CN104462856A - 船舶冲突预警方法 - Google Patents
船舶冲突预警方法 Download PDFInfo
- Publication number
- CN104462856A CN104462856A CN201410844695.1A CN201410844695A CN104462856A CN 104462856 A CN104462856 A CN 104462856A CN 201410844695 A CN201410844695 A CN 201410844695A CN 104462856 A CN104462856 A CN 104462856A
- Authority
- CN
- China
- Prior art keywords
- boats
- ships
- prime
- discrete
- ship
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 53
- 238000005070 sampling Methods 0.000 claims abstract description 35
- 238000012545 processing Methods 0.000 claims abstract description 10
- 238000012544 monitoring process Methods 0.000 claims abstract description 7
- 238000005096 rolling process Methods 0.000 claims abstract description 5
- 238000012549 training Methods 0.000 claims abstract description 4
- 230000009466 transformation Effects 0.000 claims description 8
- 230000007704 transition Effects 0.000 claims description 6
- 238000001514 detection method Methods 0.000 claims description 3
- 230000002068 genetic effect Effects 0.000 claims description 3
- 238000009499 grossing Methods 0.000 claims description 3
- 239000011159 matrix material Substances 0.000 claims description 3
- 238000012804 iterative process Methods 0.000 claims description 2
- 230000006399 behavior Effects 0.000 abstract 1
- 238000007781 pre-processing Methods 0.000 abstract 1
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 230000032683 aging Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16Z—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS, NOT OTHERWISE PROVIDED FOR
- G16Z99/00—Subject matter not provided for in other main groups of this subclass
Landscapes
- Traffic Control Systems (AREA)
Abstract
本发明涉及一种船舶冲突预警方法,包括如下几个步骤,首先通过海面雷达获得船舶的实时和历史位置信息并做初步处理;然后在每一采样时刻对船舶轨迹数据预处理,然后在每一采样时刻对船舶轨迹数据聚类,再而在每一采样时刻对船舶轨迹数据利用隐马尔科夫模型进行参数训练,然后在每一采样时刻依据隐马尔科夫模型参数,采用Viterbi算法获取当前时刻观测值所对应的隐状态q,最后在每一采样时刻通过设定预测时域W,基于船舶当前时刻的隐状态q,获取未来时段船舶的位置预测值O,并通过建立安全规则集对船舶的动态行为实施监控并及时发出告警信息。本发明滚动实时对船舶轨迹进行预测,有效预警海域冲突,提高海上交通的安全性。
Description
技术领域
本发明涉及一种海域交通管制方法,尤其涉及一种基于滚动规划策略的船舶冲突预警方法。
背景技术
随着全球航运业的快速发展,部分繁忙海域内的交通愈加拥挤。在船舶交通流密集复杂海域,针对船舶间的冲突情形仍然采用航行计划结合人工间隔调配的管制方式已不能适应航运业的快速发展。为保证船舶间的安全间隔,实施有效的冲突预警就成为海域交通管制工作的重点。船舶冲突预警是航海领域中的一项关键技术,安全高效的预警方案对于增加海域船舶流量以及确保海运安全具有重大意义。
为了提高船舶的航行效率,船用雷达自动标绘仪目前已经被广泛应用到船舶监控和避碰中,该设备通过提取船舶相关信息为船舶间冲突情形的判定提供参考依据。而船舶冲突预警是基于对船舶轨迹的预测的基础上,在船舶实际航行中,受气象条件、导航设备以及驾驶员操作等各种因素的影响,它的运行状态往往不完全属于某一特定的运动状态,故目前对船舶轨迹的预测及船舶冲突预警均没有较为准确的方案。
发明内容
本发明要解决的技术问题是提供一种鲁棒性较好的船舶冲突预警方法,该方法的船舶轨迹预测精度较高,船舶冲突预警的准确性及时效性均较好。
实现本发明目的的技术方案是提供一种船舶冲突预警方法,包括如下几个步骤:
①通过海面雷达获得船舶的实时和历史位置信息,各船舶的位置信息为离散二维位置序列x′=[x1′,x2′,...,xn′]和y′=[y1′,y2′,...,yn′],通过应用小波变换理论对原始离散二维位置序列x′=[x1′,x2′,...,xn′]和y′=[y1′,y2′,...,yn′]进行初步处理,从而获取船舶的去噪离散二维位置序列x=[x1,x2,...,xn]和y=[y1,y2,...,yn];
②在每一采样时刻对船舶轨迹数据预处理,依据所获取的船舶原始离散二维位置序列x=[x1,x2,...,xn]和y=[y1,y2,...,yn],采用一阶差分方法对其进行处理获取新的船舶离散位置序列Δx=[Δx1,Δx2,...,Δxn-1]和Δy=[Δy1,Δy2,...,Δyn-1],其中Δxi=xi+1-xi,Δyi=yi+1-yi(i=1,2,...,n-1);
③在每一采样时刻对船舶轨迹数据聚类,对处理后新的船舶离散二维位置序列Δx和Δy,通过设定聚类个数M′,采用遗传聚类算法分别对其进行聚类;
④在每一采样时刻对船舶轨迹数据利用隐马尔科夫模型进行参数训练,通过将处理后的船舶运行轨迹数据Δx和Δy视为隐马尔科夫过程的显观测值,通过设定隐状态数目N和参数更新时段τ′,依据最近的T′个位置观测值并采用B-W算法滚动获取最新隐马尔科夫模型参数λ′;
⑤在每一采样时刻依据隐马尔科夫模型参数,采用Viterbi算法获取当前时刻观测值所对应的隐状态q;
⑥在每一采样时刻,通过设定预测时域W,基于船舶当前时刻的隐状态q,获取未来时段船舶的位置预测值O,从而在每一采样时刻滚动推测到未来时段内船舶的轨迹;
⑦在每一采样时刻,基于各船舶的运行状态和设定的船舶在海域内运行时需满足的安全规则集,当船舶间有可能出现违反安全规则的状况时,对其动态行为实施监控并为海上交通控制中心提供及时的告警信息。
进一步的,所述步骤①中,通过应用小波变换理论对原始离散二维位置序列x′=[x1′,x2′,...,xn′]和y′=[y1′,y2′,...,yn′]进行初步处理,从而获取船舶的去噪离散二维位置序列x=[x1,x2,...,xn]和y=[y1,y2,...,yn]:对于给定的原始二维序列数据x′=[x1′,x2′,...,xn′],利用如下形式的线性表达式分别对其进行近似:
其中:
f′(x′)表示对数据平滑处理后得到的函数表达式,ψ(x′)表示母波,δ、J和K均为小波变换常数,ψJ,K(x′)表示母波的转换形式,cJ,K表示由小波变换过程得到的函数系数,它体现了子波ψJ,K(x′)对整个函数近似的权重大小,若此系数很小,那么它意味着子波ψJ,K(x′)的权重也较小,因而可以在不影响函数主要特性的前提下,从函数近似过程中将子波ψJ,K(x′)除去;在实际数据处理过程中,通过设定阈值χ来实施“阈值转换”,当cJ,K<χ时,设定cJ,K=0;阈值函数的选取采用如下两种方式:
对于y′=[y1′,y2′,...,yn′],也采用上述方法进行去噪处理。
进一步的,所述步骤④中确定航迹隐马尔科夫模型参数λ′=(π,A,B)的过程如下:
4.1)变量赋初值:应用均匀分布给变量πi,aij和bi(ok)赋初值和并使其满足约束条件: 和 由此得到λ0=(π0,A0,B0),其中ok表示某一显观测值,π0、A0和B0分别是由元素和构成的矩阵,令参数l=0,o=(ot-T′+1,...,ot-1,ot)为当前时刻t之前的T′个历史位置观测值;
4.2)执行E-M算法:
4.2.1)E-步骤:由λl计算ξe(i,j)和γe(si);
变量 那么
其中s表示某一隐状态;
4.2.2)M-步骤:运用 分别估计πi,aij和bj(ok)并由此得到λl+1;
4.2.3)循环:l=l+1,重复执行E-步骤和M-步骤,直至πi、aij和bj(ok)收敛,即
|P(o|λl+1)-P(o|λl)|<ε,其中参数ε=0.00001,返回步骤4.2.4);
4.2.4):令λ′=λl+1,算法结束。
进一步的,所述步骤⑤中确定船舶航迹最佳隐状态序列的迭代过程如下:
5.1)变量赋初值:令g=2,βT′(si)=1(si∈S),δ1(si)=πibi(o1),ψ1(si)=0,其中,
,其中变量ψg(sj)表示使变量δg-1(si)aij取最大值的船舶航迹隐状态si,参数S表示隐状态的集合;
5.2)递推过程:
5.3)时刻更新:令g=g+1,若g≤T′,返回步骤5.2),否则迭代终止并转到步骤5.4);
5.4) 转到步骤5.5);
5.5)最优隐状态序列获取:
5.5.1)变量赋初值:令g=T′-1;
5.5.2)后向递推:
5.5.3)时刻更新:令g=g-1,若g≥1,返回步骤5.5.2),否则终止。
进一步的,所述步骤③中,聚类个数M′的值为4。
进一步的,所述步骤④中,状态数目N的值为3,参数更新时段τ′为30秒,T′为10。
进一步的,所述步骤⑥中,预测时域W为300秒。
进一步的,所述步骤⑦中对各船舶的动态行为实施监控并为海上交通控制中心提供及时的告警信息的具体过程如下:
7.1)构造船舶在海域内运行时需满足的安全规则集Dmr(t)≥Dmin,其中Dmr(t)表示任意两个船舶m和船舶r在t时刻的距离,Dmin表示船舶间的最小安全距离;
7.2)依据采样时间,建立由船舶连续运行状态至离散采样状态的观测器Λ:г→Ξ,其中г表示船舶的连续运行状态,Ξ表示船舶的离散采样状态;
7.3)当船舶m和r的观测器Λm和Λr的离散观测数值Ξm和Ξr在t时刻表明该向量不在安全规则集中时,即关系式Dmr(t)≥Dmin不成立时,立刻向海上交通控制中心发出告警信息。
本发明具有积极的效果:(1)本发明在船舶轨迹实时预测的过程中,融入了随机因素的影响,所采用的滚动轨迹预测方案能够及时提取外界随机因素的变化状况,提高了船舶轨迹预测的准确性。
(2)本发明基于不同性能指标,其船舶轨迹实时预测结果可以为存在冲突的多个船舶提供解脱轨迹规划方案,提高船舶运行的经济性和海域资源的利用率。
(3)本发明对船舶冲突的预警效果较好,可有效、准确、实时地预测船舶的轨迹并预测船舶冲突,有效提高海域交通的安全性。
附图说明
图1为本发明中的船舶运行短期轨迹生成流程示意图;
图2为本发明中的船舶运行态势监控流程示意图。
具体实施方式
(实施例1)
见图1,本实施例的船舶冲突预警方法包括如下几个步骤:
①通过海面雷达获得船舶的实时和历史位置信息,各船舶的位置信息为离散二维位置序列x′=[x1′,x2′,...,xn′]和y′=[y1′,y2′,...,yn′],通过应用小波变换理论对原始离散二维位置序列x′=[x1′,x2′,...,xn′]和y′=[y1′,y2′,...,yn′]进行初步处理,从而获取船舶的去噪离散二维位置序列x=[x1,x2,...,xn]和y=[y1,y2,...,yn],对于给定的原始二维序列数据x′=[x1′,x2′,...,xn′],利用如下形式的线性表达式分别对其进行近似:
其中:
f′(x′)表示对数据平滑处理后得到的函数表达式,ψ(x′)表示母波,δ、J和K均为小波变换常数,ψJ,K(x′)表示母波的转换形式,cJ,K表示由小波变换过程得到的函数系数,它体现了子波ψJ,K(x′)对整个函数近似的权重大小,若此系数很小,那么它意味着子波ψJ,K(x′)的权重也较小,因而可以在不影响函数主要特性的前提下,从函数近似过程中将子波ψJ,K(x′)除去;在实际数据处理过程中,通过设定阈值χ来实施“阈值转换”,当cJ,K<χ时,设定cJ,K=0;阈值函数的选取采用如下两种方式:
对于y′=[y1′,y2′,...,yn′],也采用上述方法进行去噪处理;
②在每一采样时刻对船舶轨迹数据预处理,依据所获取的船舶原始离散二维位置序列x=[x1,x2,...,xn]和y=[y1,y2,...,yn],采用一阶差分方法对其进行处理获取新的船舶离散位置序列Δx=[Δx1,Δx2,...,Δxn-1]和Δy=[Δy1,Δy2,...,Δyn-1],其中Δxi=xi+1-xi,Δyi=yi+1-yi(i=1,2,...,n-1);
③在每一采样时刻对船舶轨迹数据聚类,对处理后新的船舶离散二维位置序列Δx和Δy,通过设定聚类个数M′,采用遗传聚类算法分别对其进行聚类;
④在每一采样时刻对船舶轨迹数据利用隐马尔科夫模型进行参数训练,通过将处理后的船舶运行轨迹数据Δx和Δy视为隐马尔科夫过程的显观测值,通过设定隐状态数目N和参数更新时段τ′,依据最近的T′个位置观测值并采用B-W算法滚动获取最新隐马尔科夫模型参数λ′;确定航迹隐马尔科夫模型参数λ′=(π,A,B)的过程如下:
4.1)变量赋初值:应用均匀分布给变量πi,aij和bj(ok)赋初值和并使其满足约束条件: 阳 由此得到λ0=(π0,A0,B0),其中ok表示某一显观测值,π0、A0和B0分别是由元素阳构成的矩阵,令参数l=0,o=(ot-T′+1,...,ot-1,ot)为当前时刻t之前的T′个历史位置观测值;
4.2)执行E-M算法:
4.2.1)E-步骤:由λl计算ξe(i,j)和γe(si);
变量 那么
其中s表示某一隐状态;
4.2.2)M-步骤:运用 分别估计πi,aij和bj(ok)并由此得到λl+1;
4.2.3)循环:l=l+1,重复执行E-步骤和M-步骤,直至πi、aij和bj(ok)收敛,即
|P(o|λl+1)-P(o|λl)|<ε,其中参数ε=0.00001,返回步骤4.2.4);
4.2.4):令λ′=λl+1,算法结束。
⑤在每一采样时刻依据隐马尔科夫模型参数,采用Viterbi算法获取当前时刻观测值所对应的隐状态q:
5.1)变量赋初值:令g=2,βT′(si)=1(si∈S),δ1(si)=πibi(o1),ψ1(si)=0,其中,
5.2)递推过程:
5.3)时刻更新:令g=g+1,若g≤T′,返回步骤5.2),否则迭代终止并转到步骤5.4);
5.4) 转到步骤5.5);
5.5)最优隐状态序列获取:
5.5.1)变量赋初值:令g=T′-1;
5.5.2)后向递推:
5.5.3)时刻更新:令g=g-1,若g≥1,返回步骤5.5.2),否则终止。。
⑥在每一采样时刻,通过设定预测时域W,基于船舶当前时刻的隐状态q,获取未来时段船舶的位置预测值O。
上述聚类个数M′的值为4,,状态数目N的值为3,参数更新时段τ′为30秒,T′为10,预测时域W为300秒。
(应用例、航海交通管制方法)
本实施例的航海交通管制方法包括如下几个步骤:
步骤A、根据实施例1得到的船舶冲突预警方法获得船舶在每一采样时刻推测到的未来时段内船舶的轨迹;
步骤B、在每一采样时刻,基于船舶当前的运行状态和历史位置观察序列,获取海域风场变量的数值,其具体过程如下:
B.1)设定船舶的停靠位置为轨迹参考坐标原点;
B.2)在船舶处于直线运行状态和匀速转弯运行状态时,构建海域风场线性滤波模型;
B.3)根据所构建的滤波模型获取风场变量的数值。
步骤C、在每一采样时刻,基于各船舶的运行状态和设定的船舶在海域内运行时需满足的安全规则集,当船舶间有可能出现违反安全规则的状况时,对其动态行为实施监控并为海上交通控制中心提供及时的告警信息;
步骤D、当告警信息出现时,在满足船舶物理性能和海域交通规则的前提下,通过设定优化指标函数以及融入风场变量数值,采用模型预测控制理论方法对船舶避撞轨迹进行滚动规划,并将规划结果传输给各船舶执行,其具体过程如下:
D.1)设定船舶避撞轨迹规划的终止参考点位置P、避撞策略控制时域Θ、轨迹预测时域γ;
D.2)设定在给定优化指标函数的前提下,基于合作式避撞轨迹规划思想,通过给各个船舶赋予不同的权重以及融入实时风场变量滤波数值,得到各个船舶的避撞轨迹和避撞控制策略并将规划结果传输给各船舶执行,且各船舶在滚动规划间隔内仅实施其第一个优化控制策略;
D.3)在下一采样时刻,重复步骤D.2直至各船舶均到达其解脱终点。
上述终止参考点位置P设定为船舶位置冲突点的下一个航道点,避撞策略控制时域Θ为300秒;轨迹预测时域γ为300秒。
⑦见图2,在每一采样时刻,基于各船舶的运行状态和设定的船舶在海域内运行时需满足的安全规则集,当船舶间有可能出现违反安全规则的状况时,对其动态行为实施监控并为海上交通控制中心提供及时的告警信息,其具体过程如下:
7.1)构造船舶在海域内运行时需满足的安全规则集Dmr(t)≥Dmin,其中Dmr(t)表示任意两个船舶m和船舶r在t时刻的距离,Dmin表示船舶间的最小安全距离;
7.2)依据采样时间,建立由船舶连续运行状态至离散采样状态的观测器Λ:г→Ξ,其中г表示船舶的连续运行状态,Ξ表示船舶的离散采样状态;
7.3)当船舶m和r的观测器Λm和Λr的离散观测数值Ξm和Ξr在t时刻表明该向量不在安全规则集中时,即关系式Dmr(t)≥Dmin不成立时,立刻向海上交通控制中心发出告警信息。
显然,上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而这些属于本发明的精神所引伸出的显而易见的变化或变动仍处于本发明的保护范围之中。
Claims (8)
1.一种船舶冲突预警方法,其特征在于包括如下几个步骤:
①通过海面雷达获得船舶的实时和历史位置信息,各船舶的位置信息为离散二维位置序列x′=[x1′,x2′,...,xn′]和y′=[y1′,y2′,...,yn′],通过应用小波变换理论对原始离散二维位置序列x′=[x1′,x2′,...,xn′]和y′=[y1′,y2′,...,yn′]进行初步处理,从而获取船舶的去噪离散二维位置序列x=[x1,x2,...,xn]和y=[y1,y2,...,yn];
②在每一采样时刻对船舶轨迹数据预处理,依据所获取的船舶原始离散二维位置序列x=[x1,x2,...,xn]和y=[y1,y2,...,yn],采用一阶差分方法对其进行处理获取新的船舶离散位置序列Δx=[Δx1,Δx2,...,Δxn-1]和Δy=[Δy1,Δy2,...,Δyn-1],其中Δxi=xi+1-xi,Δyi=yi+1-yi(i=1,2,...,n-1);
③在每一采样时刻对船舶轨迹数据聚类,对处理后新的船舶离散二维位置序列Δx和Δy,通过设定聚类个数M′,采用遗传聚类算法分别对其进行聚类;
④在每一采样时刻对船舶轨迹数据利用隐马尔科夫模型进行参数训练,通过将处理后的船舶运行轨迹数据Δx和Δy视为隐马尔科夫过程的显观测值,通过设定隐状态数目N和参数更新时段τ′,依据最近的T′个位置观测值并采用B-W算法滚动获取最新隐马尔科夫模型参数λ′;
⑤在每一采样时刻依据隐马尔科夫模型参数,采用Viterbi算法获取当前时刻观测值所对应的隐状态q;
⑥在每一采样时刻,通过设定预测时域W,基于船舶当前时刻的隐状态q,获取未来时段船舶的位置预测值O,从而在每一采样时刻滚动推测到未来时段内船舶的轨迹;
⑦在每一采样时刻,基于各船舶的运行状态和设定的船舶在海域内运行时需满足的安全规则集,当船舶间有可能出现违反安全规则的状况时,对其动态行为实施监控并为海上交通控制中心提供及时的告警信息。
2.根据权利要求1所述的船舶冲突预警方法,其特征在于:所述步骤①中,通过应用小波变换理论对原始离散二维位置序列x′=[x1′,x2′,...,xn′]和y′=[y1′,y2′,...,yn′]进行初步处理,从而获取船舶的去噪离散二维位置序列x=[x1,x2,...,xn]和y=[y1,y2,...,yn]:对于给定的原始二维序列数据x′=[x1′,x2′,...,xn′],利用如下形式的线性表达式分别对其进行近似:
其中:
ψJ,K(x′)=δ·ψ(2Jx′-K)
f′(x′)表示对数据平滑处理后得到的函数表达式,ψ(x′)表示母波,δ、J和K均为小波变换常数,ψJ,K(x′)表示母波的转换形式,cJ,K表示由小波变换过程得到的函数系数,它体现了子波ψJ,K(x′)对整个函数近似的权重大小,若此系数很小,那么它意味着子波ψJ,K(x′)的权重也较小,因而可以在不影响函数主要特性的前提下,从函数近似过程中将子波ψJ,K(x′)除去;在实际数据处理过程中,通过设定阈值χ来实施“阈值转换”,当cJ,K<χ时,设定cJ,K=0;阈值函数的选取采用如下两种方式:
对于y′=[y1′,y2′,...,yn′],也采用上述方法进行去噪处理。
3.根据权利要求1或2所述的船舶冲突预警方法,其特征在于:所述步骤④中确定航迹隐马尔科夫模型参数λ′=(π,A,B)的过程如下:
4.1)变量赋初值:应用均匀分布给变量πi,aij和bj(ok)赋初值和并使其满足约束条件: (1≤i≤N)和(1≤j≤N),由此得到λ0=(π0,A0,B0),其中ok表示某一显观测值,π0、A0和B0分别是由元素和构成的矩阵,令参数l=0,o=(ot-T′+1,...,ot-1,ot)为当前时刻t之前的T′个历史位置观测值;
4.2)执行E-M算法:
4.2.1)E-步骤:由λl计算ξe(i,j)和γe(si);
变量 那么
其中s表示某一隐状态;
4.2.2)M-步骤:运用 分别估计πi,aij和bj(ok)并由此得到λl+1;
4.2.3)循环:l=l+1,重复执行E-步骤和M-步骤,直至πi、aij和bj(ok)收敛,即其中参数ε=0.00001,返回步骤4.2.4);
4.2.4):令λ′=λl+1,算法结束。
4.根据权利要求1至3之一所述的船舶冲突预警方法,其特征在于:所述步骤⑤中确定船舶航迹最佳隐状态序列的迭代过程如下:
5.1)变量赋初值:令g=2,βT′(si)=1(si∈S),δ1(si)=πibi(o1),ψ1(si)=0,其中,
其中变量ψg(sj)表示使变量δg-1(si)aij取最大值的船舶航迹隐状态si,参数S表示隐状态的集合;
5.2)递推过程:
5.3)时刻更新:令g=g+1,若g≤T′,返回步骤5.2),否则迭代终止并转到步骤5.4);
5.4) 转到步骤5.5);
5.5)最优隐状态序列获取:
5.5.1)变量赋初值:令g=T′-1;
5.5.2)后向递推:
5.5.3)时刻更新:令g=g-1,若g≥1,返回步骤5.5.2),否则终止。
5.根据权利要求1至4之一所述的船舶冲突预警方法,其特征在于:所述步骤③中,聚类个数M′的值为4。
6.根据权利要求1至5之一所述的船舶冲突预警方法,其特征在于:所述步骤④中,状态数目N的值为3,参数更新时段τ′为30秒,T′为10。
7.根据权利要求1至6之一所述的船舶冲突预警方法,其特征在于:所述步骤⑥中,预测时域W为300秒。
8.根据权利要求1至7之一所述的航海交通管制方法,其特征在于:所述步骤⑦中对各船舶的动态行为实施监控并为海上交通控制中心提供及时的告警信息的具体过程如下:
7.1)构造船舶在海域内运行时需满足的安全规则集Dmr(t)≥Dmin,其中Dmr(t)表示任意两个船舶m和船舶r在t时刻的距离,Dmin表示船舶间的最小安全距离;
7.2)依据采样时间,建立由船舶连续运行状态至离散采样状态的观测器Λ:Γ→Ξ,其中Γ表示船舶的连续运行状态,Ξ表示船舶的离散采样状态;
7.3)当船舶m和r的观测器Λm和Λr的离散观测数值Ξm和Ξr在t时刻表明该向量不在安全规则集中时,即关系式Dmr(t)≥Dmin不成立时,立刻向海上交通控制中心发出告警信息。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710575751.XA CN107480424A (zh) | 2014-12-30 | 2014-12-30 | 基于滚动规划策略的船舶冲突预警方法 |
CN201410844695.1A CN104462856B (zh) | 2014-12-30 | 2014-12-30 | 船舶冲突预警方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410844695.1A CN104462856B (zh) | 2014-12-30 | 2014-12-30 | 船舶冲突预警方法 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710575751.XA Division CN107480424A (zh) | 2014-12-30 | 2014-12-30 | 基于滚动规划策略的船舶冲突预警方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104462856A true CN104462856A (zh) | 2015-03-25 |
CN104462856B CN104462856B (zh) | 2017-07-11 |
Family
ID=52908885
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710575751.XA Withdrawn CN107480424A (zh) | 2014-12-30 | 2014-12-30 | 基于滚动规划策略的船舶冲突预警方法 |
CN201410844695.1A Active CN104462856B (zh) | 2014-12-30 | 2014-12-30 | 船舶冲突预警方法 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710575751.XA Withdrawn CN107480424A (zh) | 2014-12-30 | 2014-12-30 | 基于滚动规划策略的船舶冲突预警方法 |
Country Status (1)
Country | Link |
---|---|
CN (2) | CN107480424A (zh) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104899263A (zh) * | 2015-05-22 | 2015-09-09 | 华中师范大学 | 一种基于特定区域的船舶轨迹挖掘分析与监控方法 |
CN105083322A (zh) * | 2015-03-31 | 2015-11-25 | 江苏理工学院 | 一种地铁列车冲突预警方法 |
CN105083334A (zh) * | 2015-03-31 | 2015-11-25 | 江苏理工学院 | 地铁列车冲突预警方法 |
CN105083335A (zh) * | 2015-03-31 | 2015-11-25 | 江苏理工学院 | 地铁交通流优化控制方法 |
CN105083333A (zh) * | 2015-03-31 | 2015-11-25 | 江苏理工学院 | 一种地铁交通流优化控制方法 |
CN105137971A (zh) * | 2015-08-03 | 2015-12-09 | 大连海事大学 | 一种辅助船舶进行避碰决策的方法 |
CN107577230A (zh) * | 2017-08-16 | 2018-01-12 | 武汉理工大学 | 一种面向无人船的智能避碰系统 |
CN108153154A (zh) * | 2015-03-31 | 2018-06-12 | 江苏理工学院 | 基于鲁棒策略的双层地铁列车冲突解脱的规划方法 |
CN109255492A (zh) * | 2015-03-31 | 2019-01-22 | 江苏理工学院 | 一种基于鲁棒策略的地铁轨迹的实时预测方法 |
CN109255494A (zh) * | 2015-03-31 | 2019-01-22 | 江苏理工学院 | 基于鲁棒策略的地铁轨迹的实时预测方法 |
CN110333726A (zh) * | 2019-07-29 | 2019-10-15 | 武汉理工大学 | 一种基于船舶运动预测的船舶安全辅助驾驶系统 |
CN113538820A (zh) * | 2021-07-14 | 2021-10-22 | 华能国际电力江苏能源开发有限公司 | 一种海上风电场海缆监测与保护系统和方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108334905A (zh) * | 2018-02-08 | 2018-07-27 | 中电科技(合肥)博微信息发展有限责任公司 | 船舶行为轨迹识别方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5633644A (en) * | 1994-10-27 | 1997-05-27 | Dornier Gmbh | Process for monitoring ship traffic at sea while recognizing oil spills and potential ship collisions |
CN102831787A (zh) * | 2012-07-30 | 2012-12-19 | 广东省公安边防总队 | 一种基于码头泊位智能监管方法及系统 |
CN103106812A (zh) * | 2013-01-17 | 2013-05-15 | 中华人民共和国深圳海事局 | 一种获取海上船舶系统平均碰撞风险的方法 |
CN103559808A (zh) * | 2013-11-19 | 2014-02-05 | 上海海洋大学 | 一种基于3g的近海海域船舶交通监控及预警系统 |
-
2014
- 2014-12-30 CN CN201710575751.XA patent/CN107480424A/zh not_active Withdrawn
- 2014-12-30 CN CN201410844695.1A patent/CN104462856B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5633644A (en) * | 1994-10-27 | 1997-05-27 | Dornier Gmbh | Process for monitoring ship traffic at sea while recognizing oil spills and potential ship collisions |
CN102831787A (zh) * | 2012-07-30 | 2012-12-19 | 广东省公安边防总队 | 一种基于码头泊位智能监管方法及系统 |
CN103106812A (zh) * | 2013-01-17 | 2013-05-15 | 中华人民共和国深圳海事局 | 一种获取海上船舶系统平均碰撞风险的方法 |
CN103559808A (zh) * | 2013-11-19 | 2014-02-05 | 上海海洋大学 | 一种基于3g的近海海域船舶交通监控及预警系统 |
Non-Patent Citations (3)
Title |
---|
NICOLAS SAUNIER ETAL: "Clustering vehicle trajectories with hidden Markov models application to automated traffic safety analysis", 《IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORK》 * |
杨君兰: "基于复杂度建模的船舶碰撞预警研究", 《中国优秀硕士学位论文全文数据库 工程科技II辑》 * |
蒋敬强: "基于隐马尔科夫模型的时间序列聚类", 《万方学术期刊数据库》 * |
Cited By (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106926873A (zh) * | 2015-03-31 | 2017-07-07 | 江苏理工学院 | 一种基于鲁棒策略的地铁列车冲突预警方法 |
CN105083335A (zh) * | 2015-03-31 | 2015-11-25 | 江苏理工学院 | 地铁交通流优化控制方法 |
CN105083334A (zh) * | 2015-03-31 | 2015-11-25 | 江苏理工学院 | 地铁列车冲突预警方法 |
CN106938655A (zh) * | 2015-03-31 | 2017-07-11 | 江苏理工学院 | 地铁交通冲突预警方法 |
CN105083333A (zh) * | 2015-03-31 | 2015-11-25 | 江苏理工学院 | 一种地铁交通流优化控制方法 |
CN106938657A (zh) * | 2015-03-31 | 2017-07-11 | 江苏理工学院 | 一种基于鲁棒策略的地铁冲突预警方法 |
CN106672028A (zh) * | 2015-03-31 | 2017-05-17 | 江苏理工学院 | 基于鲁棒策略的双层地铁交通流优化控制方法 |
CN106741006A (zh) * | 2015-03-31 | 2017-05-31 | 江苏理工学院 | 基于鲁棒策略的地铁冲突预警方法 |
CN106741007A (zh) * | 2015-03-31 | 2017-05-31 | 江苏理工学院 | 一种地铁交通冲突预警方法 |
CN106777833A (zh) * | 2015-03-31 | 2017-05-31 | 江苏理工学院 | 基于鲁棒策略的地铁交通流优化控制方法 |
CN106741020A (zh) * | 2015-03-31 | 2017-05-31 | 江苏理工学院 | 地铁冲突预警方法 |
CN106828545A (zh) * | 2015-03-31 | 2017-06-13 | 江苏理工学院 | 一种基于鲁棒策略的地铁交通流优化控制方法 |
CN106828546A (zh) * | 2015-03-31 | 2017-06-13 | 江苏理工学院 | 一种地铁交通流控制方法 |
CN106853833A (zh) * | 2015-03-31 | 2017-06-16 | 江苏理工学院 | 地铁交通流控制方法 |
CN106864482A (zh) * | 2015-03-31 | 2017-06-20 | 江苏理工学院 | 一种地铁冲突预警方法 |
CN106864483A (zh) * | 2015-03-31 | 2017-06-20 | 江苏理工学院 | 基于鲁棒策略的地铁列车冲突预警方法 |
CN109447327A (zh) * | 2015-03-31 | 2019-03-08 | 江苏理工学院 | 一种地铁列车轨迹预测方法 |
CN105083322A (zh) * | 2015-03-31 | 2015-11-25 | 江苏理工学院 | 一种地铁列车冲突预警方法 |
CN109255495A (zh) * | 2015-03-31 | 2019-01-22 | 江苏理工学院 | 基于鲁棒策略的地铁列车轨迹的实时预测方法 |
CN107021117A (zh) * | 2015-03-31 | 2017-08-08 | 江苏理工学院 | 一种基于鲁棒策略的地铁交通冲突预警方法 |
CN109255493A (zh) * | 2015-03-31 | 2019-01-22 | 江苏理工学院 | 一种基于鲁棒策略的地铁列车轨迹的实时预测方法 |
CN109255494A (zh) * | 2015-03-31 | 2019-01-22 | 江苏理工学院 | 基于鲁棒策略的地铁轨迹的实时预测方法 |
CN107776613A (zh) * | 2015-03-31 | 2018-03-09 | 江苏理工学院 | 地铁交通流优化控制系统 |
CN107826146A (zh) * | 2015-03-31 | 2018-03-23 | 江苏理工学院 | 基于鲁棒策略的地铁交通流优化控制方法 |
CN108153154A (zh) * | 2015-03-31 | 2018-06-12 | 江苏理工学院 | 基于鲁棒策略的双层地铁列车冲突解脱的规划方法 |
CN108146472A (zh) * | 2015-03-31 | 2018-06-12 | 江苏理工学院 | 基于鲁棒策略的地铁列车冲突解脱的规划方法 |
CN109255492A (zh) * | 2015-03-31 | 2019-01-22 | 江苏理工学院 | 一种基于鲁棒策略的地铁轨迹的实时预测方法 |
CN104899263B (zh) * | 2015-05-22 | 2018-01-26 | 华中师范大学 | 一种基于特定区域的船舶轨迹挖掘分析与监控方法 |
CN104899263A (zh) * | 2015-05-22 | 2015-09-09 | 华中师范大学 | 一种基于特定区域的船舶轨迹挖掘分析与监控方法 |
CN105137971B (zh) * | 2015-08-03 | 2018-07-06 | 大连海事大学 | 一种辅助船舶进行避碰决策的方法 |
CN105137971A (zh) * | 2015-08-03 | 2015-12-09 | 大连海事大学 | 一种辅助船舶进行避碰决策的方法 |
CN107577230A (zh) * | 2017-08-16 | 2018-01-12 | 武汉理工大学 | 一种面向无人船的智能避碰系统 |
CN107577230B (zh) * | 2017-08-16 | 2020-01-14 | 武汉理工大学 | 一种面向无人船的智能避碰系统 |
CN110333726A (zh) * | 2019-07-29 | 2019-10-15 | 武汉理工大学 | 一种基于船舶运动预测的船舶安全辅助驾驶系统 |
CN113538820A (zh) * | 2021-07-14 | 2021-10-22 | 华能国际电力江苏能源开发有限公司 | 一种海上风电场海缆监测与保护系统和方法 |
Also Published As
Publication number | Publication date |
---|---|
CN104462856B (zh) | 2017-07-11 |
CN107480424A (zh) | 2017-12-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104462856A (zh) | 船舶冲突预警方法 | |
CN104537891B (zh) | 一种船舶轨迹实时预测方法 | |
CN104484726A (zh) | 船舶轨迹实时预测方法 | |
CN104504277A (zh) | 一种船舶冲突预警方法 | |
Liu et al. | Data-driven trajectory quality improvement for promoting intelligent vessel traffic services in 6G-enabled maritime IoT systems | |
CN104504935A (zh) | 航海交通管制方法 | |
CN113370977B (zh) | 一种基于视觉的智能车辆前向碰撞预警方法及系统 | |
CN112966332B (zh) | 基于多船运动不确定性的冲突侦测方法、存储器及处理器 | |
CN102799900B (zh) | 一种基于检测中支持在线聚类学习的对象跟踪方法 | |
CN104504934A (zh) | 一种航海交通管制方法 | |
CN106199581B (zh) | 一种随机集理论下的多机动目标跟踪方法 | |
CN115147790A (zh) | 一种基于图神经网络的车辆未来轨迹预测方法 | |
Yang et al. | Interpretable detection of distribution shifts in learning enabled cyber-physical systems | |
CN104485023B (zh) | 船舶冲突解脱的规划方法 | |
Liu et al. | Ship route planning in the pirate area via hybrid probabilistic roadmap algorithm within the context of the Maritime Silk Road | |
CN103646407B (zh) | 一种基于成分距离关系图的视频目标跟踪方法 | |
CN107292282A (zh) | 一种基于语义推理和时空记忆更新的车辆检测方法 | |
Sadhu et al. | Obstacle detection for image-guided surface water navigation | |
Pereira et al. | A 3-D Lightweight Convolutional Neural Network for Detecting Docking Structures in Cluttered Environments | |
Zhang et al. | Motion Prediction of Tugboats Using Hidden Markov Model | |
Xu et al. | A hidden Markov model method for traffic incident detection using multiple features | |
CN116118772A (zh) | 考虑不确定性的自动驾驶强化学习运动规划方法和系统 | |
CN117131940A (zh) | 一种面向水面无人艇的态势推理方法 | |
CN115291616A (zh) | 一种基于近端策略优化算法的auv动态避障方法 | |
CN116956630A (zh) | 一种适用于船舶避碰分析的目标安全距离建模方法及应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CP02 | Change in the address of a patent holder |
Address after: No. 1801 Zhong Wu Avenue, Changzhou, Jiangsu Province, Jiangsu Patentee after: Jiangsu University of Technology Address before: 213001 1801 Zhong Wu Avenue, Zhong Lou District, Changzhou, Jiangsu Patentee before: Jiangsu University of Technology |
|
CP02 | Change in the address of a patent holder |