CN104450790A - Biological method of preparing p-ferrite-modified n-hematite heterostructure - Google Patents
Biological method of preparing p-ferrite-modified n-hematite heterostructure Download PDFInfo
- Publication number
- CN104450790A CN104450790A CN201410805812.3A CN201410805812A CN104450790A CN 104450790 A CN104450790 A CN 104450790A CN 201410805812 A CN201410805812 A CN 201410805812A CN 104450790 A CN104450790 A CN 104450790A
- Authority
- CN
- China
- Prior art keywords
- μms
- ferrite
- modified
- shewanella putrefaciens
- feooh
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000010170 biological method Methods 0.000 title claims abstract description 8
- 239000011019 hematite Substances 0.000 title abstract description 13
- 229910052595 hematite Inorganic materials 0.000 title abstract description 13
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 71
- 229910002588 FeOOH Inorganic materials 0.000 claims abstract description 22
- 239000000843 powder Substances 0.000 claims abstract description 21
- 241001223867 Shewanella oneidensis Species 0.000 claims abstract description 20
- 238000000034 method Methods 0.000 claims abstract description 13
- 229910000859 α-Fe Inorganic materials 0.000 claims abstract description 11
- 229910052742 iron Inorganic materials 0.000 claims abstract description 7
- 238000006243 chemical reaction Methods 0.000 claims description 13
- 239000007788 liquid Substances 0.000 claims description 10
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 8
- 238000006722 reduction reaction Methods 0.000 claims description 7
- 235000010469 Glycine max Nutrition 0.000 claims description 6
- 244000068988 Glycine max Species 0.000 claims description 6
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 5
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 claims description 5
- MSSUFHMGCXOVBZ-UHFFFAOYSA-N anthraquinone-2,6-disulfonic acid Chemical compound OS(=O)(=O)C1=CC=C2C(=O)C3=CC(S(=O)(=O)O)=CC=C3C(=O)C2=C1 MSSUFHMGCXOVBZ-UHFFFAOYSA-N 0.000 claims description 5
- 229910017604 nitric acid Inorganic materials 0.000 claims description 5
- 239000002994 raw material Substances 0.000 claims description 5
- 230000008014 freezing Effects 0.000 claims description 4
- 238000007710 freezing Methods 0.000 claims description 4
- 239000011780 sodium chloride Substances 0.000 claims description 4
- 238000001035 drying Methods 0.000 claims description 3
- MKWYFZFMAMBPQK-UHFFFAOYSA-J sodium feredetate Chemical compound [Na+].[Fe+3].[O-]C(=O)CN(CC([O-])=O)CCN(CC([O-])=O)CC([O-])=O MKWYFZFMAMBPQK-UHFFFAOYSA-J 0.000 claims description 3
- 230000004048 modification Effects 0.000 claims description 2
- 238000012986 modification Methods 0.000 claims description 2
- 206010013786 Dry skin Diseases 0.000 claims 2
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 claims 2
- 230000001580 bacterial effect Effects 0.000 claims 2
- 102000004452 Arginase Human genes 0.000 claims 1
- 108700024123 Arginases Proteins 0.000 claims 1
- 238000009631 Broth culture Methods 0.000 claims 1
- 239000001888 Peptone Substances 0.000 claims 1
- 108010080698 Peptones Proteins 0.000 claims 1
- 238000012258 culturing Methods 0.000 claims 1
- CCIVGXIOQKPBKL-UHFFFAOYSA-N ethanesulfonic acid Chemical compound CCS(O)(=O)=O CCIVGXIOQKPBKL-UHFFFAOYSA-N 0.000 claims 1
- 229960002989 glutamic acid Drugs 0.000 claims 1
- 239000001963 growth medium Substances 0.000 claims 1
- 210000000496 pancreas Anatomy 0.000 claims 1
- 235000019319 peptone Nutrition 0.000 claims 1
- 238000007789 sealing Methods 0.000 claims 1
- 238000005516 engineering process Methods 0.000 abstract description 6
- 238000010992 reflux Methods 0.000 abstract description 6
- 230000015572 biosynthetic process Effects 0.000 abstract description 5
- 238000011084 recovery Methods 0.000 abstract description 5
- LIKBJVNGSGBSGK-UHFFFAOYSA-N iron(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Fe+3].[Fe+3] LIKBJVNGSGBSGK-UHFFFAOYSA-N 0.000 abstract description 4
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 abstract description 4
- 239000002245 particle Substances 0.000 abstract description 4
- 230000007547 defect Effects 0.000 abstract description 3
- 229910052749 magnesium Inorganic materials 0.000 abstract description 3
- 229910052748 manganese Inorganic materials 0.000 abstract description 3
- 238000001935 peptisation Methods 0.000 abstract description 3
- VTLYFUHAOXGGBS-UHFFFAOYSA-N Fe3+ Chemical compound [Fe+3] VTLYFUHAOXGGBS-UHFFFAOYSA-N 0.000 abstract description 2
- 238000005054 agglomeration Methods 0.000 abstract description 2
- 230000002776 aggregation Effects 0.000 abstract description 2
- 238000005265 energy consumption Methods 0.000 abstract description 2
- AEIXRCIKZIZYPM-UHFFFAOYSA-M hydroxy(oxo)iron Chemical class [O][Fe]O AEIXRCIKZIZYPM-UHFFFAOYSA-M 0.000 abstract description 2
- 229910052759 nickel Inorganic materials 0.000 abstract description 2
- 230000008569 process Effects 0.000 abstract description 2
- 238000013341 scale-up Methods 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 16
- 210000004027 cell Anatomy 0.000 description 13
- 239000011734 sodium Substances 0.000 description 9
- IHPYMWDTONKSCO-UHFFFAOYSA-N 2,2'-piperazine-1,4-diylbisethanesulfonic acid Chemical compound OS(=O)(=O)CCN1CCN(CCS(O)(=O)=O)CC1 IHPYMWDTONKSCO-UHFFFAOYSA-N 0.000 description 7
- 230000033558 biomineral tissue development Effects 0.000 description 7
- 239000000376 reactant Substances 0.000 description 6
- 239000000725 suspension Substances 0.000 description 6
- 238000001237 Raman spectrum Methods 0.000 description 5
- 239000012137 tryptone Substances 0.000 description 5
- 239000004475 Arginine Substances 0.000 description 4
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 4
- 241001671982 Pusa caspica Species 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 4
- 239000002131 composite material Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 235000013922 glutamic acid Nutrition 0.000 description 4
- 239000004220 glutamic acid Substances 0.000 description 4
- 230000000813 microbial effect Effects 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 239000007990 PIPES buffer Substances 0.000 description 3
- 102000004142 Trypsin Human genes 0.000 description 3
- 108090000631 Trypsin Proteins 0.000 description 3
- 229910009369 Zn Mg Inorganic materials 0.000 description 3
- 229910007573 Zn-Mg Inorganic materials 0.000 description 3
- 229910007567 Zn-Ni Inorganic materials 0.000 description 3
- 229910007614 Zn—Ni Inorganic materials 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 230000001699 photocatalysis Effects 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 239000012588 trypsin Substances 0.000 description 3
- DHKHKXVYLBGOIT-UHFFFAOYSA-N 1,1-Diethoxyethane Chemical compound CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- 102000018832 Cytochromes Human genes 0.000 description 2
- 108010052832 Cytochromes Proteins 0.000 description 2
- 229910018605 Ni—Zn Inorganic materials 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000002086 nanomaterial Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000011029 spinel Substances 0.000 description 2
- 229910052596 spinel Inorganic materials 0.000 description 2
- KVZLHPXEUGJPAH-UHFFFAOYSA-N 2-oxidanylpropanoic acid Chemical compound CC(O)C(O)=O.CC(O)C(O)=O KVZLHPXEUGJPAH-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 1
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 1
- 229910002548 FeFe Inorganic materials 0.000 description 1
- 229910017135 Fe—O Inorganic materials 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 239000000370 acceptor Substances 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 229940009662 edetate Drugs 0.000 description 1
- 210000002744 extracellular matrix Anatomy 0.000 description 1
- 230000005525 hole transport Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 108010072136 iron hydrogenase Proteins 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000007885 magnetic separation Methods 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 239000013028 medium composition Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000007777 multifunctional material Substances 0.000 description 1
- 239000002159 nanocrystal Substances 0.000 description 1
- 239000002070 nanowire Substances 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 238000007146 photocatalysis Methods 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 238000000634 powder X-ray diffraction Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 238000005118 spray pyrolysis Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229910001428 transition metal ion Inorganic materials 0.000 description 1
- 241001148471 unidentified anaerobic bacterium Species 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Landscapes
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
本发明涉及一种利用腐败希瓦氏菌MR-1制备p-铁素体修饰n-赤铁矿异质结构的生物方法,该方法通过生物合成技术开发了p-n结与欧姆层的p型铁素体-n型赤铁矿异质结构,分两步进行,第一步:胶溶回流技术制备粒度约50 nm的A-Zn(A=Mg、Mn或Ni)修饰针铁矿(FeOOH)粉体;第二步:室温厌氧条件下培养腐败希瓦氏菌MR-1还原部分三价铁,得到(A-Zn)Fe2O4-Fe2O3异质结。该方法与现有技术相比:具有工艺简单、污染小、耗能低、易于放大、回收率高等优点,通过该方法获得的(A-Zn)Fe2O4-Fe2O3异质结表面缺陷低、团聚少、粒度均匀,同时具备较好的光热磁特性。
The present invention relates to a biological method for preparing p-ferrite modified n-hematite heterostructure by using Shewanella putrefaciens MR-1, the method develops p-type iron with pn junction and ohmic layer through biosynthesis technology The ferrite-n-type hematite heterostructure is divided into two steps. The first step is to prepare A-Zn (A=Mg, Mn or Ni) modified goethite (FeOOH) with a particle size of about 50 nm by peptization and reflux technology. Powder; the second step: cultivating Shewanella putrefaciens MR-1 under anaerobic conditions at room temperature to reduce part of the ferric iron to obtain (A-Zn)Fe 2 O 4 -Fe 2 O 3 heterojunction. Compared with the existing technology, this method has the advantages of simple process, less pollution, low energy consumption, easy scale-up, high recovery rate, etc. The (A-Zn)Fe 2 O 4 -Fe 2 O 3 heterojunction obtained by this method Low surface defects, less agglomeration, uniform particle size, and good photothermal and magnetic properties.
Description
技术领域technical field
本发明涉及一种利用腐败希瓦氏菌MR-1制备p-铁素体修饰n-赤铁矿异质结构的生物方法,属于无机材料领域。The invention relates to a biological method for preparing p-ferrite modified n-hematite heterogeneous structure by utilizing Shewanella putrefaciens MR-1, which belongs to the field of inorganic materials.
背景技术Background technique
n型半导体赤铁矿(Fe2O3;带隙:2eV)是在催化剂的领域中的一个重要的半导体材料,它已被应用于光电材料、光催化和磁存储介质。然而,载流子迁移率差(0.2cm2·V-1·s-1)和光生载流子的超快重组(~10ps)等缺陷限制了其大规模推广。目前研究表面设计和制备可控的Fe2O3基异质结构可显著提高光生电子和空穴的效率,并出现原组分物理混合所不具备的新属性。例如,采用Fe2O3与p型尖晶石铁氧体(带隙:1.9~2.7eV)共轭形成p-n结构。磁性纳米晶体的掺入不仅可以提高光催化效率,而且可以在温和的磁场回收的催化剂通过磁分离,这是光催化应用非常有吸引力的。2008年,Pailhe'等报道了锌掺杂铁氧体的特殊磁性和光致发光特性。继而,Lee、Sutka、Klimkiewicz等课题组相继采用喷雾热解沉积、一步化学合成和液相热合成等手段制备了p型铁素体-n型赤铁矿异质结构,并报道了原组分所不具有的磁性、表面光电压、空心结构等新参数。因此,p-n型陶瓷被认为是探索富含铁的氧化物的各种纳米结构的新型复合材料,这将促进应用程序集成的材料的多种功能的光电特性。The n-type semiconductor hematite (Fe 2 O 3 ; band gap: 2eV) is an important semiconductor material in the field of catalysts, which has been applied to photoelectric materials, photocatalysis and magnetic storage media. However, poor carrier mobility (0.2cm 2 ·V -1 ·s -1 ) and ultrafast recombination of photogenerated carriers (~10ps) limit its large-scale application. The current research on surface design and preparation of controllable Fe 2 O 3 -based heterostructures can significantly improve the efficiency of photogenerated electrons and holes, and emerge new properties that the original components do not have in physical mixing. For example, Fe 2 O 3 is used to conjugate p-type spinel ferrite (band gap: 1.9-2.7eV) to form a pn structure. The incorporation of magnetic nanocrystals can not only enhance the photocatalytic efficiency, but also recover the catalysts through magnetic separation under mild magnetic field, which is very attractive for photocatalytic applications. In 2008, Pailhe' et al. reported the special magnetic and photoluminescent properties of zinc-doped ferrites. Subsequently, the research groups of Lee, Sutka, Klimkiewicz and others successively prepared the p-type ferrite-n-type hematite heterostructure by means of spray pyrolysis deposition, one-step chemical synthesis and liquid phase thermal synthesis, and reported that the original components New parameters such as magnetism, surface photovoltage, and hollow structure that do not exist. Therefore, pn-type ceramics are considered as novel composite materials for exploring various nanostructures of iron-rich oxides, which will facilitate the optoelectronic properties of the multifunctional materials for application integration.
传统的物理或化学方法都难以避免因高温退火的表面缺陷,因此,新的研究集中于制备与生物合成所述的纳米材料。最近,研究人员使用不同的微生物研究了纳米级尖晶石的合成工作,具体反应过程如下:乳酸(Lactate-)+4Fe3++2H2O→1,1-二乙氧基乙烷(acetat-)+HCO-+4Fe2++5H+;A2++2Fe(OH)3→AFe2O4+2H2O+2H+(A=Fe、Mg、Zn、Mn、Ni、Ca等)。It is difficult to avoid the surface defects caused by high temperature annealing by traditional physical or chemical methods, therefore, new researches focus on the preparation and biosynthesis of said nanomaterials. Recently, researchers have studied the synthesis of nano-scale spinel using different microorganisms. The specific reaction process is as follows: lactic acid (Lactate - ) + 4Fe 3+ + 2H 2 O→1,1-diethoxyethane (acetat - )+HCO - +4Fe 2+ +5H + ; A 2+ +2Fe(OH) 3 → AFe 2 O 4 +2H 2 O+2H + (A=Fe, Mg, Zn, Mn, Ni, Ca, etc.) .
发明内容Contents of the invention
本发明目的在于,提供一种制备p-铁素体修饰n-赤铁矿异质结构的生物方法,该方法通过生物合成技术开发了p-n结与欧姆层的p型铁素体-n型赤铁矿异质结构,分两步进行,第一步:胶溶回流技术制备粒度约50nm的A-Zn(A=Mg、Mn或Ni)修饰针铁矿(FeOOH)粉体;第二步:室温厌氧条件下培养腐败希瓦氏菌MR-1还原部分三价铁,得到(A-Zn)Fe2O4-Fe2O3异质结。该方法与现有技术相比:具有工艺简单、污染小、耗能低、易于放大、回收率高等优点。通过该方法获得的(A-Zn)Fe2O4-Fe2O3异质结表面缺陷低、团聚少、粒度均匀,同时具备较好的光热磁特性。The purpose of the present invention is to provide a biological method for preparing p-ferrite-modified n-hematite heterostructure, which develops a p-type ferrite-n-type red hematite with pn junction and ohmic layer through biosynthesis technology. The heterogeneous structure of iron ore is carried out in two steps. The first step: A-Zn (A=Mg, Mn or Ni) modified goethite (FeOOH) powder with a particle size of about 50nm is prepared by peptizing reflux technology; the second step: Shewanella putrefaciens MR-1 was cultured under anaerobic conditions at room temperature to reduce part of ferric iron to obtain (A-Zn)Fe 2 O 4 -Fe 2 O 3 heterojunction. Compared with the prior art, the method has the advantages of simple process, little pollution, low energy consumption, easy amplification, high recovery rate and the like. The (A-Zn)Fe 2 O 4 -Fe 2 O 3 heterojunction obtained by the method has low surface defects, less agglomeration, uniform particle size and good photothermomagnetic properties.
本发明所述的一种制备p-铁素体修饰n-赤铁矿异质结构的生物方法,该方法利用腐败希瓦氏菌MR-1制备p-铁素体修饰n-赤铁矿异质结构,具体操作按下列步骤进行:A biological method for preparing p-ferrite modified n-hematite heterostructure according to the present invention, the method uses Shewanella putrefaciens MR-1 to prepare p-ferrite modified n-hematite heterostructure The specific operation is carried out according to the following steps:
a、将原料MgCl2、MnCl2或NiCl2与ZnCl2和FeCl3·6H2O按摩尔比Mg2+、Mn2+或Ni2+∶Zn2+∶Fe3+=0.5∶0.5∶2加入pH值为2的硝酸水溶液中,在温度85℃回流2小时,静置,真空温度50℃干燥20小时,得到Mg2+、Mn2+或Ni2+,和Zn2+修饰的FeOOH粉体;a. The raw material MgCl 2 , MnCl 2 or NiCl 2 and ZnCl 2 and FeCl 3 · 6H 2 O in molar ratio Mg 2+ , Mn 2+ or Ni 2+ : Zn 2+ : Fe 3+ =0.5:0.5:2 Add to the nitric acid aqueous solution with a pH value of 2, reflux at a temperature of 85°C for 2 hours, let stand, and dry at a vacuum temperature of 50°C for 20 hours to obtain Mg 2+ , Mn 2+ or Ni 2+ , and Zn 2+ modified FeOOH powder body;
b、将30g·L-1腐败希瓦氏菌MR-1在液体胰蛋白胨大豆肉汤培养基培养,得到细胞浓度为2.3×108细胞·ml-1,在温度5℃冷冻条件下离心出腐败希瓦氏菌MR-1菌种,加入到矿化培养基中,然后加入将步骤a得到的修饰的FeOOH粉体配制成浓度为90mM的Mg2+、Mn2+或Ni2+,和Zn2+修饰的FeOOH溶液,调节溶液pH值为6-8,并同时加入1,4-哌嗪二乙磺酸和蒽醌2,6-双磺酸盐,缓解细胞与FeOOH溶液的接触,加速Fe3+的还原反应;b. Cultivate 30g·L -1 of Shewanella putrefaciens MR-1 in liquid tryptone soybean broth medium to obtain a cell concentration of 2.3×10 8 cells·ml -1 , and centrifuge at a temperature of 5°C under freezing conditions Shewanella putrefaciens MR-1 strains, added to the mineralization medium, and then added the modified FeOOH powder obtained in step a to prepare Mg 2+ , Mn 2+ or Ni 2+ with a concentration of 90mM, and Zn 2+ modified FeOOH solution, adjust the pH value of the solution to 6-8, and simultaneously add 1,4-piperazine diethanesulfonic acid and anthraquinone 2,6-bissulfonate to relieve the contact of cells with FeOOH solution, Accelerate the reduction reaction of Fe 3+ ;
c、将步骤b的反应液厌氧密封,在温度30℃条件下避光保存45天,离心,真空温度70℃干燥48小时,获得p-铁素体修饰n-赤铁矿异质结构。c. Seal the reaction solution in step b anaerobically, store it in the dark at a temperature of 30°C for 45 days, centrifuge it, and dry it under vacuum at a temperature of 70°C for 48 hours to obtain a p-ferrite-modified n-hematite heterostructure.
步骤b中的矿化培养基组分为(NH4)2SO49.0mM,K2HPO45.7mM,KH2PO43.3mM,NaHCO32.0mM,MgSO4·7H2O 1.01mM,CaCl2·2H2O0.485mM,乙二胺四乙酸铁钠67.2μM,H3BO356.6μM,NaCl 10.0μM,FeSO4·7H2O 5.4μM,CoSO45.0μM,Ni(NH4)2(SO4)25.0μM,Na2MoO43.87μM,Na2SeO41.5μM,MnSO41.26μM,ZnSO41.04μM,CuSO40.2μM,精氨酸20mg·L-1,谷氨酸20mg·L-1和丝氨酸20mg·L-1。The mineralization medium composition in step b is (NH 4 ) 2 SO 4 9.0mM, K 2 HPO 4 5.7mM, KH 2 PO 4 3.3mM, NaHCO 3 2.0mM, MgSO 4 7H 2 O 1.01mM, CaCl ( _ _ _ _ _ _ _ _ SO 4 ) 2 5.0 μM, Na 2 MoO 4 3.87 μM, Na 2 SeO 4 1.5 μM, MnSO 4 1.26 μM, ZnSO 4 1.04 μM, CuSO 4 0.2 μM, arginine 20 mg·L -1 , glutamic acid 20 mg· L -1 and serine 20mg·L -1 .
本发明所述的制备p-铁素体修饰n-赤铁矿异质结构的生物方法,该方法中所涉及的腐败希瓦氏菌MR-1(革兰氏阴性、兼性厌氧菌)为购买产品,由美国迈阿密大学、中国地质大学、西南科技大学董海良课题组提供,腐败希瓦氏菌MR-1基因组为42c型细胞色素,细胞外基质的细胞色素(胰蛋白色素A-OmcA、胰蛋白色素C-MtrC和胰蛋白色素B-MtrB)和铁氢化酶被定位在内膜和外膜的不同位置,形成“分子线”构型,提供了不溶电子受体和电子移动进出细胞的通路。这些基因组序列提供了二价金属离子还原(和生物修复)的一个关键步骤,并为Fe2O3的表面二价过渡金属离子的改性研究提供了一种新的途径。The biological method for preparing p-ferrite modified n-hematite heterogeneous structure according to the present invention, the involved Shewanella putrefaciens MR-1 (Gram-negative, facultative anaerobic bacteria) In order to purchase the product, provided by the research group of Dong Hailiang, University of Miami, China University of Geosciences, and Southwest University of Science and Technology, the genome of Shewanella putrefaciens MR-1 is cytochrome 42c, and the cytochrome of the extracellular matrix (trypsin pigment A-OmcA , trypsin C-MtrC and trypsin B-MtrB) and iron hydrogenase are localized at different locations in the inner and outer membranes, forming a "molecular wire" configuration that provides insoluble electron acceptors and electron movement in and out of the cell access. These genomic sequences provide a key step in the reduction (and bioremediation) of divalent metal ions and provide a new avenue for the study of the modification of Fe2O3 with divalent transition metal ions on the surface .
本发明所述的制备p-铁素体修饰n-赤铁矿异质结构的生物方法,该方法中所涉及的液体TSB培养基为胰蛋白胨大豆肉汤培养基。According to the biological method for preparing p-ferrite modified n-hematite heterogeneous structure of the present invention, the liquid TSB medium involved in the method is tryptone soybean broth medium.
附图说明Description of drawings
图1为本发明经过45天MR-1微生物矿化处理得到的最终产物的粉末X射线衍射峰形,其中-□-代表Fe3O4的相,-▽-Fe2O3的相,(1)为Fe3O4和Fe2O3的XRD图;(2)为Zn-Mg共掺杂Fe3O4-Fe2O3的XRD图;(3)为Zn-Mn共掺杂Fe3O4-Fe2O3的XRD图;(4)为Zn-Ni共掺杂Fe3O4-Fe2O3的XRD图;Fig. 1 is the powder X-ray diffraction peak shape of the final product obtained by the present invention through 45 days of MR-1 microbial mineralization treatment, wherein -□-represents the phase of Fe 3 O 4 , the phase of -▽-Fe 2 O 3 , ( 1) XRD pattern of Fe 3 O 4 and Fe 2 O 3 ; (2) XRD pattern of Zn-Mg co-doped Fe 3 O 4 -Fe 2 O 3 ; (3) Zn-Mn co-doped Fe XRD pattern of 3 O 4 -Fe 2 O 3 ; (4) XRD pattern of Zn-Ni co-doped Fe 3 O 4 -Fe 2 O 3 ;
图2为本发明经过微生物矿化处理得到的最终产物的粉末拉曼光谱,其中代表Fe3O4-Fe2O3的拉曼光谱;代表Zn-Mg共掺杂FeFe3O4-Fe2O3的拉曼光谱;代表Zn-Mn共掺杂Fe3O4-Fe2O3拉曼光谱;代表Zn-Ni共掺杂Fe3O4-Fe2O3拉曼光谱;从图中可以看出反应物为AZnFe2O4复合Fe2O3粉体(Fe-O峰值:200~300cm-1),与原反应物相比,复合相内包含Fe2+-Fe3+复合键,这是p-n结的主要反应位点。Fig. 2 is the powder Raman spectrum of the final product that the present invention obtains through microbial mineralization treatment, wherein Represents the Raman spectrum of Fe 3 O 4 -Fe 2 O 3 ; Raman spectrum representing Zn-Mg co-doped FeFe 3 O 4 -Fe 2 O 3 ; Represents Zn-Mn co-doped Fe 3 O 4 -Fe 2 O 3 Raman spectrum; Represents Zn-Ni co-doped Fe 3 O 4 -Fe 2 O 3 Raman spectrum; it can be seen from the figure that the reactant is AZnFe 2 O 4 composite Fe 2 O 3 powder (Fe-O peak: 200~300cm - 1 ), compared with the original reactants, the composite phase contains Fe 2+ -Fe 3+ composite bonds, which are the main reaction sites of the pn junction.
图3为本发明经过微生物处理得到的(A-Zn)Fe2O4-Fe2O3异质结的紫外-可见漫反射DRS图,其中代表Zn-Mn共掺杂Fe3O4-Fe2O3的紫外-可见漫反射图;代表Zn-Mg共掺杂Fe3O4-Fe2O3的紫外-可见漫反射图;代表Zn-Ni共掺杂Fe3O4-Fe2O3的紫外-可见漫反射图;代表Fe3O4-Fe2O3的的紫外-可见漫反射图;从图中可以看出产物属于p-n型异质结结构,p型能隙为1.42~1.84eV,n型能隙为2.46~2.69eV。特别值得注意的是(Ni-Zn)Fe2O4-Fe2O3异质结中出现了过渡能隙(2.76eV),这可作为有效电子和有效空穴传输的中转区。与传统p-n结相比,光电子输运和捕获效率更快。Fig. 3 is the ultraviolet-visible diffuse reflectance DRS figure of (A-Zn) Fe2O4 - Fe2O3 heterojunction obtained through microbial treatment in the present invention , wherein Represents the UV-Vis diffuse reflectance diagram of Zn-Mn co-doped Fe 3 O 4 -Fe 2 O 3 ; Represents the UV-Vis diffuse reflectance diagram of Zn-Mg co-doped Fe 3 O 4 -Fe 2 O 3 ; Represents the UV-Vis diffuse reflectance diagram of Zn-Ni co-doped Fe 3 O 4 -Fe 2 O 3 ; Represents the UV-Vis diffuse reflectance diagram of Fe 3 O 4 -Fe 2 O 3 ; it can be seen from the figure that the product belongs to the pn-type heterojunction structure, the p-type energy gap is 1.42-1.84eV, and the n-type energy gap is 2.46 ~2.69eV. Particularly noteworthy is the emergence of a transition gap (2.76eV) in the (Ni-Zn)Fe 2 O 4 -Fe 2 O 3 heterojunction, which can serve as a transit region for efficient electron and efficient hole transport. Compared with conventional pn junctions, the photoelectron transport and capture efficiency is faster.
具体实施方式Detailed ways
实施例1Example 1
a、按摩尔比为Mg2+∶Zn2+∶Fe3+=0.5∶0.5∶2称取原料MgCl2、ZnCl2和FeCl3·6H2O,加入pH值为2的硝酸水溶液,在温度85℃下回流2小时,反应物即发生胶溶回流反应,溶液由无色透明变为土黄色悬浊液,2小时反应结束,静置后固液分层,得到土黄色粉末产物,将粉末水洗至去除副产物氯化铵后,真空温度50℃干燥20小时得到Mg2+和Zn2+修饰FeOOH粉体;a. The molar ratio is Mg 2+ : Zn 2+ : Fe 3+ = 0.5: 0.5: 2. Weigh the raw materials MgCl 2 , ZnCl 2 and FeCl 3 ·6H 2 O, add an aqueous solution of nitric acid with a pH value of 2, and Reflux at 85°C for 2 hours, and the reactant will undergo a peptization reflux reaction, and the solution will change from colorless and transparent to a khaki suspension. After 2 hours of reaction, the solid-liquid layer will be separated after standing, and a khaki powder product will be obtained. After washing with water until the by-product ammonium chloride is removed, dry at a vacuum temperature of 50°C for 20 hours to obtain Mg 2+ and Zn 2+ modified FeOOH powder;
b、将30g·L-1腐败希瓦氏菌MR-1在液体胰蛋白胨大豆肉汤培养基中进行培养,得到细胞浓度2.3×108细胞·ml-1,在温度5℃冷冻条件下离心出腐败希瓦氏菌MR-1菌种,将腐败希瓦氏菌MR-1菌种加入到矿化培养基为(NH4)2SO49.0mM,K2HPO45.7mM,KH2PO43.3mM,NaHCO32.0mM,MgSO4·7H2O 1.01mM,CaCl2·2H2O0.485mM,乙二胺四乙酸铁钠67.2μM,H3BO356.6μM,NaCl 10.0μM,FeSO4·7H2O 5.4μM,CoSO45.0μM,Ni(NH4)2(SO4)25.0μM,Na2MoO43.87μM,Na2SeO41.5μM,MnSO41.26μM,ZnSO41.04μM,CuSO40.2μM,精氨酸20mg·L-1,谷氨酸20mg·L-1和丝氨酸20mg·L-1中,然后加入将步骤a得到的修饰的FeOOH粉体配制成浓度为90mM的Mg2+-Zn2+修饰FeOOH溶液,调节pH值为8,并同时加入1,4-哌嗪二乙磺酸(PIPES)和蒽醌2,6-双磺酸盐(AQDS),缓解细胞与FeOOH溶液的接触,加速Fe3+的还原反应;b. Cultivate 30g·L -1 Shewanella putrefaciens MR-1 in liquid tryptone soybean broth medium to obtain a cell concentration of 2.3×10 8 cells·ml -1 , and centrifuge at 5°C under freezing conditions Putting Shewanella putrefaciens MR-1 strains, adding Shewanella putrefaciens MR-1 strains to the mineralization medium as (NH 4 ) 2 SO 4 9.0mM, K 2 HPO 4 5.7mM, KH 2 PO 4 3.3mM, NaHCO 3 2.0mM, MgSO 4 7H 2 O 1.01mM, CaCl 2 2H 2 O 0.485mM, sodium ferric EDTA 67.2μM, H 3 BO 3 56.6μM, NaCl 10.0μM, FeSO 4 7H 2 O 5.4 μM, CoSO 4 5.0 μM, Ni(NH 4 ) 2 (SO 4 ) 2 5.0 μM, Na 2 MoO 4 3.87 μM, Na 2 SeO 4 1.5 μM, MnSO 4 1.26 μM, ZnSO 4 1.04 μM, CuSO 4 0.2μM, arginine 20mg·L -1 , glutamic acid 20mg·L -1 and serine 20mg·L -1 , and then add the modified FeOOH powder obtained in step a to prepare Mg with a concentration of 90mM 2+ -Zn 2+ modified FeOOH solution, adjusted the pH value to 8, and added 1,4-piperazine diethanesulfonic acid (PIPES) and anthraquinone 2,6-disulphonic acid salt (AQDS) at the same time, relieved the cell and The contact of FeOOH solution accelerates the reduction reaction of Fe 3+ ;
c、将步骤b的反应液厌氧密封,在温度30℃条件下避光保存45天,反应物即发生微生物Fe3+-Fe2+还原反应,表面颜色由土黄色粉末变为黄褐色悬浊液,反应结束后得到黑褐色粉末,离心,真空温度70℃干燥48小时,获得(Mg-Zn)Fe2O4-Fe2O3异质结,回收率为88.57%。c. Seal the reaction solution in step b anaerobically, and store it in the dark for 45 days at a temperature of 30°C. The reactant will undergo a microbial Fe 3+ -Fe 2+ reduction reaction, and the surface color will change from earthy yellow powder to yellowish brown suspension. Cloudy liquid, dark brown powder was obtained after the reaction, centrifuged, and dried under vacuum at 70°C for 48 hours to obtain (Mg-Zn)Fe 2 O 4 -Fe 2 O 3 heterojunction with a recovery rate of 88.57%.
实施例2Example 2
a、按摩尔比为Mn2+∶Zn2+∶Fe3+=0.5∶0.5∶2称取原料MnCl2、ZnCl2和FeCl3·6H2O,加入pH值为2的硝酸水溶液中,在温度85℃下胶溶回流2小时,溶液由无色透明变为浅黄色悬浊液,2小时反应结束,静置后固液分层,真空温度50℃干燥20小时,得到褐黄色Mn2+-Zn2+修饰FeOOH粉末;a. The molar ratio is Mn 2+ : Zn 2+ : Fe 3+ = 0.5: 0.5: 2. Weigh the raw materials MnCl 2 , ZnCl 2 and FeCl 3 ·6H 2 O, add them into the nitric acid aqueous solution with a pH value of 2, and Peptization and reflux at 85°C for 2 hours, the solution changed from colorless and transparent to a light yellow suspension. After 2 hours of reaction, the solid-liquid layer was separated and dried at a vacuum temperature of 50°C for 20 hours to obtain brown-yellow Mn 2+ -Zn 2+ modified FeOOH powder;
b、将30g·L-1腐败希瓦氏菌MR-1在液体胰蛋白胨大豆肉汤培养基培养,得到细胞浓度为2.3×108细胞·ml-1,在温度5℃冷冻条件下离心出腐败希瓦氏菌MR-1菌种,将腐败希瓦氏菌MR-1菌种加入到矿化培养基为(NH4)2SO49.0mM,K2HPO45.7mM,KH2PO43.3mM,NaHCO32.0mM,MgSO4·7H2O 1.01mM,CaCl2·2H2O0.485mM,乙二胺四乙酸铁钠67.2μM,H3BO356.6μM,NaCl 10.0μM,FeSO4·7H2O 5.4μM,CoSO45.0μM,Ni(NH4)2(SO4)25.0μM,Na2MoO43.87μM,Na2SeO41.5μM,MnSO41.26μM,ZnSO41.04μM,CuSO40.2μM,精氨酸20mg·L-1,谷氨酸20mg·L-1和丝氨酸20mg·L-1中,然后加入将步骤a得到的修饰的FeOOH粉体配制成浓度为90mM的Mn2+-Zn2+修饰FeOOH溶液,调节pH值为7,并同时加入1,4-哌嗪二乙磺酸(PIPES)和蒽醌2,6-双磺酸盐(AQDS),缓解细胞与FeOOH溶液的接触,加速Fe3+的还原反应;b. Cultivate 30g·L -1 of Shewanella putrefaciens MR-1 in liquid tryptone soybean broth medium to obtain a cell concentration of 2.3×10 8 cells·ml -1 , and centrifuge at a temperature of 5°C under freezing conditions Putting Shewanella putrefaciens MR-1 strains, adding Shewanella putrefaciens MR-1 strains to the mineralization medium as (NH 4 ) 2 SO 4 9.0mM, K 2 HPO 4 5.7mM, KH 2 PO 4 3.3mM, NaHCO 3 2.0mM, MgSO 4 7H 2 O 1.01mM, CaCl 2 2H 2 O 0.485mM, sodium ferric edetate 67.2μM, H 3 BO 3 56.6μM, NaCl 10.0μM, FeSO 4 7H 2 O 5.4 μM, CoSO 4 5.0 μM, Ni(NH 4 ) 2 (SO 4 ) 2 5.0 μM, Na 2 MoO 4 3.87 μM, Na 2 SeO 4 1.5 μM, MnSO 4 1.26 μM, ZnSO 4 1.04 μM, CuSO 4 0.2 μM, 20 mg·L -1 of arginine, 20 mg·L -1 of glutamic acid and 20 mg·L -1 of serine, and then add the modified FeOOH powder obtained in step a to prepare Mn 2 with a concentration of 90 mM + -Zn 2+ modified FeOOH solution, adjusted the pH value to 7, and added 1,4-piperazine diethanesulfonic acid (PIPES) and anthraquinone 2,6-disulphonic acid salt (AQDS) at the same time to relieve the cells from interacting with FeOOH The contact of the solution accelerates the reduction reaction of Fe 3+ ;
c、将步骤b的反应液厌氧密封,在温度30℃条件下避光保存45天,反应物表面颜色由土黄色粉末变为黄褐色悬浊液,反应结束后得到红褐色粉末,离心,真空温度70℃干燥48小时,获得(Mn-Zn)Fe2O4-Fe2O3异质结,回收率为94.28%。c. Seal the reaction solution in step b anaerobically, and store it in the dark at a temperature of 30°C for 45 days. The surface color of the reactant changes from a khaki powder to a yellowish-brown suspension. After the reaction, a reddish-brown powder is obtained, centrifuged, Drying at a vacuum temperature of 70° C. for 48 hours to obtain a (Mn—Zn)Fe 2 O 4 —Fe 2 O 3 heterojunction with a recovery rate of 94.28%.
实施例3Example 3
a、按摩尔比为Ni2+∶Zn2+∶Fe3+=0.5∶0.5∶2称取原料NiCl2、ZnCl2和FeCl3·6H2O,加入pH值为2的硝酸水溶液中,在温度85℃回流2小时,溶液由无色透明变为浅黄绿色悬浊液,静置后固液分层,真空温度50℃干燥20小时,得到浅黄色Ni2+-Zn2+修饰FeOOH粉末;a. The molar ratio is Ni 2+ : Zn 2+ : Fe 3+ = 0.5: 0.5: 2. Weigh the raw materials NiCl 2 , ZnCl 2 and FeCl 3 ·6H 2 O, add them into the nitric acid aqueous solution with a pH value of 2, and Refluxed at 85°C for 2 hours, the solution changed from colorless and transparent to a light yellow-green suspension. After standing still, the solid-liquid layer was separated, and dried at a vacuum temperature of 50°C for 20 hours to obtain light yellow Ni 2+ -Zn 2+ modified FeOOH powder;
将30g·L-1腐败希瓦氏菌MR-1在液体胰蛋白胨大豆肉汤培养基培养,得到细胞浓度为2.3×108细胞·ml-1,在温度5℃冷冻条件下离心出腐败希瓦氏菌MR-1菌种,将腐败希瓦氏菌MR-1菌种加入到矿化培养基为(NH4)2SO49.0mM,K2HPO45.7mM,KH2PO43.3mM,NaHCO32.0mM,MgSO4·7H2O 1.01mM,CaCl2·2H2O0.485mM,乙二胺四乙酸铁钠67.2μM,H3BO356.6μM,NaCl 10.0μM,FeSO4·7H2O 5.4μM,CoSO45.0μM,Ni(NH4)2(SO4)25.0μM,Na2MoO43.87μM,Na2SeO41.5μM,MnSO41.26μM,ZnSO41.04μM,CuSO40.2μM,精氨酸20mg·L-1,谷氨酸20mg·L-1和丝氨酸20mg·L-1中,然后加入将步骤a得到的修饰的FeOOH粉体配制成浓度为90mM的Ni2+-Zn2+修饰FeOOH溶液,调节pH值为6,并同时加入1,4-哌嗪二乙磺酸(PIPES)和蒽醌2,6-双磺酸盐(AQDS),缓解细胞与FeOOH溶液的接触,加速Fe3+的还原反应;Cultivate 30g·L -1 Shewanella putrefaciens MR-1 in liquid tryptone soybean broth medium to obtain a cell concentration of 2.3×10 8 cells·ml -1 , centrifuge putrefaction bacteria at 5°C Warnerella MR-1 strains, put Shewanella putrefaciens MR-1 strains into the mineralization medium as (NH 4 ) 2 SO 4 9.0mM, K 2 HPO 4 5.7mM, KH 2 PO 4 3.3mM , NaHCO 3 2.0mM, MgSO 4 7H 2 O 1.01mM, CaCl 2 2H 2 O 0.485mM, sodium ferric EDTA 67.2μM, H 3 BO 3 56.6μM, NaCl 10.0μM, FeSO 4 7H 2 O 5.4 μM, CoSO 4 5.0 μM, Ni(NH 4 ) 2 (SO 4 ) 2 5.0 μM, Na 2 MoO 4 3.87 μM, Na 2 SeO 4 1.5 μM, MnSO 4 1.26 μM, ZnSO 4 1.04 μM, CuSO 4 0.2 μM, 20mg·L -1 of arginine, 20mg·L -1 of glutamic acid and 20mg·L -1 of serine, and then add the modified FeOOH powder obtained in step a to prepare Ni 2+ - with a concentration of 90mM Zn 2+ modified FeOOH solution, adjusted the pH value to 6, and added 1,4-piperazine diethanesulfonic acid (PIPES) and anthraquinone 2,6-disulphonate (AQDS) at the same time to relieve the cells from the FeOOH solution. Contact, accelerate the reduction reaction of Fe 3+ ;
c、将步骤b的反应液厌氧密封,在温度30℃条件下避光保存45天,反应物表面颜色由土黄色粉末变为黄绿色悬浊液,反应结束后得到黑褐色粉末,离心,真空温度70℃干燥48小时,获得(Ni-Zn)Fe2O4-Fe2O3异质结,回收率为87.14%。c. Seal the reaction solution in step b anaerobically, and store it in the dark at a temperature of 30°C for 45 days. The surface color of the reactant changes from a khaki powder to a yellow-green suspension. After the reaction, a dark brown powder is obtained, centrifuged, Dry at 70° C. for 48 hours under vacuum to obtain (Ni—Zn)Fe 2 O 4 —Fe 2 O 3 heterojunction with a recovery rate of 87.14%.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410805812.3A CN104450790B (en) | 2014-12-22 | 2014-12-22 | It is a kind of to prepare the biological method that p ferrites modify n bloodstone heterojunction structures |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410805812.3A CN104450790B (en) | 2014-12-22 | 2014-12-22 | It is a kind of to prepare the biological method that p ferrites modify n bloodstone heterojunction structures |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104450790A true CN104450790A (en) | 2015-03-25 |
CN104450790B CN104450790B (en) | 2017-07-04 |
Family
ID=52897538
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410805812.3A Expired - Fee Related CN104450790B (en) | 2014-12-22 | 2014-12-22 | It is a kind of to prepare the biological method that p ferrites modify n bloodstone heterojunction structures |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104450790B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101062790A (en) * | 2007-04-20 | 2007-10-31 | 南京大学 | Simple preparation method of alpha-FeOOH and alpha-Fe2O3 nano stick |
CN102583574A (en) * | 2012-03-09 | 2012-07-18 | 四川大学 | A high-capacity lithium-ion battery negative electrode material α-Fe2O3 and its preparation method |
WO2012162817A1 (en) * | 2011-06-03 | 2012-12-06 | Orbite Aluminae Inc. | Methods for preparing hematite |
CN103030181A (en) * | 2011-09-30 | 2013-04-10 | 朗盛德国有限责任公司 | Improved method for producing finely divided haematite and for producing iron oxide red pigments |
-
2014
- 2014-12-22 CN CN201410805812.3A patent/CN104450790B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101062790A (en) * | 2007-04-20 | 2007-10-31 | 南京大学 | Simple preparation method of alpha-FeOOH and alpha-Fe2O3 nano stick |
WO2012162817A1 (en) * | 2011-06-03 | 2012-12-06 | Orbite Aluminae Inc. | Methods for preparing hematite |
CN103030181A (en) * | 2011-09-30 | 2013-04-10 | 朗盛德国有限责任公司 | Improved method for producing finely divided haematite and for producing iron oxide red pigments |
CN102583574A (en) * | 2012-03-09 | 2012-07-18 | 四川大学 | A high-capacity lithium-ion battery negative electrode material α-Fe2O3 and its preparation method |
Non-Patent Citations (1)
Title |
---|
陈洁等: ""奥奈达希瓦氏菌MR-1的Fe(Ⅲ)还原特性及其影响因素"", 《安徽农业大学学报》 * |
Also Published As
Publication number | Publication date |
---|---|
CN104450790B (en) | 2017-07-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lin et al. | Graphitic carbon nitride quantum dots and nitrogen-doped carbon quantum dots co-decorated with BiVO4 microspheres: a ternary heterostructure photocatalyst for water purification | |
Pu et al. | An electron-hole separation mechanism caused by the pseudo-gap formed at the interfacial Co-N bond between cobalt porphyrin metal organic framework and boron-doped g-C3N4 for boosting photocatalytic H2 production | |
Liu et al. | Simultaneous photo catalysis of SiC/Fe3O4 nanoparticles and photo-fermentation of Rhodopseudomonas sp. Nov. Strain A7 for enhancing hydrogen production under visible light irradiation | |
Liu et al. | Effects of Fe3O4 nanoparticle fabrication and surface modification on Chlorella sp. harvesting efficiency | |
CN110344029B (en) | A kind of preparation method of surface hydroxylated iron oxide film photoanode material | |
CN111249458A (en) | A kind of preparation method of cascade reaction magnetic metal organic framework nanoparticles with cancer cell killing function | |
CN106268902B (en) | A kind of preparation method of g-C3N4 quantum dot, Ag quantum dot sensitized BiVO4 photocatalyst | |
CN109811011B (en) | A kind of method for biosynthesizing hollow micro-nano ferric oxide | |
CN109607618B (en) | Preparation method of yolk-egg structure MnO@MnSe composites | |
CN107362803A (en) | A kind of preparation method of magnetic graphite alkenyl zinc oxide nanometer composite material | |
CN103274443A (en) | A kind of Cu2O-ZnO composite nano-structure semiconductor material of tetragonal leaf shape and preparation method thereof | |
CN111137891B (en) | Preparation method of nickel-doped magnetic carbon and application of nickel-doped magnetic carbon in hydrogen production by dark fermentation | |
CN104450790B (en) | It is a kind of to prepare the biological method that p ferrites modify n bloodstone heterojunction structures | |
CN108671949A (en) | A kind of preparation and application of CdS/ titanium carbides two dimensional heterostructures composite photocatalyst material | |
CN105062478B (en) | A kind of biological method for preparing ferrite bismuth ferrite composite fluorescent material | |
CN114505080A (en) | Method for in-situ preparation of SnO2/SnS2 heterojunction photocatalyst and method of using the same | |
CN106076374A (en) | A kind of Fe3O4‑C@Bi2O3‑BiOI photocatalyst and its preparation method and application | |
CN104529551A (en) | Microorganism preparation method for growing soft magnetic ferrite on surfaces of bismuth ferrite thin films | |
CN110257311B (en) | A kind of microorganism for preparing broccoli-shaped antimony sulfide and its application | |
CN107858507A (en) | A kind of complex method for improving sulfur oxidizing bacterium kind Chalcopyrite Leaching efficiency | |
CN104046652A (en) | Biosynthesis method of magnetic graphene composite material | |
CN107841475B (en) | Marine bacterium and application thereof | |
CN106589359A (en) | Mechanochemical preparation method for polyphenol amine composite | |
Li et al. | Construction of g-C3N4-based photo-enzyme-coupled catalytic system and application in the efficient degradation of acridine | |
CN106356512B (en) | A kind of cobaltosic oxide modified titanic oxide nanobelt cell negative electrode material and preparation and application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20170704 Termination date: 20191222 |