CN104462752B - A kind of hydrostatic slideway load-bearing capacity analysis method for considering guide rail facial disfigurement - Google Patents

A kind of hydrostatic slideway load-bearing capacity analysis method for considering guide rail facial disfigurement Download PDF

Info

Publication number
CN104462752B
CN104462752B CN201410601795.1A CN201410601795A CN104462752B CN 104462752 B CN104462752 B CN 104462752B CN 201410601795 A CN201410601795 A CN 201410601795A CN 104462752 B CN104462752 B CN 104462752B
Authority
CN
China
Prior art keywords
mrow
mover
msub
msubsup
mfrac
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410601795.1A
Other languages
Chinese (zh)
Other versions
CN104462752A (en
Inventor
蔡力钢
王语莫
刘志峰
赵永胜
董湘敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN201410601795.1A priority Critical patent/CN104462752B/en
Publication of CN104462752A publication Critical patent/CN104462752A/en
Application granted granted Critical
Publication of CN104462752B publication Critical patent/CN104462752B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • External Artificial Organs (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

A kind of hydrostatic slideway load-bearing capacity analysis method for considering guide rail facial disfigurement, belongs to support and lubricating area.It is deformed for load-bearing surface above and below hydrostatic slideway under oil liquid pressure effect, and then the bearing capacity problem for influenceing guide rail proposes a kind of analysis method.In method, based on Reynolds equation, pressure distribution in lubricating pad is solved after Reynolds equation is simplified, while introduces one-dimensional elastomer balance differential equation and solves guide rail deformation distribution.The differential equation is changed into difference equation using finite difference method in solution procedure, then accelerates to solve by Gauss-Saden that iteration and primary and secondary overrelaxation iteration.Reynolds equation is solved first, is drawn the pressure distribution of fluid, is substituted into elastomer balance differential equation using pressure as external force condition, ask lubricating pad lower guideway to deform.Reynolds equation is substituted into using deformation as oil film thickness change condition, draws more accurate pressure distribution.Loop iteration to result of calculation meets precision, changes according to this interpretation of result load-carrying properties.

Description

A kind of hydrostatic slideway load-bearing capacity analysis method for considering guide rail facial disfigurement
Technical field
The present invention is a kind of hydrostatic slideway load-bearing capacity analysis method for considering guide rail facial disfigurement, belongs to support and lubrication point Analyse technical field.
Background technology
Hydrostatic support system has been widely used in the supporting and lubricating system of lathe at present, especially large-scale, heavily loaded Played an important role in lathe.Static pressure support system provides pressure oil by outside oil supply system to the lubricating pad of carrying position, Pressure oil flows between two supporting surfaces forms hydrostatic effects, and two load-bearing surfaces are separated, realize bearing capacity.Wherein lubricating pad can It is roughly divided into oily pocket and sealing oil edge two parts.Pressure of the pressure oil in oily pocket is equal to the pressure that outside oil supply system provides. At sealing oil edge, the viscous feature of fluid itself will hinder its flowing, so as to ensure that the pressure of oily pocket inner fluid, so pressure oil Pressure distribution at sealing oil edge is the key that static pressure support system realizes bearing capacity.Hydrostatic slideway is static pressure support system A kind of typical case, all kinds of heavy machine tools are widely used at present, be mainly used in the working condition of Linear transmission.Static pressure is led In the work of rail, due to the demand of its Linear transmission, the lubricating pad of hydrostatic slideway generally use rectangular shape.Due to its bearing capacity The characteristics of big, hydrostatic slideway are mainly used in large-scale, heavy machine tool.But in heavy duty machine tools, make in the pressure of supporting fluid Under, upper and lower two load-bearing surface necessarily leads to certain deformation, and deforms and then influence the pressure distribution in lubricating pad, so as to right Bearing capacity has an impact.
In the problem of pressure distribution in sealing oil edge in solving hydrostatic slideway, Reynolds equation is main analysis method.Thunder The solution of promise equation is to analyze the basis of hydrostatic slideway load-carrying properties, but because its equation is partial differential equation of second order in itself, Asking for for analytic solutions is relatively difficult, so in the current analysis method of static pressure support system again based on numerical method.Finite difference Point method is a kind of very practical numerical method, and the differential equation can be changed into algebraic equation by finite difference method approximation, Solved again by the method for value solving of algebraic equation, finally give the approximate solution that pressure is distributed in sealing oil edge.
The content of the invention
The present invention is with according to the characteristics of specific hydrostatic slideway model and condition of work, appropriate letter is carried out to Reynolds equation Change, solve the pressure distribution of fluid in lubricating pad;One-dimensional elastomer balance differential equation is re-introduced into, solves the change of lubricating pad lower guideway Shape.It is difference equation by Reynolds equation and elastomer balance differential equation Approximation Discrete, and then be changed into by finite difference calculus Algebraic Equation set, reapplies Gauss-Saden that alternative manner afterwards and successive overrelaxation method accelerates to ask for numerical solution.
Reynolds equation is solved by the method first, draws the pressure distribution of lubricating pad inner fluid, then using this pressure as outer Power condition substitutes into elastomer balance differential equation, and the deformation of lubricating pad lower guideway is obtained according to the above method.It is thick using deformation as oil film again Spend change condition and substitute into Reynolds equation solution, draw more accurate pressure distribution.Loop iteration to result of calculation meets that precision will Ask, draw the numerical solution of pressure distribution and guide rail deformation.The finally change according to this interpretation of result load-carrying properties.
The hydrostatic slideway load-bearing capacity analysis method provided by the invention for considering guide rail facial disfigurement comprises the following steps:
S1. the nondimensionalization of variable is carried out to the parameter in hydrostatic slideway first;
Wherein:P is fluid pressure;p0For pressure in hydrostatic slideway oil pocket;W is hydrostatic slideway bearing capacity;Q leads for static pressure Rail fuel supply flow rate;Ux is hydrostatic slideway translational speed;H is oil film thickness;H0For initial oil film thickness;X is length to coordinate amount Degree;Y is that width is measured to coordinate;Z measures for thickness coordinate;L is hydrostatic slideway lubricating pad length;B is hydrostatic slideway lubricating pad width; dzFor deformation extent;η is oil viscosity;For dimensionless pressure;For non-dimensional length;For dimensionless width;To be immeasurable Guiding principle bearing capacity;Flow is held for dimensionless;For dimensionless guide moving velocity;Dimensionless oil film thickness;Become for dimensionless Shape degree.
S2. Reynolds equation and elastomer balance differential equation are simplified further according to model;Generally, static pressure is led The translational speed of rail is less demanding, so heat problem and unobvious, that is, supports the viscosity B coefficent of liquid and variable density can be with Ignore;Reynolds equation after simplification is:
Wherein:L is hydrostatic slideway lubricating pad length;B is hydrostatic slideway lubricating pad width;For dimensionless pressure;For dimensionless Length;For dimensionless width;For dimensionless guide moving velocity;For dimensionless oil film thickness.
The deformation extent of lubricating pad lower guideway and actual conditions are closely related, and physical dimension, material, operating pressure will all influence The deformation extent size of guide rail;But in the elastic range of material, the deformation side of the regularity of distribution of deformation necessarily satisfying for elastomer Journey, i.e., meet boundary condition in boundary, remaining meets the regularity of distribution of distortional elastomer;It is micro- to introduce one-dimensional elastomer balance Point equation is:
Wherein:X is that length is measured to coordinate;Y is that width is measured to coordinate;Z measures for thickness coordinate;σ is direct stress;τ For shearing stress;F is body force.
S3. discrete with elastomer balance differential equation according to finite difference method Reynolds equation after is algebraic equation;Have Calculus of finite differences is limited according to the property of differential, by partial differential equation Approximation Discrete, the Algebraic Equation set of limited rank is converted into, is passing through generation Number solution of equations method is solved;Reynolds equation is changed into difference equation according to Differential Properties first, and arranges to obtain Reynolds The iterative equation of equation:
Wherein:L is hydrostatic slideway lubricating pad length;B is hydrostatic slideway lubricating pad width;For dimensionless pressure;For x directions Discrete steps;For y directions discrete steps;I counts for x directions infinitesimal;J counts for y directions infinitesimal;For dimensionless guide rail Translational speed;For dimensionless oil film thickness
According to Hooke's law
Wherein:σ is direct stress;τ is shearing stress;E is guide material Young's modulus;G is guide material modulus of shearing;ε is Linear strain;γ is shear strain.
Then one-dimensional elastomer balance differential equation-formula (2) is changed into difference equation according to Differential Properties, and arranges The iterative equation of elastomer balance differential equation:
Wherein:E is guide material Young's modulus;G is guide material modulus of shearing;Xstep is x directions discrete steps; Ystep is y directions discrete steps;Zstep is z directions discrete steps;K counts for z directions infinitesimal;dzFor deformation extent;F is body Product power.
S4., algebraic equation is rewritten as to the iterative equation of solution, using Gauss-Saden, your alternative manner is solved, And application successive overrelaxation method accelerates, and draws the numerical solution of pressure;The solution of pressureSubstituted into after obtaining as external applied load condition The iterative formula of deformation solves, the solution of deformationThe iterative formula that rear oil film thickness condition brings pressure into is obtained to askSuch as This circulation, until result of calculation meets that essence requires;
S5. the analysis of bearing capacity is carried out according to the above results.
Consider that the hydrostatic slideway load-bearing capacity analysis method of guide rail facial disfigurement has the following advantages that.
1st, for hydrostatic slideway the characteristics of and particular job situation simplify Reynolds equation and elastomer balance differential side Journey, and drawn its corresponding iterative equation according to Finite-difference theory.
2nd, guide rail surface is introduced during analysis to deform under oil liquid pressure effect, can be drawn and more be met actual feelings The result of condition.
3rd, the coupling solutions of pressure distribution and pressure distortion in lubricating pad have been obtained using numerical method analysis, and according to this number Value solution carries out the analysis of bearing capacity change.
Brief description of the drawings
Fig. 1 is the load-bearing capacity analysis method flow diagram under pressure distortion based on the hydrostatic slideway of finite difference.
Fig. 2 a are the operating diagrams of hydrostatic slideway.
Fig. 2 b are the structural representations of hydrostatic slideway lubricating pad.
Fig. 3 is hydrostatic slideway surface pressing deformation schematic diagram.
Fig. 4 is the result of calculation of pressure distribution in lubricating pad.
Fig. 5 is the result of calculation of guide rail surface deformation distribution.
Fig. 6 a are that dimensionless bearing capacity obtains changing rule with deformation extent.
Fig. 6 b are that immeasurable flow obtains changing rule with deformation extent.
Fig. 7 is changing rule of the oil film thickness with guide rail deformation extent.
Embodiment
The specific size and actual condition of guide rail surface deformation are closely related, but the regularity of distribution deformed is basically identical, only It is the deformation extent difference of maximum distortion position.With lower guideway deformation extentWhen exemplified by.As shown in Fig. 2 set lubricating pad length L, wide B;The wide b of the oily long l of pocket;Design oil film thickness is H0;Lubricating pad lower guideway thickness T.
When solving pressure, Reynolds equation boundary condition is introduced:
When solving deformation distribution, the boundary condition of elastomer balance differential equation is introduced:
The flow chart according to Fig. 1, pressure distribution and guide rail surface deformation distribution in lubricating pad is calculated.According to this knot Fruit is analyzed the load-carrying properties of hydrostatic slideway, Main Analysis bearing capacityAnd flowChange.WithFrom 0 increase To 1, dimensionless bearing capacity adds about 16.2%, and dimensionless flow adds about 147%, and the increase degree of flow is more than carrying The increase degree of power.Analyze influence of this change to actual bearer performance to also need to introduce specific fuel system, with quantitative Exemplified by formula oil supply system, obtained according to nondimensionalization formula:
Wherein, W is actual carrying capacity, that is, load when working, when hydrostatic slideway steady operation, workload W change Change very little, it can be considered that W is constant;Q is actual fuel supply flow rate, in quantitative oil supply system, the stream of oil pump offer Amount is stable, it can be considered that q is constant;η is oil viscosity, and under hydrostatic slideway application environment, temperature change is little, It can be considered that η is constant.The relation between dimensionless bearing capacity, dimensionless flow and oil film thickness can then be drawn:
I.e. the ratio between dimensionless bearing capacity and dimensionless flow are proportional to oil film thickness.It can thus be concluded that go out oil film thickness with guide rail The changing rule of deformation extent.

Claims (1)

  1. A kind of 1. hydrostatic slideway load-bearing capacity analysis method for considering guide rail facial disfigurement, for analyzing hydrostatic slideway in heavy machine tool Change of the load-carrying properties under the influence of guide rail surface pressure distortion under application platform, it is characterised in that:The analysis method includes Following steps,
    S1. the nondimensionalization of variable is carried out to the parameter in hydrostatic slideway first;
    <mrow> <mover> <mi>p</mi> <mo>&amp;OverBar;</mo> </mover> <mo>=</mo> <mfrac> <mi>p</mi> <msub> <mi>p</mi> <mn>0</mn> </msub> </mfrac> <mo>,</mo> <mover> <msub> <mi>p</mi> <mn>0</mn> </msub> <mo>&amp;OverBar;</mo> </mover> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mover> <mi>x</mi> <mo>&amp;OverBar;</mo> </mover> <mo>=</mo> <mfrac> <mi>x</mi> <mi>L</mi> </mfrac> <mo>,</mo> <mover> <mi>L</mi> <mo>&amp;OverBar;</mo> </mover> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mover> <mi>y</mi> <mo>&amp;OverBar;</mo> </mover> <mo>=</mo> <mfrac> <mi>y</mi> <mi>B</mi> </mfrac> <mo>,</mo> <mover> <mi>B</mi> <mo>&amp;OverBar;</mo> </mover> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mover> <mi>h</mi> <mo>&amp;OverBar;</mo> </mover> <mo>=</mo> <mfrac> <mi>h</mi> <msub> <mi>H</mi> <mn>0</mn> </msub> </mfrac> <mo>,</mo> </mrow>
    <mrow> <msub> <mover> <mi>d</mi> <mo>&amp;OverBar;</mo> </mover> <mi>z</mi> </msub> <mo>=</mo> <mfrac> <msub> <mi>d</mi> <mi>z</mi> </msub> <msub> <mi>H</mi> <mn>0</mn> </msub> </mfrac> <mo>,</mo> <msub> <mover> <mi>H</mi> <mo>&amp;OverBar;</mo> </mover> <mn>0</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mover> <mi>U</mi> <mo>&amp;OverBar;</mo> </mover> <mi>x</mi> </msub> <mo>=</mo> <mfrac> <msub> <mi>U</mi> <mi>x</mi> </msub> <mfrac> <mrow> <msubsup> <mi>H</mi> <mn>0</mn> <mn>2</mn> </msubsup> <msub> <mi>p</mi> <mn>0</mn> </msub> </mrow> <mrow> <mi>L</mi> <mi>&amp;eta;</mi> </mrow> </mfrac> </mfrac> <mo>,</mo> <mover> <mi>W</mi> <mo>&amp;OverBar;</mo> </mover> <mo>=</mo> <mfrac> <mi>W</mi> <mrow> <msub> <mi>LBp</mi> <mn>0</mn> </msub> </mrow> </mfrac> <mo>,</mo> <mover> <mi>q</mi> <mo>&amp;OverBar;</mo> </mover> <mo>=</mo> <mfrac> <mi>q</mi> <mfrac> <mrow> <msubsup> <mi>H</mi> <mn>0</mn> <mn>3</mn> </msubsup> <msub> <mi>p</mi> <mn>0</mn> </msub> </mrow> <mi>&amp;eta;</mi> </mfrac> </mfrac> </mrow>
    Wherein:P is fluid pressure;p0For pressure in hydrostatic slideway oil pocket;W is hydrostatic slideway bearing capacity;Q supplies for hydrostatic slideway Oil stream amount;UxFor hydrostatic slideway translational speed;H is oil film thickness;H0For initial oil film thickness;X is that length is measured to coordinate;Y is Width is measured to coordinate;Z measures for thickness coordinate;L is hydrostatic slideway lubricating pad length;B is hydrostatic slideway lubricating pad width;dzTo become Shape degree;η is oil viscosity;For dimensionless pressure;For non-dimensional length;For dimensionless width;Carried for dimensionless Power;Flow is held for dimensionless;For dimensionless guide moving velocity;For dimensionless oil film thickness;Journey is deformed for dimensionless Degree;
    S2. Reynolds equation and elastomer balance differential equation are simplified;The translational speed of hydrostatic slideway is less demanding, so Heat problem and unobvious, that is, the viscosity B coefficent of liquid is supported to ignore with variable density;Reynolds equation after simplification is:
    <mrow> <mfrac> <mo>&amp;part;</mo> <mrow> <mo>&amp;part;</mo> <mover> <mi>x</mi> <mo>&amp;OverBar;</mo> </mover> </mrow> </mfrac> <mo>=</mo> <mrow> <mo>(</mo> <msup> <mover> <mi>h</mi> <mo>&amp;OverBar;</mo> </mover> <mn>3</mn> </msup> <mo>&amp;CenterDot;</mo> <mfrac> <mrow> <mo>&amp;part;</mo> <mover> <mi>p</mi> <mo>&amp;OverBar;</mo> </mover> </mrow> <mrow> <mo>&amp;part;</mo> <mover> <mi>x</mi> <mo>&amp;OverBar;</mo> </mover> </mrow> </mfrac> <mo>)</mo> </mrow> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mfrac> <mi>L</mi> <mi>B</mi> </mfrac> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mfrac> <mo>&amp;part;</mo> <mrow> <mo>&amp;part;</mo> <mover> <mi>y</mi> <mo>&amp;OverBar;</mo> </mover> </mrow> </mfrac> <mrow> <mo>(</mo> <msup> <mover> <mi>h</mi> <mo>&amp;OverBar;</mo> </mover> <mn>3</mn> </msup> <mo>&amp;CenterDot;</mo> <mfrac> <mrow> <mo>&amp;part;</mo> <mover> <mi>p</mi> <mo>&amp;OverBar;</mo> </mover> </mrow> <mrow> <mo>&amp;part;</mo> <mover> <mi>y</mi> <mo>&amp;OverBar;</mo> </mover> </mrow> </mfrac> <mo>)</mo> </mrow> <mo>=</mo> <mn>6</mn> <mfrac> <mo>&amp;part;</mo> <mrow> <mo>&amp;part;</mo> <mover> <mi>x</mi> <mo>&amp;OverBar;</mo> </mover> </mrow> </mfrac> <mrow> <mo>(</mo> <msub> <mover> <mi>U</mi> <mo>&amp;OverBar;</mo> </mover> <mi>x</mi> </msub> <mover> <mi>h</mi> <mo>&amp;OverBar;</mo> </mover> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>
    Wherein:L is hydrostatic slideway lubricating pad length;B is hydrostatic slideway lubricating pad width;For dimensionless pressure;For non-dimensional length;For dimensionless width;For dimensionless guide moving velocity;For dimensionless oil film thickness;
    The deformation extent of lubricating pad lower guideway and actual conditions are closely related, and physical dimension, material, operating pressure will all influence guide rail Deformation extent size;But in the elastic range of material, the regularity of distribution of deformation necessarily satisfying for elastomer deformation equation, i.e., Meet boundary condition in boundary, remaining meets the regularity of distribution of distortional elastomer;Introduce one-dimensional elastomer balance differential side Cheng Wei:
    <mrow> <mfrac> <mrow> <mo>&amp;part;</mo> <msub> <mi>&amp;tau;</mi> <mrow> <mi>x</mi> <mi>z</mi> </mrow> </msub> </mrow> <mrow> <mo>&amp;part;</mo> <mi>x</mi> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <mo>&amp;part;</mo> <msub> <mi>&amp;tau;</mi> <mrow> <mi>y</mi> <mi>z</mi> </mrow> </msub> </mrow> <mrow> <mo>&amp;part;</mo> <mi>y</mi> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <mo>&amp;part;</mo> <msub> <mi>&amp;sigma;</mi> <mrow> <mi>z</mi> <mi>z</mi> </mrow> </msub> </mrow> <mrow> <mo>&amp;part;</mo> <mi>z</mi> </mrow> </mfrac> <mo>+</mo> <msub> <mi>f</mi> <mi>z</mi> </msub> <mo>=</mo> <mn>0</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow>
    Wherein:X is that length is measured to coordinate;Y is that width is measured to coordinate;Z measures for thickness coordinate;σ is direct stress;τ is to cut Stress;F is body force;
    S3. discrete with elastomer balance differential equation according to finite difference method Reynolds equation after is algebraic equation;Finite difference Point-score by partial differential equation Approximation Discrete, is converted into the Algebraic Equation set of limited rank, is passing through algebraically side according to the property of differential The solution of journey group is solved;Reynolds equation is changed into difference equation according to Differential Properties first, and arranges to obtain Reynolds equation Iterative equation:
    <mrow> <mtable> <mtr> <mtd> <mrow> <msubsup> <mover> <mi>y</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>s</mi> <mi>t</mi> <mi>e</mi> <mi>p</mi> </mrow> <mn>2</mn> </msubsup> <msubsup> <mover> <mi>h</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> <mn>3</mn> </msubsup> <msub> <mover> <mi>p</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>+</mo> <msubsup> <mover> <mi>y</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>s</mi> <mi>t</mi> <mi>e</mi> <mi>p</mi> </mrow> <mn>2</mn> </msubsup> <msubsup> <mover> <mi>h</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> <mo>,</mo> <mi>j</mi> </mrow> <mn>3</mn> </msubsup> <msub> <mover> <mi>p</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mfrac> <mi>L</mi> <mi>B</mi> </mfrac> <mo>)</mo> </mrow> <mn>2</mn> </msup> <msubsup> <mover> <mi>x</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>s</mi> <mi>t</mi> <mi>e</mi> <mi>p</mi> </mrow> <mn>2</mn> </msubsup> <msubsup> <mover> <mi>h</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> <mn>3</mn> </msubsup> <msub> <mover> <mi>p</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mover> <mi>p</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mfrac> <mi>L</mi> <mi>B</mi> </mfrac> <mo>)</mo> </mrow> <mn>2</mn> </msup> <msubsup> <mover> <mi>x</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>s</mi> <mi>t</mi> <mi>e</mi> <mi>p</mi> </mrow> <mn>2</mn> </msubsup> <msubsup> <mover> <mi>h</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>-</mo> <mn>1</mn> </mrow> <mn>3</mn> </msubsup> <msub> <mover> <mi>p</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mn>6</mn> <mrow> <mo>(</mo> <mover> <mi>U</mi> <mo>&amp;OverBar;</mo> </mover> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <msub> <mover> <mi>h</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>-</mo> <mover> <mi>U</mi> <mo>&amp;OverBar;</mo> </mover> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> <mo>,</mo> <mi>j</mi> </mrow> </msub> <msub> <mover> <mi>h</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>)</mo> </mrow> <msub> <mover> <mi>x</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>s</mi> <mi>t</mi> <mi>e</mi> <mi>p</mi> </mrow> </msub> <msubsup> <mover> <mi>y</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>s</mi> <mi>t</mi> <mi>e</mi> <mi>p</mi> </mrow> <mn>2</mn> </msubsup> </mrow> <mrow> <msubsup> <mover> <mi>y</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>s</mi> <mi>t</mi> <mi>e</mi> <mi>p</mi> </mrow> <mn>2</mn> </msubsup> <msubsup> <mover> <mi>h</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> <mn>3</mn> </msubsup> <mo>+</mo> <msubsup> <mover> <mi>y</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>s</mi> <mi>t</mi> <mi>e</mi> <mi>p</mi> </mrow> <mn>2</mn> </msubsup> <msubsup> <mover> <mi>h</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> <mo>,</mo> <mi>j</mi> </mrow> <mn>3</mn> </msubsup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mfrac> <mi>L</mi> <mi>B</mi> </mfrac> <mo>)</mo> </mrow> <mn>2</mn> </msup> <msubsup> <mover> <mi>x</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>s</mi> <mi>t</mi> <mi>e</mi> <mi>p</mi> </mrow> <mn>2</mn> </msubsup> <msubsup> <mover> <mi>h</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> <mn>3</mn> </msubsup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mfrac> <mi>L</mi> <mi>B</mi> </mfrac> <mo>)</mo> </mrow> <mn>2</mn> </msup> <msubsup> <mover> <mi>x</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>s</mi> <mi>t</mi> <mi>e</mi> <mi>p</mi> </mrow> <mn>2</mn> </msubsup> <msubsup> <mover> <mi>h</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>-</mo> <mn>1</mn> </mrow> <mn>3</mn> </msubsup> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow>
    Wherein:L is hydrostatic slideway lubricating pad length;B is hydrostatic slideway lubricating pad width;For dimensionless pressure;It is discrete for x directions Step-length;For y directions discrete steps;I counts for x directions infinitesimal;J counts for y directions infinitesimal;Moved for dimensionless guide rail Speed;For dimensionless oil film thickness
    According to Hooke's law
    <mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mi>&amp;sigma;</mi> <mo>=</mo> <mi>E</mi> <mi>&amp;epsiv;</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>&amp;tau;</mi> <mo>=</mo> <mi>G</mi> <mi>&amp;gamma;</mi> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow>
    Wherein:σ is direct stress;τ is shearing stress;E is guide material Young's modulus;G is guide material modulus of shearing;ε is linear Strain;γ is shear strain;
    Then one-dimensional elastomer balance differential equation-formula (2) is changed into difference equation according to Differential Properties, and arranges elastic The iterative equation of body balance differential equation:
    <mrow> <mtable> <mtr> <mtd> <mrow> <msubsup> <mi>Gy</mi> <mrow> <mi>s</mi> <mi>t</mi> <mi>e</mi> <mi>p</mi> </mrow> <mn>2</mn> </msubsup> <msubsup> <mi>z</mi> <mrow> <mi>s</mi> <mi>t</mi> <mi>e</mi> <mi>p</mi> </mrow> <mn>2</mn> </msubsup> <mrow> <mo>(</mo> <msub> <mi>dz</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> <mo>,</mo> <mi>j</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>dz</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> <mo>,</mo> <mi>j</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msubsup> <mi>Gx</mi> <mrow> <mi>s</mi> <mi>t</mi> <mi>e</mi> <mi>p</mi> </mrow> <mn>2</mn> </msubsup> <msubsup> <mi>z</mi> <mrow> <mi>s</mi> <mi>t</mi> <mi>e</mi> <mi>p</mi> </mrow> <mn>2</mn> </msubsup> <mrow> <mo>(</mo> <msub> <mi>dz</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>+</mo> <mn>1</mn> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>dz</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>-</mo> <mn>1</mn> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>dz</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <mo>+</mo> <msubsup> <mi>Ex</mi> <mrow> <mi>s</mi> <mi>t</mi> <mi>e</mi> <mi>p</mi> </mrow> <mn>2</mn> </msubsup> <msubsup> <mi>y</mi> <mrow> <mi>s</mi> <mi>t</mi> <mi>e</mi> <mi>p</mi> </mrow> <mn>2</mn> </msubsup> <mrow> <mo>(</mo> <msub> <mi>dz</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>,</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>dz</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>fz</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <msub> <mi>x</mi> <mrow> <mi>s</mi> <mi>t</mi> <mi>e</mi> <mi>p</mi> </mrow> </msub> <msub> <mi>y</mi> <mrow> <mi>s</mi> <mi>t</mi> <mi>e</mi> <mi>p</mi> </mrow> </msub> <msub> <mi>z</mi> <mrow> <mi>s</mi> <mi>t</mi> <mi>e</mi> <mi>p</mi> </mrow> </msub> </mrow> <mrow> <mn>2</mn> <msubsup> <mi>Gy</mi> <mrow> <mi>s</mi> <mi>t</mi> <mi>e</mi> <mi>p</mi> </mrow> <mn>2</mn> </msubsup> <msubsup> <mi>z</mi> <mrow> <mi>s</mi> <mi>t</mi> <mi>e</mi> <mi>p</mi> </mrow> <mn>2</mn> </msubsup> <mo>+</mo> <mn>2</mn> <msubsup> <mi>Gx</mi> <mrow> <mi>s</mi> <mi>t</mi> <mi>e</mi> <mi>p</mi> </mrow> <mn>2</mn> </msubsup> <msubsup> <mi>z</mi> <mrow> <mi>s</mi> <mi>t</mi> <mi>e</mi> <mi>p</mi> </mrow> <mn>2</mn> </msubsup> <mo>+</mo> <mn>2</mn> <msubsup> <mi>Ex</mi> <mrow> <mi>s</mi> <mi>t</mi> <mi>e</mi> <mi>p</mi> </mrow> <mn>2</mn> </msubsup> <msubsup> <mi>y</mi> <mrow> <mi>s</mi> <mi>t</mi> <mi>e</mi> <mi>p</mi> </mrow> <mn>2</mn> </msubsup> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow>
    Wherein:E is guide material Young's modulus;G is guide material modulus of shearing;xstepFor x directions discrete steps;ystepFor y side To discrete steps;zstepFor z directions discrete steps;K counts for z directions infinitesimal;dzFor deformation extent;F is body force;
    S4., algebraic equation is rewritten as to the iterative equation of solution, your alternative manner is solved using Gauss-Saden, and should Accelerated with successive overrelaxation method, draw the numerical solution of pressure;The solution of pressureAfter obtaining deformation is substituted into as external applied load condition Iterative formula solve, the solution of deformationThe iterative formula that rear oil film thickness condition brings pressure into is obtained to askSo follow Ring, until result of calculation meets that essence requires;
    S5. the analysis of bearing capacity is carried out according to the above results.
CN201410601795.1A 2014-10-31 2014-10-31 A kind of hydrostatic slideway load-bearing capacity analysis method for considering guide rail facial disfigurement Expired - Fee Related CN104462752B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410601795.1A CN104462752B (en) 2014-10-31 2014-10-31 A kind of hydrostatic slideway load-bearing capacity analysis method for considering guide rail facial disfigurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410601795.1A CN104462752B (en) 2014-10-31 2014-10-31 A kind of hydrostatic slideway load-bearing capacity analysis method for considering guide rail facial disfigurement

Publications (2)

Publication Number Publication Date
CN104462752A CN104462752A (en) 2015-03-25
CN104462752B true CN104462752B (en) 2017-12-15

Family

ID=52908781

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410601795.1A Expired - Fee Related CN104462752B (en) 2014-10-31 2014-10-31 A kind of hydrostatic slideway load-bearing capacity analysis method for considering guide rail facial disfigurement

Country Status (1)

Country Link
CN (1) CN104462752B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104915468B (en) * 2015-04-05 2017-12-08 北京工业大学 The force deformation error calculation method of roller line slideway auxiliary under a kind of vertical load
CN105117614B (en) * 2015-10-10 2017-10-13 北京工业大学 A kind of static pressure ram cutting force for opposed lubricating pad resists stiffness optimization method
CN106055756A (en) * 2016-05-24 2016-10-26 北京工业大学 Simulation analysis method of aerostatic guideway system under velocity slip effect
CN106503391B (en) * 2016-11-09 2019-10-29 北京工业大学 A kind of quick calculation method of Rectangular Hydrostatic lubricating pad considering fluid structurecoupling
CN112231853B (en) * 2020-09-10 2023-12-12 东南大学 Calculation method and system for static characteristics of hydrostatic guideway considering elastic deformation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101280804A (en) * 2008-05-09 2008-10-08 潘旭华 Static pressure guiding rail with adjustable film thickness and regulating method thereof
CN101508081A (en) * 2009-03-20 2009-08-19 胡惜时 Machine tool static-pressure guide-rail leinear motor feeding device
CN103384581A (en) * 2010-11-15 2013-11-06 白欧斯特机床股份公司 System of variable hydrostatic guideway for vertical lathes and a vertical lathe that includes said guideway
CN103823940A (en) * 2014-03-07 2014-05-28 北京工业大学 Static-pressure turntable dynamic response computing method based on overall dynamical model

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090290820A1 (en) * 2008-05-20 2009-11-26 Hsin-Tsun Hsu Linear Guideway with Retainers

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101280804A (en) * 2008-05-09 2008-10-08 潘旭华 Static pressure guiding rail with adjustable film thickness and regulating method thereof
CN101508081A (en) * 2009-03-20 2009-08-19 胡惜时 Machine tool static-pressure guide-rail leinear motor feeding device
CN103384581A (en) * 2010-11-15 2013-11-06 白欧斯特机床股份公司 System of variable hydrostatic guideway for vertical lathes and a vertical lathe that includes said guideway
CN103823940A (en) * 2014-03-07 2014-05-28 北京工业大学 Static-pressure turntable dynamic response computing method based on overall dynamical model

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
立式车床静压导轨支承工作台的热变形研究与改进;陈锡渠;《河南科技学院学报》;20090930;第37卷(第3期);第48-50页 *
类菱形车转向系统研究与分析;查云飞;《中国博士学位论文全文数据库工程科技Ⅱ辑》;20100715(第07期);论文第61-63页 *
高速重载下恒流静压导轨性能研究;黄振;《中国优秀硕士学位论文全文数据库工程科技1辑》;20140815(第08期);论文第6-16页 *

Also Published As

Publication number Publication date
CN104462752A (en) 2015-03-25

Similar Documents

Publication Publication Date Title
CN104462752B (en) A kind of hydrostatic slideway load-bearing capacity analysis method for considering guide rail facial disfigurement
CN103226633B (en) A kind of static pressure oil pad flow field characteristic simulation optimization method
Amanulla et al. Numerical investigations on magnetic field modeling for Carreau non-Newtonian fluid flow past an isothermal sphere
Abbassi et al. Exact solution of three-dimensional unsteady stagnation flow on a heated plate
Lee et al. Application of computational fluid dynamics simulation to squeeze film damper analysis
CN106777467B (en) Static pressure sliding seat static balance calculation method considering fluid-solid coupling
Kim et al. Two Dimensional Cfd Analysis Of A Hydraulic Gear Pump
CN105135197B (en) Double square chamber hydrostatic thrust bearing greasy property forecasting procedure
Srinivasacharya et al. Mixed convection flow of nanofluid in a vertical channel with hall and ion-slip effects
Devakar et al. Unsteady flows of a micropolar fluid between parallel plates using state space approach
CN104680018B (en) A kind of hydrostatic slideway suppresses the analysis and optimization method of inertia force impact
Amanulla et al. Thermal and momentum slip effects on hydromagnetic convection flow of a Williamson fluid past a vertical truncated cone
CN105095536B (en) A kind of static pressure oil pad flow field characteristic numerical value emulation method considering surface topography
Du et al. Dynamic modeling of hydrostatic guideway considering compressibility and inertia effect
CN106503391A (en) A kind of quick computational methods of Rectangular Hydrostatic lubricating pad of consideration fluid structurecoupling
Kamran Heat source/sink and Newtonian heating effects on convective micropolar fluid flow over a stretching/shrinking sheet with slip flow model
Riasi et al. Unsteady velocity profiles in laminar and turbulent water hammer flows
Wang et al. Soft hydraulics in channels with thick walls: The finite-Reynolds-number base state and its stability
Walls Investigation of the air-compression process during drop tests of an oleo-pneumatic landing gear
CN109376461A (en) A method of prediction vacuole migratory direction
CN105117614B (en) A kind of static pressure ram cutting force for opposed lubricating pad resists stiffness optimization method
Sun et al. Analysis and validation of one-dimensional models for gaseous flows in micro-channels
Zhang et al. Thermal elastohydrodynamic lubrication of herringbone gear considering the effect of oil gas mixture
Lok et al. Steady two‐dimensional asymmetric stagnation point flow of a micropolar fluid
Ozalp et al. An interactive software package for the investigation of hydrodynamic‐slider bearing‐lubrication

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Cai Ligang

Inventor after: Wang Yumo

Inventor after: Liu Zhifeng

Inventor after: Zhao Yongsheng

Inventor after: Dong Xiangmin

Inventor before: Cai Ligang

Inventor before: Wang Yumo

Inventor before: Liu Zhifeng

Inventor before: Zhao Yongsheng

Inventor before: Dong Xiangmin

COR Change of bibliographic data
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20171215