant bidding strategy schemes with different risk levels can be obtained by adopting the constructed model and the proposed solving method, and a new solution is provided for the problem of output fluctuation when wind power output participates in the electric power market by utilizing the battery energy storage of the electric automobile.
Drawings
FIG. 1 is a wind power competitive bidding output variation curve
FIG. 2 is a graph of the output of an electric vehicle providing backup for a fan
FIG. 3 shows the competitive bidding capacity for electric vehicles on the adjustment market
FIG. 4 shows the reserve bidding capacity of an electric vehicle under regulation market
FIG. 5 shows the spinning reserve bid capacity of an electric vehicle
FIG. 6 is a graph showing the influence of the number of electric vehicles and the output of the fan on the bidding result
Detailed Description
Aiming at the bidding strategy problem of a virtual power plant comprising an electric automobile and a wind power generation unit, the invention constructs a mixed integer programming model of electric automobile and wind power cooperative bidding aiming at the maximum bidding total yield of the virtual power plant in the power market on the basis of providing reserve for the output fluctuation of a fan and simultaneously participating in the adjustment of market bidding by using the battery energy storage of the electric automobile capable of scheduling charge and discharge. Then, a robust optimization theory is introduced, the constructed mixed integer programming model is converted into a robust linear programming model, an electric automobile and wind power cooperative bidding robust optimization model is constructed, a solving method is provided, the risk level of a virtual power plant bidding strategy is controlled by adjusting a robust control coefficient, and a corresponding bidding strategy scheme is obtained, wherein the specific process comprises the following steps:
1) establishing a mixed integer programming model
The electric automobile battery energy storage capable of scheduling charging and discharging is utilized, and the standby state is provided for the output fluctuation of the fan and the adjustment of market bidding is participated at the same time. Based on the method, a mixed integer programming model of electric automobile and wind power cooperative bidding is established by taking the maximum bidding total income Pmax of the virtual power plant in the power market as an objective function:
<math> <mrow> <mfenced open='' close=''> <mtable> <mtr> <mtd> <mi>max</mi> <mi>P</mi> <mo>=</mo> <munder> <mi>&Sigma;</mi> <mrow> <mi>t</mi> <mo>&Element;</mo> <mi>T</mi> </mrow> </munder> <msub> <mi>&lambda;</mi> <mrow> <mi>dag</mi> <mo>,</mo> <mi>e</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <msubsup> <mi>P</mi> <mrow> <mi>W</mi> <mo>,</mo> <mi>t</mi> </mrow> <mi>B</mi> </msubsup> <mi>&Delta;t</mi> <mo>+</mo> <msub> <mi>&lambda;</mi> <mi>c</mi> </msub> <munder> <mi>&Sigma;</mi> <mrow> <mi>t</mi> <mo>&Element;</mo> <mi>T</mi> </mrow> </munder> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>dri</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mi>&Delta;t</mi> <mo>+</mo> <munder> <mi>&Sigma;</mi> <mrow> <mi>t</mi> <mo>&Element;</mo> <mi>T</mi> </mrow> </munder> <mrow> <mo>(</mo> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>RU</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <msub> <mi>&lambda;</mi> <mrow> <mi>RU</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>RD</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <msub> <mi>&lambda;</mi> <mrow> <mi>RD</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>R</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>RR</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <msub> <mi>&lambda;</mi> <mrow> <mi>RR</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>+</mo> </mtd> </mtr> <mtr> <mtd> <munder> <mi>&Sigma;</mi> <mrow> <mi>t</mi> <mo>&Element;</mo> <mi>T</mi> </mrow> </munder> <mo>[</mo> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>RU</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mi>E</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>RU</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>RR</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mi>E</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>RR</mi> </msub> <mo>)</mo> </mrow> <mo>]</mo> <mi>&Delta;t</mi> <msub> <mi>&lambda;</mi> <mrow> <mi>up</mi> <mo>,</mo> <mi>e</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>-</mo> <munder> <mi>&Sigma;</mi> <mrow> <mi>t</mi> <mo>&Element;</mo> <mi>T</mi> </mrow> </munder> <msub> <mi>&lambda;</mi> <mrow> <mi>dag</mi> <mo>,</mo> <mi>e</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>&omega;</mi> <mrow> <mi>imb</mi> <mo>,</mo> <mi>ec</mi> </mrow> </msub> <msub> <mi>u</mi> <mrow> <mi>ec</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <msub> <mi>P</mi> <mrow> <mi>pl</mi> <mo>,</mo> <mi>ec</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>&omega;</mi> <mrow> <mi>imb</mi> <mo>,</mo> <mi>bl</mi> </mrow> </msub> <msub> <mi>u</mi> <mrow> <mi>bl</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <msub> <mi>P</mi> <mrow> <mi>pl</mi> <mo>,</mo> <mi>bl</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>)</mo> </mrow> <mi>&Delta;t</mi> <mo>-</mo> </mtd> </mtr> <mtr> <mtd> <mo>[</mo> <msub> <mi>&lambda;</mi> <mrow> <mi>&alpha;</mi> <mo>,</mo> <mi>e</mi> </mrow> </msub> <msub> <mi>Q</mi> <mi>c</mi> </msub> <mo>+</mo> <munder> <mi>&Sigma;</mi> <mrow> <mi>t</mi> <mo>&Element;</mo> <mi>T</mi> </mrow> </munder> <msub> <mi>&lambda;</mi> <mrow> <mi>s</mi> <mo>,</mo> <mi>e</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mi>E</mi> <mrow> <mo>(</mo> <msubsup> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>t</mi> </mrow> <mi>c</mi> </msubsup> <mo>)</mo> </mrow> <msub> <mi>u</mi> <mrow> <mi>c</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mi>&Delta;t</mi> <mo>]</mo> <mo>-</mo> <munder> <mi>&Sigma;</mi> <mrow> <mi>t</mi> <mo>&Element;</mo> <mi>T</mi> </mrow> </munder> <msub> <mi>c</mi> <mi>dis</mi> </msub> <mfrac> <mrow> <mi>e</mi> <mrow> <mo>(</mo> <msubsup> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>t</mi> </mrow> <mi>dc</mi> </msubsup> <mo>)</mo> </mrow> </mrow> <msub> <mi>&eta;</mi> <mi>dc</mi> </msub> </mfrac> <msub> <mi>u</mi> <mrow> <mi>dc</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mi>&Delta;t</mi> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </math>
s.t.
udc,t+uc,t=1 (2)
uec,t+ubl,t=1 (3)
P pl , ec , t = P W , t a - P EV , W , c , t - P W , t B + P EV , W , dc , t - - - ( 4 )
P pl , bl , t = - ( P W , t a - P EV , W , c , t - P W , t B + P EV , W , dc , t ) - - - ( 5 )
E ( P EV , t c ) = P EV , RD , t E ( x RD ) + P POP , t + P EV , W , c , t - P EV , RU , t E ( x RU ) - P EV , RR , t E ( x RR ) - P EV , W , dc , t - - - ( 6 )
E ( P EV , t dc ) = - [ P EV , RD , t E ( x RD ) + P POP , t + P EV , W , c , t - P EV , RU , t E ( x RU ) - P EV , RR , t E ( x RR ) - P EV , W , dc , t ] - - - ( 7 )
<math> <mrow> <msub> <mi>Q</mi> <mi>c</mi> </msub> <mo>=</mo> <munder> <mi>&Sigma;</mi> <mrow> <mi>t</mi> <mo>&Element;</mo> <mi>T</mi> </mrow> </munder> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>ctr</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mi>S</mi> <mi>t</mi> </msub> <mo>=</mo> <msub> <mi>S</mi> <mn>0</mn> </msub> <mo>+</mo> <munder> <mi>&Sigma;</mi> <mi>t</mi> </munder> <mo>[</mo> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>ctr</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <msub> <mi>&eta;</mi> <mi>c</mi> </msub> <mo>-</mo> <mfrac> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>dri</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <msub> <mi>&eta;</mi> <mi>dc</mi> </msub> </mfrac> <mo>]</mo> <msub> <mi>&lambda;</mi> <mrow> <mi>cp</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mfrac> <mi>&Delta;t</mi> <msub> <mi>P</mi> <mi>bat</mi> </msub> </mfrac> <mo>+</mo> <munder> <mi>&Sigma;</mi> <mi>t</mi> </munder> <mo>[</mo> <mi>E</mi> <mrow> <mo>(</mo> <msubsup> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>t</mi> </mrow> <mi>c</mi> </msubsup> <mo>)</mo> </mrow> <msub> <mi>u</mi> <mrow> <mi>c</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <msub> <mi>&eta;</mi> <mi>c</mi> </msub> <mo>-</mo> <mfrac> <mrow> <mi>E</mi> <mrow> <mo>(</mo> <msubsup> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>t</mi> </mrow> <mi>dc</mi> </msubsup> <mo>)</mo> </mrow> <msub> <mi>u</mi> <mrow> <mi>dc</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> </mrow> <msub> <mi>&eta;</mi> <mi>dc</mi> </msub> </mfrac> <mo>]</mo> <mfrac> <mrow> <msub> <mi>&lambda;</mi> <mrow> <mi>cp</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mi>&Delta;t</mi> </mrow> <msub> <mi>P</mi> <mi>bat</mi> </msub> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow> </math>
St,min≤St≤St,max (10)
(PEV,RD,t+PPOP,t+PEV,ctr,t+PEV,W,c,t-PEV,W,dc,tcp,t≤PEV,max (11)
(PPOP,t+PEV,W,c,t-PEV,RU,t-PEV,RR,t-PEV,W,dc,tcp,t≥-PEV,max (12)
<math> <mrow> <msubsup> <mi>P</mi> <mrow> <mi>W</mi> <mo>,</mo> <mi>t</mi> </mrow> <mi>B</mi> </msubsup> <mo>,</mo> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>RU</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>RR</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>ctr</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>W</mi> <mo>,</mo> <mi>c</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>W</mi> <mo>,</mo> <mi>dc</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>&GreaterEqual;</mo> <mn>0</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>13</mn> <mo>)</mo> </mrow> </mrow> </math>
the income sources in the objective function mainly comprise the following electric energy provided by the fans selected in bidding in the power market:wherein λdag,e,tRepresents the price of the energy market at the day-ahead,the method comprises the steps of providing day-ahead bidding output submitted in each time period T when wind power participates in day-ahead energy market bidding, wherein delta T represents the length of a single time period, and T is the total time length; is an electric steamVehicle battery charging provides service:wherein λ iscPrice of electricity, P, charged for the electric vehicle electricity consumption by the virtual power plantEV,dri,tDriving power consumption for the user in the time period t; the electric automobile provides the system with the service of adjusting the reserve capacity, including the service of up-regulating, down-regulating and rotating the reserve capacity:wherein, PEV,RU,t,PEV,RD,t,PEV,RR,tRespectively representing the competitive bidding values, lambda, of the up-regulation standby service, the down-regulation standby service and the rotation standby service when the electric automobile participates in the regulation of market biddingRU,tRD,tRR,tCapacity prices for up-regulation reserve, down-regulation reserve and rotation reserve of the regulation market are respectively set; the up-regulation and rotation of the electric vehicle reserve the electric energy actually called:wherein, E (x)RU)、E(xRD)、E(xRR) Calling proportions x respectively representing up-regulation standby, down-regulation standby and rotation standby of the power system in time period tRU,xRDAnd xRRIs expected value ofup,e,tAdjusting the price of the output for the electric automobile in the time t;
the economic expenditure terms in the objective function mainly comprise penalties caused by deviation of actual output and competitive output of the fan:wherein, the deviation of the actual wind power output greater than and less than the competitive bidding output is Ppl,ec,tAnd Ppl,bl,tThe corresponding penalty coefficients are respectively omegaimb,ecAnd ωimb,bl,uec,tAnd ubl,tAll are variable from 0 to 1, when Ppl,ec,t>0 hour uec,tIs 1 when Ppl,bl,t>0 hour ubl,tIs 1; cost of charging batteries for electric vehiclesWherein λ isα,eRepresenting electricity purchase price, Q, of virtual power plant from bilateral contract marketcRepresents the amount of power purchased from the contract market, λ, by the virtual power plant for charging electric vehicless,e,tRepresenting the electricity purchase price of the virtual power plant from the real-time energy market,expected value, u, representing the actual charging power of the electric vehiclec,tThe variable is 0-1, and the value is 1 when the electric automobile is in a charging state; loss cost of electric vehicle battery discharge:wherein, the discharge loss cost of the unit electric quantity of the battery of the electric automobile is cdisExpected value, eta, representing the actual discharge power of the electric vehicledcFor cell discharge efficiency, udc,tIs a variable of 0 to 1, and the value is 1 when the electric automobile is in a discharge state;
in the formula, PbatAnd the equivalent capacity of all the batteries of the electric automobiles in the virtual power plant is represented.
The electric vehicle state can be divided into two states of charging and discharging, and the case of neither charging nor discharging is used as a special case where the charging and discharging power is 0, so that the constraint represented by the formula (2) needs to be included, and similarly, the deviation P between the actual output of the fan and the competitive output of the fan in the time period tpl,ec,tAnd Ppl,bl,tCannot be positive at the same time, and therefore, the constraint represented by the formula (3) needs to be included;
equations (4) and (5) are constraints related to the fan, and describe the vertical deviation of the actual output and the competitive bidding output of the fan;
equation (6) -equation (12) are constraints related to electric vehicles, equation (6) and equation (7) give expected values of electric vehicle charging and discharging power, respectively, and equation (8) represents the amount of electricity purchased by the virtual power plant in the bilateral contract market for charging the electric vehicle;
with StRepresenting the SOC value of the battery of the electric vehicle in the time period t, and the formula (9) is used for calculating the SOC of the electric vehicle in the time period t, wherein S0Representing the initial state of the battery, the SOC has a minimum value S since the electric vehicle has driving requirements and considering that complete discharge of the battery is to be avoided in order to extend the battery life as much as possiblet,minConstraining; the SOC has a maximum value S because the full charge of the battery of the electric vehicle cannot be achieved due to aging of the battery and the liket,maxConstraint, wherein the equation (10) represents SOC upper and lower limit constraints of the electric vehicle battery at different time intervals t;
in addition, the maximum charge and discharge power P of the electric automobile is also required to be satisfiedEV,maxConstraints, see equations (11) and (12); the formula (13) defines that the values of the model decision variables are all non-negative values;
2) introducing a robust optimization theory, and converting the mixed integer programming model constructed in the step 1) into a robust linear programming model:
max w (14)
s.t.
<math> <mrow> <mfenced open='' close=''> <mtable> <mtr> <mtd> <mi>w</mi> <mo>-</mo> <munder> <mi>&Sigma;</mi> <mrow> <mi>t</mi> <mo>&Element;</mo> <mi>T</mi> </mrow> </munder> <msub> <mover> <mi>&lambda;</mi> <mo>&OverBar;</mo> </mover> <mrow> <mi>dag</mi> <mo>,</mo> <mi>e</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <msubsup> <mi>P</mi> <mrow> <mi>W</mi> <mo>,</mo> <mi>t</mi> </mrow> <mi>B</mi> </msubsup> <mi>&Delta;t</mi> <mo>-</mo> <msub> <mi>&lambda;</mi> <mi>c</mi> </msub> <munder> <mi>&Sigma;</mi> <mrow> <mi>t</mi> <mo>&Element;</mo> <mi>T</mi> </mrow> </munder> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>dri</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mi>&Delta;t</mi> <mo>-</mo> <munder> <mi>&Sigma;</mi> <mrow> <mi>t</mi> <mo>&Element;</mo> <mi>T</mi> </mrow> </munder> <mrow> <mo>(</mo> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>RU</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <msub> <mover> <mi>&lambda;</mi> <mo>&OverBar;</mo> </mover> <mrow> <mi>RU</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>RD</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <msub> <mover> <mi>&lambda;</mi> <mo>&OverBar;</mo> </mover> <mrow> <mi>RD</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>RR</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <msub> <mover> <mi>&lambda;</mi> <mo>&OverBar;</mo> </mover> <mrow> <mi>RR</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>-</mo> </mtd> </mtr> <mtr> <mtd> <munder> <mi>&Sigma;</mi> <mrow> <mi>t</mi> <mo>&Element;</mo> <mi>T</mi> </mrow> </munder> <mo>[</mo> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>RU</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mi>E</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>RU</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>RR</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mi>E</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>RR</mi> </msub> <mo>)</mo> </mrow> <mo>]</mo> <mi>&Delta;t</mi> <msub> <mi>&theta;</mi> <mrow> <mi>up</mi> <mo>,</mo> <mi>e</mi> </mrow> </msub> <msub> <mover> <mi>&lambda;</mi> <mo>&OverBar;</mo> </mover> <mrow> <mi>g</mi> <mo>,</mo> <mi>e</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>+</mo> <munder> <mi>&Sigma;</mi> <mrow> <mi>t</mi> <mo>&Element;</mo> <mi>T</mi> </mrow> </munder> <msub> <mover> <mi>&lambda;</mi> <mo>&OverBar;</mo> </mover> <mrow> <mi>dag</mi> <mo>,</mo> <mi>e</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>&omega;</mi> <mrow> <mi>imb</mi> <mo>,</mo> <mi>ec</mi> </mrow> </msub> <msub> <mi>P</mi> <mrow> <mi>pl</mi> <mo>,</mo> <mi>ec</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>&omega;</mi> <mrow> <mi>imb</mi> <mo>,</mo> <mi>bl</mi> </mrow> </msub> <msub> <mi>P</mi> <mrow> <mi>pl</mi> <mo>,</mo> <mi>bl</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>)</mo> </mrow> <mi>&Delta;t</mi> <mo>+</mo> <msub> <mi>&lambda;</mi> <mrow> <mi>&alpha;</mi> <mo>,</mo> <mi>e</mi> </mrow> </msub> <msub> <mi>Q</mi> <mi>c</mi> </msub> <mo>+</mo> </mtd> </mtr> <mtr> <mtd> <munder> <mi>&Sigma;</mi> <mrow> <mi>t</mi> <mo>&Element;</mo> <mi>T</mi> </mrow> </munder> <msub> <mover> <mi>&lambda;</mi> <mo>&OverBar;</mo> </mover> <mrow> <mi>s</mi> <mo>,</mo> <mi>e</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mi>E</mi> <mrow> <mo>(</mo> <msubsup> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>t</mi> </mrow> <mi>c</mi> </msubsup> <mo>)</mo> </mrow> <mi>&Delta;t</mi> <mo>+</mo> <munder> <mi>&Sigma;</mi> <mrow> <mi>t</mi> <mo>&Element;</mo> <mi>T</mi> </mrow> </munder> <msub> <mi>c</mi> <mi>dis</mi> </msub> <mfrac> <mrow> <mi>E</mi> <mrow> <mo>(</mo> <msubsup> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>t</mi> </mrow> <mi>dc</mi> </msubsup> <mo>)</mo> </mrow> </mrow> <msub> <mi>&eta;</mi> <mi>dc</mi> </msub> </mfrac> <mi>&Delta;t</mi> <mo>+</mo> <msub> <mi>&Gamma;</mi> <mn>1</mn> </msub> <msub> <mi>p</mi> <mn>1</mn> </msub> <mo>+</mo> <munder> <mi>&Sigma;</mi> <mrow> <mi>t</mi> <mo>&Element;</mo> <mi>T</mi> </mrow> </munder> <mrow> <mo>(</mo> <msub> <mi>q</mi> <mrow> <mi>W</mi> <mo>,</mo> <mi>B</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>q</mi> <mrow> <mi>RU</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>q</mi> <mrow> <mi>RD</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>q</mi> <mrow> <mi>RR</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>q</mi> <mrow> <mi>pl</mi> <mo>,</mo> <mi>ec</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>q</mi> <mrow> <mi>pl</mi> <mo>,</mo> <mi>bl</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>q</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>c</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>&le;</mo> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>15</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mi>p</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>q</mi> <mrow> <mi>W</mi> <mo>,</mo> <mi>B</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>&GreaterEqual;</mo> <mrow> <mo>(</mo> <msub> <mover> <mi>&lambda;</mi> <mo>^</mo> </mover> <mrow> <mi>dag</mi> <mo>,</mo> <mi>e</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mi>&Delta;t</mi> <mo>)</mo> </mrow> <msub> <mi>y</mi> <mrow> <mi>W</mi> <mo>,</mo> <mi>B</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>16</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mi>p</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>q</mi> <mrow> <mi>RU</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>&GreaterEqual;</mo> <mo>[</mo> <msub> <mover> <mi>&lambda;</mi> <mo>^</mo> </mover> <mrow> <mi>RU</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>+</mo> <mi>E</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>RU</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>&theta;</mi> <mrow> <mi>up</mi> <mo>,</mo> <mi>e</mi> </mrow> </msub> <msub> <mover> <mi>&lambda;</mi> <mo>^</mo> </mover> <mrow> <mi>g</mi> <mo>,</mo> <mi>e</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mi>&Delta;t</mi> <mo>]</mo> <msub> <mi>y</mi> <mrow> <mi>RU</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>17</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mi>p</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>q</mi> <mrow> <mi>RD</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>&GreaterEqual;</mo> <msub> <mover> <mi>&lambda;</mi> <mo>^</mo> </mover> <mrow> <mi>RD</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <msub> <mi>y</mi> <mrow> <mi>RD</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>18</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mi>p</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>q</mi> <mrow> <mi>RR</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>&GreaterEqual;</mo> <mo>[</mo> <msub> <mover> <mi>&lambda;</mi> <mo>^</mo> </mover> <mrow> <mi>RR</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>+</mo> <mi>E</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>RR</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>&theta;</mi> <mrow> <mi>up</mi> <mo>,</mo> <mi>e</mi> </mrow> </msub> <msub> <mover> <mi>&lambda;</mi> <mo>^</mo> </mover> <mrow> <mi>g</mi> <mo>,</mo> <mi>e</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mi>&Delta;t</mi> <mo>]</mo> <msub> <mi>y</mi> <mrow> <mi>RR</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>19</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mi>p</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>q</mi> <mrow> <mi>pl</mi> <mo>,</mo> <mi>ec</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>&GreaterEqual;</mo> <mrow> <mo>(</mo> <msub> <mi>&omega;</mi> <mrow> <mi>imb</mi> <mo>,</mo> <mi>ec</mi> </mrow> </msub> <msub> <mover> <mi>&lambda;</mi> <mo>^</mo> </mover> <mrow> <mi>dag</mi> <mo>,</mo> <mi>e</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mi>&Delta;t</mi> <mo>)</mo> </mrow> <msub> <mi>y</mi> <mrow> <mi>pl</mi> <mo>,</mo> <mi>ec</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>20</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mi>p</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>q</mi> <mrow> <mi>pl</mi> <mo>,</mo> <mi>bl</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>&GreaterEqual;</mo> <mrow> <mo>(</mo> <msub> <mi>&omega;</mi> <mrow> <mi>imb</mi> <mo>,</mo> <mi>bl</mi> </mrow> </msub> <msub> <mover> <mi>&lambda;</mi> <mo>^</mo> </mover> <mrow> <mi>dag</mi> <mo>,</mo> <mi>e</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mi>&Delta;t</mi> <mo>)</mo> </mrow> <msub> <mi>y</mi> <mrow> <mi>pl</mi> <mo>,</mo> <mi>bl</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>21</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mi>p</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>q</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>c</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>&GreaterEqual;</mo> <msub> <mover> <mi>&lambda;</mi> <mo>^</mo> </mover> <mrow> <mi>g</mi> <mo>,</mo> <mi>e</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <msub> <mi>&Delta;ty</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>c</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>22</mn> <mo>)</mo> </mrow> </mrow> </math>
-y≤P≤y (23)
P = ( P W , t B , P EV , RU , t , P EV , RD , t P EV , RR , t , P pl , ec , t , P pl . bl . t , E ( P EV , t c ) ) - - - ( 24 )
y=(yW,B,t,yRU,t,yRD,t,yRR,t,ypl,ec,t,ypl,bl,t,yEV,c,t) (25)
p1,qW,B,t,qRU,t,qRD,t,qRR,t,qpl,ec,t,qpl,bl,t,qEV,c,t≥0 (26)
<math> <mrow> <mi>E</mi> <mrow> <mo>(</mo> <msubsup> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>t</mi> </mrow> <mi>c</mi> </msubsup> <mo>)</mo> </mrow> <mo>&GreaterEqual;</mo> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>RD</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mi>E</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>RD</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>P</mi> <mrow> <mi>POP</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>W</mi> <mo>,</mo> <mi>c</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>RU</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mi>E</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>RU</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>RR</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mi>E</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>RR</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>W</mi> <mo>,</mo> <mi>dc</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>27</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <mi>E</mi> <mrow> <mo>(</mo> <msubsup> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>t</mi> </mrow> <mi>dc</mi> </msubsup> <mo>)</mo> </mrow> <mo>&GreaterEqual;</mo> <mo>-</mo> <mo>[</mo> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>RD</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mi>E</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>RD</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>P</mi> <mrow> <mi>POP</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>W</mi> <mo>,</mo> <mi>c</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>RU</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mi>E</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>RU</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>RR</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mi>E</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>RR</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>W</mi> <mo>,</mo> <mi>dc</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>]</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>28</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mi>S</mi> <mi>t</mi> </msub> <mo>=</mo> <msub> <mi>S</mi> <mn>0</mn> </msub> <mo>+</mo> <munder> <mi>&Sigma;</mi> <mi>t</mi> </munder> <mo>[</mo> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>ctr</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <msub> <mi>&eta;</mi> <mi>c</mi> </msub> <mo>-</mo> <mfrac> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>dri</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <msub> <mi>&eta;</mi> <mi>dc</mi> </msub> </mfrac> <mo>]</mo> <msub> <mi>&lambda;</mi> <mrow> <mi>cp</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mfrac> <mi>&Delta;t</mi> <msub> <mi>P</mi> <mi>bat</mi> </msub> </mfrac> <mo>+</mo> <munder> <mi>&Sigma;</mi> <mi>t</mi> </munder> <mo>[</mo> <mi>E</mi> <mrow> <mo>(</mo> <msubsup> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>t</mi> </mrow> <mi>c</mi> </msubsup> <mo>)</mo> </mrow> <msub> <mi>u</mi> <mrow> <mi>c</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <msub> <mi>&eta;</mi> <mi>c</mi> </msub> <mo>-</mo> <mfrac> <mrow> <mi>E</mi> <mrow> <mo>(</mo> <msubsup> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>t</mi> </mrow> <mi>dc</mi> </msubsup> <mo>)</mo> </mrow> <msub> <mi>u</mi> <mrow> <mi>dc</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> </mrow> <msub> <mi>&eta;</mi> <mi>dc</mi> </msub> </mfrac> <mo>]</mo> <mfrac> <mrow> <msub> <mi>&lambda;</mi> <mrow> <mi>cp</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mi>&Delta;t</mi> </mrow> <msub> <mi>P</mi> <mi>bat</mi> </msub> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>29</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msubsup> <mi>P</mi> <mrow> <mi>W</mi> <mo>,</mo> <mi>t</mi> </mrow> <mi>B</mi> </msubsup> <mo>&le;</mo> <msub> <mi>Z</mi> <msub> <mi>&epsiv;</mi> <mrow> <mi>up</mi> <mo>,</mo> <mi>W</mi> </mrow> </msub> </msub> <msub> <mi>&sigma;</mi> <mrow> <mi>up</mi> <mo>,</mo> <mi>W</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>&mu;</mi> <mrow> <mi>up</mi> <mo>,</mo> <mi>W</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>30</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msubsup> <mi>P</mi> <mrow> <mi>W</mi> <mo>,</mo> <mi>t</mi> </mrow> <mi>B</mi> </msubsup> <mo>&le;</mo> <msub> <mi>Z</mi> <msub> <mrow> <mn>1</mn> <mo>-</mo> <mi>&epsiv;</mi> </mrow> <mrow> <mi>low</mi> <mo>,</mo> <mi>W</mi> </mrow> </msub> </msub> <msub> <mi>&sigma;</mi> <mrow> <mi>low</mi> <mo>,</mo> <mi>W</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>&mu;</mi> <mrow> <mi>low</mi> <mo>,</mo> <mi>W</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>31</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mi>P</mi> <mrow> <mi>pl</mi> <mo>.</mo> <mi>ec</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>W</mi> <mo>,</mo> <mi>c</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>+</mo> <msubsup> <mi>P</mi> <mrow> <mi>W</mi> <mo>,</mo> <mi>t</mi> </mrow> <mi>B</mi> </msubsup> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>W</mi> <mo>,</mo> <mi>dc</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>&GreaterEqual;</mo> <msub> <mi>z</mi> <msub> <mrow> <mn>1</mn> <mo>-</mo> <mi>&epsiv;</mi> </mrow> <mrow> <mi>pl</mi> <mo>.</mo> <mi>ec</mi> </mrow> </msub> </msub> <msub> <mi>&sigma;</mi> <mrow> <mi>a</mi> <mo>,</mo> <mi>W</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>&mu;</mi> <mrow> <mi>a</mi> <mo>,</mo> <mi>W</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>32</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>W</mi> <mo>,</mo> <mi>c</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>+</mo> <msubsup> <mi>P</mi> <mrow> <mi>W</mi> <mo>,</mo> <mi>t</mi> </mrow> <mi>B</mi> </msubsup> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>W</mi> <mo>,</mo> <mi>dc</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>pl</mi> <mo>,</mo> <mi>bl</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>&le;</mo> <msub> <mi>z</mi> <msub> <mi>&epsiv;&epsiv;</mi> <mrow> <mi>pl</mi> <mo>.</mo> <mi>ec</mi> </mrow> </msub> </msub> <msub> <mi>&sigma;</mi> <mrow> <mi>a</mi> <mo>,</mo> <mi>W</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>&mu;</mi> <mrow> <mi>a</mi> <mo>,</mo> <mi>W</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>33</mn> <mo>)</mo> </mrow> </mrow> </math>
in the formula: p is a vector formed by decision variables; y is a vector consisting of auxiliary decision variables introduced by the dual transformation; z is a radical of Is an upper quantile of standard normal distribution; mu.sa,W,tAnd σa,W,tAre respectively asThe expected value and standard deviation of the normal distribution of (1);
in the robust collaborative bidding model, the charging and discharging power constraint of the electric vehicle is an equation (27) and an equation (28), the SOC constraint is an equation (29), equations (30) and (31) are respectively an upper limit constraint and a lower limit constraint of fan bidding output, equations (32) and (33) are deviation constraints of the fan bidding output and actual output, and the other constraints, namely the forms of equations (10) to (13), are unchanged;
the decision variables include: competitive bidding output of wind power in day-ahead energy marketRegulated reserve and spinning reserve bid capacities, i.e., P, for electric vehicles in the regulated marketEV,RU,t,PEV,RD,tAnd PEV,RR,t(ii) a Electric automobileStandby P provided for stabilizing output fluctuation of fanEV,W,c,tAnd PEV,W,dc,t(ii) a Planned charging power P of electric vehiclePOP,t(ii) a Contract electric quantity charging power P of electric automobileEV,ctr,t(ii) a Decision variable P added by model linearization transformationpl,ec,t,Ppl,bl,tAndauxiliary decision variables p, q and y introduced by dual transformation; robust control coefficient of1
3) And controlling the risk level of the virtual power plant bidding strategy by adjusting the robust control coefficient to obtain a corresponding bidding strategy scheme.
Specific combination parameters: the total number of the electric automobiles in the virtual power plant is 2 thousands; the battery capacity of a single electric automobile is 24 kW.h; the purchase cost per unit battery capacity is $ 400/(kW · h); the maximum charge and discharge power of the battery is 3 kW; the average charging and discharging efficiency of the battery is 0.95; the charging price of the electric automobile is 0.14 dollars/(kW.h); the punishment coefficient of the fan when the actual output of the fan is higher than or lower than the competitive bidding output is 0.95/1.05; the price of power transmission and distribution is 0.07 dollar/(kW.h); the electricity price of the power generation side of the virtual power plant for purchasing electricity through the bilateral contract is 0.06 dollar/(kW & h), and the contract electricity quantity is assumed to be 288MW & h in the optimization period (24 h); taking hours as time periods, 24 time periods are provided each day, and delta t is 1; the capacity is adjusted up and down, and the rotational reserve capacity is scaled to the desired value for the actual call rate at each transaction interval. Setting the day-ahead energy market electricity price, the real-time energy market electricity price (both electricity prices on the power generation side), the capacity electricity prices of the up-regulation capacity, the down-regulation capacity and the rotation reserve capacity, and setting the prediction deviation of the 4 prices to be +/-15%; thetaup,eThe value is 1.0.
The parameter values and the optimal value of the objective function (i.e. the total income of virtual power plant bidding) at different constraint violation probability levels are given in table 1, different constraint violation probabilities correspond to different decision-making economic risks, and the smaller the constraint violation probability, the smaller the economic risk born by a decision-maker is. As can be seen from the calculation results in Table 1, as the constraint violation probability is reduced, the risk of the virtual power plant bidding result violating the constraint is reduced, and the bidding income of the virtual power plant is reduced.
TABLE 1
Note:up,Wlow,Wpl,ecpl,blthe values are the same and all.
Fig. 1 to 5 show the calculation results of bidding strategies of the fans and the electric vehicles in the virtual power plant participating in market bidding in each scene when the parameters are valued according to table 1.
Fig. 6 is a comparison graph of the influence of the number of electric vehicles and the fan output on the bidding result, and it can be seen from fig. 6 that when the relative variation amounts of the number of electric vehicles and the fan output are the same, the bidding result variation caused by the variation in the number of electric vehicles is larger, that is, the sensitivity of the virtual power plant bidding strategy to the number of electric vehicles is larger than the sensitivity to the fan output. This is because when the number of electric vehicles in the system increases, the electric vehicles can provide a reserve for the fan, and can also participate in adjusting market bids with abundant capacity to obtain a profit as an energy storage device to provide a reserve for the system. And when the number of the fans in the system is increased, whether the abundant output of the fans can participate in the energy market bidding depends on whether the battery energy storage of the electric automobile in the system can provide a reserve for the output fluctuation of the fans, so that the influence of the output of the fans on the bidding result is restricted. Thus, the bidding strategy is relatively insensitive to changes in fan output.

Claims (1)

1. A method for determining a virtual power plant bidding strategy containing an electric automobile and a wind generating set is characterized by comprising the following steps:
1) establishing a mixed integer programming model
Establishing a mixed integer programming model of electric automobile and wind power cooperative bidding according to the maximum bidding total income P of the virtual power plant in the power market as an objective function:
the objective function is:
<math> <mrow> <mfenced open='' close=''> <mtable> <mtr> <mtd> <mi>max</mi> <mi>P</mi> <mo>=</mo> <munder> <mi>&Sigma;</mi> <mrow> <mi>t</mi> <mo>&Element;</mo> <mi>T</mi> </mrow> </munder> <msub> <mi>&lambda;</mi> <mrow> <mi>dag</mi> <mo>,</mo> <mi>e</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <msubsup> <mi>P</mi> <mrow> <mi>W</mi> <mo>,</mo> <mi>t</mi> </mrow> <mi>B</mi> </msubsup> <mi>&Delta;t</mi> <mo>+</mo> <msub> <mi>&lambda;</mi> <mi>c</mi> </msub> <munder> <mi>&Sigma;</mi> <mrow> <mi>t</mi> <mo>&Element;</mo> <mi>T</mi> </mrow> </munder> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>dri</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mi>&Delta;t</mi> <mo>+</mo> <munder> <mi>&Sigma;</mi> <mrow> <mi>t</mi> <mo>&Element;</mo> <mi>T</mi> </mrow> </munder> <mrow> <mo>(</mo> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>RU</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <msub> <mi>&lambda;</mi> <mrow> <mi>RU</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>RD</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <msub> <mi>&lambda;</mi> <mrow> <mi>RD</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>RR</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <msub> <mi>&lambda;</mi> <mrow> <mi>RR</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>+</mo> </mtd> </mtr> <mtr> <mtd> <munder> <mi>&Sigma;</mi> <mrow> <mi>t</mi> <mo>&Element;</mo> <mi>T</mi> </mrow> </munder> <mo>[</mo> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>RU</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mi>E</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>RU</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>RR</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mi>E</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>RR</mi> </msub> <mo>)</mo> </mrow> <mo>]</mo> <mi>&Delta;t</mi> <msub> <mi>&lambda;</mi> <mrow> <mi>up</mi> <mo>,</mo> <mi>e</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>-</mo> <munder> <mi>&Sigma;</mi> <mrow> <mi>t</mi> <mo>&Element;</mo> <mi>T</mi> </mrow> </munder> <msub> <mi>&lambda;</mi> <mrow> <mi>dag</mi> <mo>,</mo> <mi>e</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>&omega;</mi> <mrow> <mi>imb</mi> <mo>,</mo> <mi>ec</mi> </mrow> </msub> <msub> <mi>u</mi> <mrow> <mi>ec</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <msub> <mi>P</mi> <mrow> <mi>pl</mi> <mo>,</mo> <mi>ec</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>&omega;</mi> <mrow> <mi>imb</mi> <mo>,</mo> <mi>bl</mi> </mrow> </msub> <msub> <mi>u</mi> <mrow> <mi>bl</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <msub> <mi>P</mi> <mrow> <mi>pl</mi> <mo>,</mo> <mi>bl</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>)</mo> </mrow> <mi>&Delta;t</mi> <mo>-</mo> </mtd> </mtr> <mtr> <mtd> <mo>[</mo> <msub> <mi>&lambda;</mi> <mrow> <mi>&alpha;</mi> <mo>,</mo> <mi>e</mi> </mrow> </msub> <msub> <mi>Q</mi> <mi>c</mi> </msub> <mo>+</mo> <munder> <mi>&Sigma;</mi> <mrow> <mi>t</mi> <mo>&Element;</mo> <mi>T</mi> </mrow> </munder> <msub> <mi>&lambda;</mi> <mrow> <mi>s</mi> <mo>,</mo> <mi>e</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mi>E</mi> <mrow> <mo>(</mo> <msubsup> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>t</mi> </mrow> <mi>c</mi> </msubsup> <mo>)</mo> </mrow> <msub> <mi>u</mi> <mrow> <mi>c</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mi>&Delta;t</mi> <mo>]</mo> <mo>-</mo> <munder> <mi>&Sigma;</mi> <mrow> <mi>t</mi> <mo>&Element;</mo> <mi>T</mi> </mrow> </munder> <msub> <mi>c</mi> <mi>dis</mi> </msub> <mfrac> <mrow> <mi>E</mi> <mrow> <mo>(</mo> <msubsup> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>t</mi> </mrow> <mi>dc</mi> </msubsup> <mo>)</mo> </mrow> </mrow> <msub> <mi>&eta;</mi> <mi>dc</mi> </msub> </mfrac> <msub> <mi>u</mi> <mrow> <mi>dc</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mi>&Delta;t</mi> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </math>
the constraint conditions are as follows:
udc,t+uc,t=1 (2)
uec,t+ubl,t=1 (3)
P pl , ec , t = P W , t a - P EV , W , c , t - P W , t B + P EV , W , dc , t - - - ( 4 )
P pl , bl , t = - ( P W , t a - P EV , W , c , t - P W , t B + P EV , W , dc , t ) - - - ( 5 )
E ( P EV , t c ) = P EV , RD , t E ( x RD ) + P POP , t + P EV , W , c , t - P EV , RU , t E ( x RU ) - P EV , RR , t E ( x RR ) - P EV , W , dc , t - - - ( 6 )
E ( P EV , t dc ) = - [ P EV , RD , t E ( x RD ) + P POP , t + P EV , W , c , t - P EV , RU , t E ( x RU ) - P EV , RR , t E ( x RR ) - P EV , W , dc , t ] - - - ( 7 )
<math> <mrow> <msub> <mi>Q</mi> <mi>c</mi> </msub> <mo>=</mo> <munder> <mi>&Sigma;</mi> <mrow> <mi>t</mi> <mo>&Element;</mo> <mi>T</mi> </mrow> </munder> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>ctr</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mi>S</mi> <mi>t</mi> </msub> <mo>=</mo> <msub> <mi>S</mi> <mn>0</mn> </msub> <mo>+</mo> <munder> <mi>&Sigma;</mi> <mi>t</mi> </munder> <mo>[</mo> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>ctr</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <msub> <mi>&eta;</mi> <mi>c</mi> </msub> <mo>-</mo> <mfrac> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>dri</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <msub> <mi>&eta;</mi> <mi>dc</mi> </msub> </mfrac> <mo>]</mo> <msub> <mi>&lambda;</mi> <mrow> <mi>cp</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mfrac> <mi>&Delta;t</mi> <msub> <mi>P</mi> <mi>bat</mi> </msub> </mfrac> <mo>+</mo> <munder> <mi>&Sigma;</mi> <mi>t</mi> </munder> <mo>[</mo> <mi>E</mi> <mrow> <mo>(</mo> <msubsup> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>t</mi> </mrow> <mi>c</mi> </msubsup> <mo>)</mo> </mrow> <msub> <mi>u</mi> <mrow> <mi>c</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <msub> <mi>&eta;</mi> <mi>c</mi> </msub> <mo>-</mo> <mfrac> <mrow> <mi>E</mi> <mrow> <mo>(</mo> <msubsup> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>t</mi> </mrow> <mi>dc</mi> </msubsup> <mo>)</mo> </mrow> <msub> <mi>u</mi> <mrow> <mi>dc</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> </mrow> <msub> <mi>&eta;</mi> <mi>dc</mi> </msub> </mfrac> <mo>]</mo> <mfrac> <mrow> <msub> <mi>&lambda;</mi> <mrow> <mi>cp</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mi>&Delta;t</mi> </mrow> <msub> <mi>P</mi> <mi>bat</mi> </msub> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow> </math>
St,min≤St≤St,max (10)
(PEV,RD,t+PPOP,t+PEV,ctr,t+PEV,W,c,t-PEV,W,dc,tcp,t≤PEV,max (11)
(PPOP,t+PEV,W,c,t-PEV,RU,t-PEV,RR,t-PEV,W,dc,tcp,t≥-PEV,max (12)
<math> <mrow> <msubsup> <mi>P</mi> <mrow> <mi>W</mi> <mo>,</mo> <mi>t</mi> </mrow> <mi>B</mi> </msubsup> <mo>,</mo> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>RU</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>RR</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>ctr</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>W</mi> <mo>,</mo> <mi>c</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>W</mi> <mo>,</mo> <mi>dc</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>&GreaterEqual;</mo> <mn>0</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>13</mn> <mo>)</mo> </mrow> </mrow> </math>
the income sources in the objective function comprise the electric energy income provided by the fans selected in bidding in the electric power market:wherein λdag,e,tRepresents the price of the energy market at the day-ahead,the method comprises the steps of providing day-ahead bidding output submitted in each time period T when wind power participates in day-ahead energy market bidding, wherein delta T represents the length of a single time period, and T is the total time length; providing service revenue for charging batteries of electric vehicles:wherein λ iscPrice of electricity, P, charged for the electric vehicle electricity consumption by the virtual power plantEV,dri,tDriving power consumption for the user in the time period t; electric vehicles provide regulated reserve capacity service revenue for systems including up-regulation, down-regulation, and rotational reserve capacity servicesWherein, PEV,RU,t,PEV,RD,t,PEV,RR,tRespectively representing the competitive bidding values, lambda, of the up-regulation standby service, the down-regulation standby service and the rotation standby service when the electric automobile participates in the regulation of market biddingRU,tRD,tRR,tCapacity prices for up-regulation reserve, down-regulation reserve and rotation reserve of the regulation market are respectively set; the up-regulation and rotation of the electric vehicle reserve the electric energy actually called:wherein, E (x)RU)、E(xRR) Calling proportions x respectively representing up-regulation standby and rotation standby of power system in time period tRU、xRRIs expected value ofup,e,tAdjusting the price of the output for the electric automobile in the time t;
the economic expenditure terms in the objective function comprise penalties caused by deviation of actual output and competitive output of the fan:wherein, the deviation of the actual wind power output greater than and less than the competitive bidding output is Ppl,ec,tAnd Ppl,bl,tThe corresponding penalty coefficients are respectively omegaimb,ecAnd ωimb,bl,uec,tAnd ubl,tAll are variable from 0 to 1, when Ppl,ec,t>0 hour uec,tIs 1 when Ppl,bl,t>0 hour ubl,tIs 1;cost of charging batteries of electric vehicles, where λα,eRepresenting electricity purchase price, Q, of virtual power plant from bilateral contract marketcRepresenting virtual power plant charging electric vehicles from a contract marketPurchase of electricity, lambdas,e,tRepresenting the electricity purchase price of the virtual power plant from the real-time energy market,expected value, u, representing the actual charging power of the electric vehiclec,tThe variable is 0-1, and the value is 1 when the electric automobile is in a charging state; loss cost of electric vehicle battery discharge:wherein, the discharge loss cost of the unit electric quantity of the battery of the electric automobile is cdisExpected value, eta, representing the actual discharge power of the electric vehicledcFor cell discharge efficiency, udc,tIs a variable of 0 to 1, and the value is 1 when the electric automobile is in a discharge state;
the electric vehicle state can be divided into two states of charging and discharging, and the case of neither charging nor discharging is used as a special case where the charging and discharging power is 0, so that the constraint represented by the formula (2) needs to be included, and similarly, the deviation P between the actual output of the fan and the competitive output of the fan in the time period tpl,ec,tAnd Ppl,bl,tCannot be positive at the same time, and therefore, the constraint represented by the formula (3) needs to be included;
equations (4) and (5) are constraints related to the fan, and describe the vertical deviation of the actual output and the competitive bidding output of the fan;representing the actual output of the fan, PEV,W,c,tAnd PEV,W,dc,tRespectively representing the backup output of the electric automobile for providing the wind power by charging and discharging;
equation (6) -equation (12) are constraints related to electric vehicles, equation (6) and equation (7) give expected values of electric vehicle charging and discharging power, respectively, and equation (8) represents the amount of electricity purchased by the virtual power plant in the bilateral contract market for charging the electric vehicle; p in formula (7)POP,tRepresents a planned charge/discharge power of the electric vehicle;
with StRepresenting the SOC value of the battery of the electric vehicle in the time period t, and the formula (9) is used for calculating the SOC of the electric vehicle in the time period t, wherein S0Representing the initial state of the battery, the SOC has a minimum value S since the electric vehicle has driving requirements and considering that complete discharge of the battery is to be avoided in order to extend the battery life as much as possiblet,minConstraining; the SOC has a maximum value S because the full charge of the battery of the electric vehicle cannot be achieved due to aging of the battery and the liket,maxConstraint, wherein the equation (10) represents SOC upper and lower limit constraints of the electric vehicle battery at different time intervals t;
in addition, the maximum charge and discharge power P of the electric automobile is also required to be satisfiedEV,maxConstraints, see equations (11) and (12); in the formula (11), PEV,ctr,tA contract charge power representing a decomposition of the contract charge into time periods t; lambda [ alpha ]cp,tThe adjustment coefficient represents that when a certain electric automobile is scheduled, other electric automobiles cannot be scheduled in the time period t, and the electric automobiles are subjected to scheduling;
the formula (13) defines that the values of the model decision variables are all non-negative values;
2) introducing a robust optimization theory, and converting the mixed integer programming model constructed in the step 1) into a robust linear programming model:
an objective function:
max w (14)
constraint conditions are as follows:
<math> <mrow> <mfenced open='' close=''> <mtable> <mtr> <mtd> <mi>w</mi> <mo>-</mo> <munder> <mi>&Sigma;</mi> <mrow> <mi>t</mi> <mo>&Element;</mo> <mi>T</mi> </mrow> </munder> <msub> <mover> <mi>&lambda;</mi> <mo>&OverBar;</mo> </mover> <mrow> <mi>dag</mi> <mo>,</mo> <mi>e</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <msubsup> <mi>P</mi> <mrow> <mi>W</mi> <mo>,</mo> <mi>t</mi> </mrow> <mi>B</mi> </msubsup> <mi>&Delta;t</mi> <mo>-</mo> <msub> <mi>&lambda;</mi> <mi>c</mi> </msub> <munder> <mi>&Sigma;</mi> <mrow> <mi>t</mi> <mo>&Element;</mo> <mi>T</mi> </mrow> </munder> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>dri</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mi>&Delta;t</mi> <mo>-</mo> <munder> <mi>&Sigma;</mi> <mrow> <mi>t</mi> <mo>&Element;</mo> <mi>T</mi> </mrow> </munder> <mrow> <mo>(</mo> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>RU</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <msub> <mover> <mi>&lambda;</mi> <mo>&OverBar;</mo> </mover> <mrow> <mi>RU</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>RD</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <msub> <mover> <mi>&lambda;</mi> <mo>&OverBar;</mo> </mover> <mrow> <mi>RD</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>RR</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <msub> <mover> <mi>&lambda;</mi> <mo>&OverBar;</mo> </mover> <mrow> <mi>RR</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>-</mo> </mtd> </mtr> <mtr> <mtd> <munder> <mi>&Sigma;</mi> <mrow> <mi>t</mi> <mo>&Element;</mo> <mi>T</mi> </mrow> </munder> <mo>[</mo> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>RU</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mi>E</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>RU</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>RR</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mi>E</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>RR</mi> </msub> <mo>)</mo> </mrow> <mo>]</mo> <mi>&Delta;t</mi> <msub> <mi>&theta;</mi> <mrow> <mi>up</mi> <mo>,</mo> <mi>e</mi> </mrow> </msub> <msub> <mover> <mi>&lambda;</mi> <mo>&OverBar;</mo> </mover> <mrow> <mi>g</mi> <mo>,</mo> <mi>e</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>+</mo> <munder> <mi>&Sigma;</mi> <mrow> <mi>t</mi> <mo>&Element;</mo> <mi>T</mi> </mrow> </munder> <msub> <mover> <mi>&lambda;</mi> <mo>&OverBar;</mo> </mover> <mrow> <mi>dag</mi> <mo>,</mo> <mi>e</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>&omega;</mi> <mrow> <mi>imb</mi> <mo>,</mo> <mi>ec</mi> </mrow> </msub> <msub> <mi>P</mi> <mrow> <mi>pl</mi> <mo>,</mo> <mi>ec</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>&omega;</mi> <mrow> <mi>imb</mi> <mo>,</mo> <mi>bl</mi> </mrow> </msub> <msub> <mi>P</mi> <mrow> <mi>pl</mi> <mo>,</mo> <mi>bl</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>)</mo> </mrow> <mi>&Delta;t</mi> <mo>+</mo> <msub> <mi>&lambda;</mi> <mrow> <mi>&alpha;</mi> <mo>,</mo> <mi>e</mi> </mrow> </msub> <msub> <mi>Q</mi> <mi>c</mi> </msub> <mo>+</mo> </mtd> </mtr> <mtr> <mtd> <munder> <mi>&Sigma;</mi> <mrow> <mi>t</mi> <mo>&Element;</mo> <mi>T</mi> </mrow> </munder> <msub> <mover> <mi>&lambda;</mi> <mo>&OverBar;</mo> </mover> <mrow> <mi>s</mi> <mo>,</mo> <mi>e</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mi>E</mi> <mrow> <mo>(</mo> <msubsup> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>t</mi> </mrow> <mi>c</mi> </msubsup> <mo>)</mo> </mrow> <mi>&Delta;t</mi> <mo>+</mo> <munder> <mi>&Sigma;</mi> <mrow> <mi>t</mi> <mo>&Element;</mo> <mi>T</mi> </mrow> </munder> <msub> <mi>c</mi> <mi>dis</mi> </msub> <mfrac> <mrow> <mi>E</mi> <mrow> <mo>(</mo> <msubsup> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>t</mi> </mrow> <mi>dc</mi> </msubsup> <mo>)</mo> </mrow> </mrow> <msub> <mi>&eta;</mi> <mi>dc</mi> </msub> </mfrac> <mi>&Delta;t</mi> <mo>+</mo> <msub> <mi>&Gamma;</mi> <mn>1</mn> </msub> <msub> <mi>p</mi> <mn>1</mn> </msub> <mo>+</mo> <munder> <mi>&Sigma;</mi> <mrow> <mi>t</mi> <mo>&Element;</mo> <mi>T</mi> </mrow> </munder> <mrow> <mo>(</mo> <msub> <mi>q</mi> <mrow> <mi>W</mi> <mo>,</mo> <mi>B</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>q</mi> <mrow> <mi>RU</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>q</mi> <mrow> <mi>RD</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>q</mi> <mrow> <mi>RR</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>q</mi> <mrow> <mi>pl</mi> <mo>,</mo> <mi>ec</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>q</mi> <mrow> <mi>pl</mi> <mo>,</mo> <mi>bl</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>q</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>c</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>&le;</mo> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>15</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mi>p</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>q</mi> <mrow> <mi>W</mi> <mo>,</mo> <mi>B</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>&GreaterEqual;</mo> <mrow> <mo>(</mo> <msub> <mover> <mi>&lambda;</mi> <mo>^</mo> </mover> <mrow> <mi>dag</mi> <mo>,</mo> <mi>e</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mi>&Delta;t</mi> <mo>)</mo> </mrow> <msub> <mi>y</mi> <mrow> <mi>W</mi> <mo>,</mo> <mi>B</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>16</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mi>p</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>q</mi> <mrow> <mi>RU</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>&GreaterEqual;</mo> <mo>[</mo> <msub> <mover> <mi>&lambda;</mi> <mo>^</mo> </mover> <mrow> <mi>RU</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>+</mo> <mi>E</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>RU</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>&theta;</mi> <mrow> <mi>up</mi> <mo>,</mo> <mi>e</mi> </mrow> </msub> <msub> <mover> <mi>&lambda;</mi> <mo>^</mo> </mover> <mrow> <mi>g</mi> <mo>,</mo> <mi>e</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mi>&Delta;t</mi> <mo>]</mo> <msub> <mi>y</mi> <mrow> <mi>RU</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>17</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mi>p</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>q</mi> <mrow> <mi>RD</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>&GreaterEqual;</mo> <msub> <mover> <mi>&lambda;</mi> <mo>^</mo> </mover> <mrow> <mi>RD</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <msub> <mi>y</mi> <mrow> <mi>RD</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>18</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mi>p</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>q</mi> <mrow> <mi>RR</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>&GreaterEqual;</mo> <mo>[</mo> <msub> <mover> <mi>&lambda;</mi> <mo>^</mo> </mover> <mrow> <mi>RR</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>+</mo> <mi>E</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>RR</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>&theta;</mi> <mrow> <mi>up</mi> <mo>,</mo> <mi>e</mi> </mrow> </msub> <msub> <mover> <mi>&lambda;</mi> <mo>^</mo> </mover> <mrow> <mi>g</mi> <mo>,</mo> <mi>e</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mi>&Delta;t</mi> <mo>]</mo> <msub> <mi>y</mi> <mrow> <mi>RR</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>19</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mi>p</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>q</mi> <mrow> <mi>pl</mi> <mo>,</mo> <mi>ec</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>&GreaterEqual;</mo> <mrow> <mo>(</mo> <msub> <mi>&omega;</mi> <mrow> <mi>imb</mi> <mo>,</mo> <mi>ec</mi> </mrow> </msub> <msub> <mover> <mi>&lambda;</mi> <mo>^</mo> </mover> <mrow> <mi>dag</mi> <mo>,</mo> <mi>e</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mi>&Delta;t</mi> <mo>)</mo> </mrow> <msub> <mi>y</mi> <mrow> <mi>pl</mi> <mo>,</mo> <mi>ec</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>20</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mi>p</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>q</mi> <mrow> <mi>pl</mi> <mo>,</mo> <mi>bl</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>&GreaterEqual;</mo> <mrow> <mo>(</mo> <msub> <mi>&omega;</mi> <mrow> <mi>imb</mi> <mo>,</mo> <mi>bl</mi> </mrow> </msub> <msub> <mover> <mi>&lambda;</mi> <mo>^</mo> </mover> <mrow> <mi>dag</mi> <mo>,</mo> <mi>e</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mi>&Delta;t</mi> <mo>)</mo> </mrow> <msub> <mi>y</mi> <mrow> <mi>pl</mi> <mo>,</mo> <mi>bl</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>21</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mi>p</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>q</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>c</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>&GreaterEqual;</mo> <msub> <mover> <mi>&lambda;</mi> <mo>^</mo> </mover> <mrow> <mi>g</mi> <mo>,</mo> <mi>e</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <msub> <mi>&Delta;ty</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>c</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>22</mn> <mo>)</mo> </mrow> </mrow> </math>
-y≤P≤y (23)
P = ( P W , t B , P EV , RU , t , P EV , RD , t , P EV , RR , t , P pl , ec , t , P pl , bl , t , E ( P EV , t c ) ) - - - ( 24 )
y=(yW,B,t,yRU,t,yRD,t,yRR,t,ypl,ec,t,ypl,bl,t,yEV,c,t) (25)
p1,qW,B,t,qRU,t,qRD,t,qRR,t,qpl,ec,t,qpl,bl,t,qEV,c,t≥0 (26)
<math> <mrow> <mi>E</mi> <mrow> <mo>(</mo> <msubsup> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>t</mi> </mrow> <mi>c</mi> </msubsup> <mo>)</mo> </mrow> <mo>&GreaterEqual;</mo> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>RD</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mi>E</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>RD</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>P</mi> <mrow> <mi>POP</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>W</mi> <mo>,</mo> <mi>c</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>RU</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mi>E</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>RU</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>RR</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mi>E</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>RR</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>W</mi> <mo>,</mo> <mi>dc</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>27</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <mi>E</mi> <mrow> <mo>(</mo> <msubsup> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>t</mi> </mrow> <mi>dc</mi> </msubsup> <mo>)</mo> </mrow> <mo>&GreaterEqual;</mo> <msub> <mrow> <mo>-</mo> <mo>[</mo> <mi>P</mi> </mrow> <mrow> <mi>EV</mi> <mo>,</mo> <mi>RD</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mi>E</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>RD</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>P</mi> <mrow> <mi>POP</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>W</mi> <mo>,</mo> <mi>c</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>RU</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mi>E</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>RU</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>RR</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mi>E</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>RR</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>W</mi> <mo>,</mo> <mi>dc</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>]</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>28</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mi>S</mi> <mi>t</mi> </msub> <mo>=</mo> <msub> <mi>S</mi> <mn>0</mn> </msub> <mo>+</mo> <munder> <mi>&Sigma;</mi> <mi>t</mi> </munder> <mo>[</mo> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>ctr</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <msub> <mi>&eta;</mi> <mi>c</mi> </msub> <mo>-</mo> <mfrac> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>dri</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <msub> <mi>&eta;</mi> <mi>dc</mi> </msub> </mfrac> <mo>]</mo> <msub> <mi>&lambda;</mi> <mrow> <mi>cp</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mfrac> <mi>&Delta;t</mi> <msub> <mi>P</mi> <mi>bat</mi> </msub> </mfrac> <mo>+</mo> <munder> <mi>&Sigma;</mi> <mi>t</mi> </munder> <mo>[</mo> <mi>E</mi> <mrow> <mo>(</mo> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>]</mo> <msub> <mi>&eta;</mi> <mi>c</mi> </msub> <msub> <mi>&lambda;</mi> <mrow> <mi>cp</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mfrac> <mn>1</mn> <msub> <mi>P</mi> <mi>bat</mi> </msub> </mfrac> <mi>&Delta;t</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>29</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msubsup> <mi>P</mi> <mrow> <mi>W</mi> <mo>,</mo> <mi>t</mi> </mrow> <mi>B</mi> </msubsup> <mo>&le;</mo> <msub> <mi>z</mi> <msub> <mi>&epsiv;</mi> <mrow> <mi>up</mi> <mo>,</mo> <mi>W</mi> </mrow> </msub> </msub> <msub> <mi>&sigma;</mi> <mrow> <mi>up</mi> <mo>,</mo> <mi>W</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>&mu;</mi> <mrow> <mi>up</mi> <mo>,</mo> <mi>W</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>30</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msubsup> <mi>P</mi> <mrow> <mi>W</mi> <mo>,</mo> <mi>t</mi> </mrow> <mi>B</mi> </msubsup> <mo>&le;</mo> <msub> <mi>z</mi> <mrow> <mn>1</mn> <mo>-</mo> <msub> <mi>&epsiv;</mi> <mrow> <mi>low</mi> <mo>,</mo> <mi>W</mi> </mrow> </msub> </mrow> </msub> <msub> <mi>&sigma;</mi> <mrow> <mi>low</mi> <mo>,</mo> <mi>W</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>&mu;</mi> <mrow> <mi>low</mi> <mo>,</mo> <mi>W</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>31</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mi>P</mi> <mrow> <mi>pl</mi> <mo>,</mo> <mi>ec</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>W</mi> <mo>,</mo> <mi>c</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>+</mo> <msubsup> <mi>P</mi> <mrow> <mi>W</mi> <mo>,</mo> <mi>t</mi> </mrow> <mi>B</mi> </msubsup> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>W</mi> <mo>,</mo> <mi>dc</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>&GreaterEqual;</mo> <msub> <mi>z</mi> <mrow> <mn>1</mn> <mo>-</mo> <msub> <mi>&epsiv;</mi> <mrow> <mi>pl</mi> <mo>,</mo> <mi>ec</mi> </mrow> </msub> </mrow> </msub> <msub> <mi>&sigma;</mi> <mrow> <mi>a</mi> <mo>,</mo> <mi>W</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>&mu;</mi> <mrow> <mi>a</mi> <mo>,</mo> <mi>W</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>32</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>W</mi> <mo>,</mo> <mi>c</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>+</mo> <msubsup> <mi>P</mi> <mrow> <mi>W</mi> <mo>,</mo> <mi>t</mi> </mrow> <mi>B</mi> </msubsup> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>EV</mi> <mo>,</mo> <mi>W</mi> <mo>,</mo> <mi>dc</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>pl</mi> <mo>,</mo> <mi>bl</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>&le;</mo> <msub> <mi>z</mi> <msub> <mi>&epsiv;</mi> <mrow> <mi>pl</mi> <mo>,</mo> <mi>bl</mi> </mrow> </msub> </msub> <msub> <mi>&sigma;</mi> <mrow> <mi>a</mi> <mo>,</mo> <mi>W</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>&mu;</mi> <mrow> <mi>a</mi> <mo>,</mo> <mi>W</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>33</mn> <mo>)</mo> </mrow> </mrow> </math>
in the formula: w is an objective function, and P is a vector formed by decision variables; y is a vector consisting of auxiliary decision variables introduced by the dual transformation; thetaup,eIs an adjustment factor; pbatRepresenting virtual premises in a power plantEquivalent capacity of the battery of the electric automobile; mu.sa,W,tAnd σa,W,tAre respectively asIs normally distributed with an expected value and a standard deviation Plow,W,t(ii) a Fan competitive bidding outputUpper and lower limits P ofup,W,tAnd Plow,W,tAre all random variables, muup,W,t,σup,W,tAnd mulow,W,t,σlow,W,tAre respectively Pup,W,tExpected value and standard deviation of the sum.up,Wlow,Wpl,ecpl,blRepresenting the probability that the opportunity constraint holds; z is a radical of The upper quantile of the standard normal distribution isRespectively represent the upper side of a standard normal distributionup,W、1-low,W、1-pl,ecpl,blDividing into points; e (x)RD) Calling proportion x representing stand-by of power system at down regulation of time period tRDExpected value of (A), day-ahead energy market price lambdadag,e,tUpper adjustment reserve capacity price lambdaRU,tLowering reserve capacity price lambdaRD,tPrice lambda of reserve capacity in rotationRR,tFrom the electricity purchase price lambda of the real-time energy market of the virtual power plants,e,tPower price lambda for power generation and network accessg,e,tPredictions can be made from historical data and are assumed to be all in the intervalAn internal variation; wherein,a predicted value representing the electricity price is displayed,indicating electricityA valence fluctuation interval radius;
in the robust collaborative bidding model, the charging and discharging power constraint of the electric vehicle is an equation (27) and an equation (28), the SOC constraint is an equation (29), equations (30) and (31) are respectively an upper limit constraint and a lower limit constraint of fan bidding output, equations (32) and (33) are deviation constraints of the fan bidding output and actual output, and the other constraints, namely the forms of equations (10) to (13), are unchanged;
the decision variables include: competitive bidding output of wind power in day-ahead energy marketRegulated reserve and spinning reserve bid capacities, i.e., P, for electric vehicles in the regulated marketEV,RU,t,PEV,RD,tAnd PEV,RR,t(ii) a Standby P provided by electric automobile for stabilizing output fluctuation of fanEV,W,c,tAnd PEV,W,dc,t(ii) a Planned charging power P of electric vehiclePOP,t(ii) a Contract electric quantity charging power P of electric automobileEV,ctr,t(ii) a Decision variable P added by model linearization transformationpl,ec,tAndauxiliary decision variable p introduced by dual transformation1Q and y, wherein q ═ q (q)W,B,t,qRU,t,qRD,t,qRR,t,qpl,ec,t,qpl,bl,t,qEV,c,t),y=(yW,B,t,yRU,t,yRD,t,yRR,t,ypl,ec,t,ypl,bl,t,yEV,c,t) (ii) a Robust control coefficient of1
3) And controlling the risk level of the virtual power plant bidding strategy by adjusting the robust control coefficient to obtain a corresponding bidding strategy scheme.
CN201410737843.XA 2014-12-06 2014-12-06 Method for determining bidding strategy of virtual power station including electric automobiles and wind turbines Pending CN104466999A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410737843.XA CN104466999A (en) 2014-12-06 2014-12-06 Method for determining bidding strategy of virtual power station including electric automobiles and wind turbines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410737843.XA CN104466999A (en) 2014-12-06 2014-12-06 Method for determining bidding strategy of virtual power station including electric automobiles and wind turbines

Publications (1)

Publication Number Publication Date
CN104466999A true CN104466999A (en) 2015-03-25

Family

ID=52912592

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410737843.XA Pending CN104466999A (en) 2014-12-06 2014-12-06 Method for determining bidding strategy of virtual power station including electric automobiles and wind turbines

Country Status (1)

Country Link
CN (1) CN104466999A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105117805A (en) * 2015-09-15 2015-12-02 武汉大学 Optimized scheduling method and system based on virtual power plant of electric vehicle
CN105391092A (en) * 2015-11-18 2016-03-09 国网山东省电力公司电力科学研究院 Virtual power plant multi-objective bidding control and optimization method based on dependent chance programming
CN105958498A (en) * 2016-04-28 2016-09-21 东南大学 Electric-vehicle-considered unit commitment and time-of-use power price joint optimization method
CN107730048A (en) * 2017-10-26 2018-02-23 华中科技大学 A kind of random robust Optimization Scheduling of wind-powered electricity generation electric automobile association system
CN107867198A (en) * 2017-11-03 2018-04-03 华北电力大学 Adjust the electric automobile real time charging strategy of the frequency of power distribution network containing wind-powered electricity generation
CN107887932A (en) * 2017-11-13 2018-04-06 天津大学 Virtual power plant is bidded method for organizing in the production of ahead market
CN108808734A (en) * 2018-07-09 2018-11-13 东北电力大学 A kind of wind-electricity integration system distributed optimization scheduling modeling method containing virtual plant
CN108960510A (en) * 2018-07-04 2018-12-07 四川大学 A kind of virtual plant optimization trading strategies model based on two stage stochastic programming
CN110535183A (en) * 2018-05-25 2019-12-03 国网河南省电力公司电力科学研究院 A kind of dispatching method and system of virtual plant
CN111523729A (en) * 2020-04-23 2020-08-11 上海交通大学 Virtual power plant bidding optimization control method based on IGDT and demand response
CN111682536A (en) * 2020-06-24 2020-09-18 上海电力大学 Random-robust optimization operation method for virtual power plant participating in day-ahead double market
CN115409552A (en) * 2022-08-29 2022-11-29 南京邮电大学 Electric vehicle standby declaration method and system based on multi-scene risk prevention control

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103456099A (en) * 2013-08-26 2013-12-18 东南大学 Real-time electricity price-based plug-in type electric vehicle charging control method
WO2014031099A1 (en) * 2012-08-21 2014-02-27 International Truck Intellectual Property Company, Llc Vehicle powertrain and method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014031099A1 (en) * 2012-08-21 2014-02-27 International Truck Intellectual Property Company, Llc Vehicle powertrain and method
CN103456099A (en) * 2013-08-26 2013-12-18 东南大学 Real-time electricity price-based plug-in type electric vehicle charging control method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
杨甲甲等: "含电动汽车和风电机组的虚拟发电厂竞价策略", 《电力系统自动化》 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105117805A (en) * 2015-09-15 2015-12-02 武汉大学 Optimized scheduling method and system based on virtual power plant of electric vehicle
CN105391092A (en) * 2015-11-18 2016-03-09 国网山东省电力公司电力科学研究院 Virtual power plant multi-objective bidding control and optimization method based on dependent chance programming
CN105391092B (en) * 2015-11-18 2018-05-04 国网山东省电力公司电力科学研究院 The optimising and adjustment method that virtual plant multiple target based on Dependent-chance Programming is bidded
CN105958498A (en) * 2016-04-28 2016-09-21 东南大学 Electric-vehicle-considered unit commitment and time-of-use power price joint optimization method
CN107730048A (en) * 2017-10-26 2018-02-23 华中科技大学 A kind of random robust Optimization Scheduling of wind-powered electricity generation electric automobile association system
CN107867198A (en) * 2017-11-03 2018-04-03 华北电力大学 Adjust the electric automobile real time charging strategy of the frequency of power distribution network containing wind-powered electricity generation
CN107887932A (en) * 2017-11-13 2018-04-06 天津大学 Virtual power plant is bidded method for organizing in the production of ahead market
CN110535183A (en) * 2018-05-25 2019-12-03 国网河南省电力公司电力科学研究院 A kind of dispatching method and system of virtual plant
CN110535183B (en) * 2018-05-25 2022-10-25 国网河南省电力公司电力科学研究院 Scheduling method and system of virtual power plant
CN108960510A (en) * 2018-07-04 2018-12-07 四川大学 A kind of virtual plant optimization trading strategies model based on two stage stochastic programming
CN108960510B (en) * 2018-07-04 2021-11-26 四川大学 Virtual power plant optimization trading strategy device based on two-stage random planning
CN108808734A (en) * 2018-07-09 2018-11-13 东北电力大学 A kind of wind-electricity integration system distributed optimization scheduling modeling method containing virtual plant
CN111523729A (en) * 2020-04-23 2020-08-11 上海交通大学 Virtual power plant bidding optimization control method based on IGDT and demand response
CN111523729B (en) * 2020-04-23 2022-03-04 上海交通大学 Virtual power plant bidding optimization control method based on IGDT and demand response
CN111682536A (en) * 2020-06-24 2020-09-18 上海电力大学 Random-robust optimization operation method for virtual power plant participating in day-ahead double market
CN111682536B (en) * 2020-06-24 2023-08-18 上海电力大学 Random-robust optimization operation method for virtual power plant participating in dual market before day
CN115409552A (en) * 2022-08-29 2022-11-29 南京邮电大学 Electric vehicle standby declaration method and system based on multi-scene risk prevention control

Similar Documents

Publication Publication Date Title
CN104466999A (en) Method for determining bidding strategy of virtual power station including electric automobiles and wind turbines
CN108960510B (en) Virtual power plant optimization trading strategy device based on two-stage random planning
Yang et al. Computational scheduling methods for integrating plug-in electric vehicles with power systems: A review
Akbari-Dibavar et al. Smart home energy management using hybrid robust-stochastic optimization
CN108875992B (en) Virtual power plant day-ahead optimization scheduling method considering demand response
CN112465323B (en) Cascade hydropower station short-term robust scheduling method coupled with daily electricity quantity decomposition and day-ahead market bidding
Zheng et al. Optimal allocation of energy storage system for risk mitigation of DISCOs with high renewable penetrations
CN113688567B (en) Virtual power plant two-stage optimization scheduling method considering impact load
CN104376385A (en) Microgrid power price optimizing method
CN110516855B (en) Load aggregator-oriented distributed energy storage control right optimized scheduling method
US20130138285A1 (en) Systems and methods for using electric vehicles as mobile energy storage
CN112465208B (en) Virtual power plant random self-adaptive robust optimization scheduling method considering block chain technology
CN111260237B (en) Multi-interest-subject coordinated game scheduling method considering EV (electric vehicle) owner intention
CN109146320B (en) Virtual power plant optimal scheduling method considering power distribution network safety
CN103985064A (en) Electric car conversion mode charging control method based on real-time electricity price
CN112529249B (en) Virtual power plant optimal scheduling and transaction management method considering green certificate transaction
CN110033142B (en) Charging and battery replacing station optimal scheduling strategy considering load uncertainty
US20160140449A1 (en) Fuzzy linear programming method for optimizing charging schedules in unidirectional vehicle-to-grid systems
CN110826801B (en) Distributed electric energy management method for electric vehicle charging station
CN116957294A (en) Scheduling method for virtual power plant to participate in electric power market transaction based on digital twin
CN107887932A (en) Virtual power plant is bidded method for organizing in the production of ahead market
CN110991881B (en) Cooperative scheduling method and system for electric vehicle battery exchange station and electric company
CN109327035B (en) Method and system for adjusting charging power of electric automobile
CN105930919A (en) Two-stage stochastic planning-based virtual power plant risk avoidance optimization operation method
Pilz et al. A practical approach to energy scheduling: A game worth playing?

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20150325