CN104449698A - Quantum dot/titanium dioxide composite nanodot array having visible-light response and preparation method of quantum dot/titanium dioxide composite nanodot array - Google Patents
Quantum dot/titanium dioxide composite nanodot array having visible-light response and preparation method of quantum dot/titanium dioxide composite nanodot array Download PDFInfo
- Publication number
- CN104449698A CN104449698A CN201410769605.7A CN201410769605A CN104449698A CN 104449698 A CN104449698 A CN 104449698A CN 201410769605 A CN201410769605 A CN 201410769605A CN 104449698 A CN104449698 A CN 104449698A
- Authority
- CN
- China
- Prior art keywords
- dot
- titanium dioxide
- quantum dot
- visible light
- deionized water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002096 quantum dot Substances 0.000 title claims abstract description 119
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 title claims abstract description 87
- 239000002131 composite material Substances 0.000 title claims abstract description 41
- 239000004408 titanium dioxide Substances 0.000 title claims abstract description 37
- 238000002360 preparation method Methods 0.000 title abstract description 8
- 230000004044 response Effects 0.000 title description 2
- 239000000758 substrate Substances 0.000 claims abstract description 18
- 230000004298 light response Effects 0.000 claims abstract description 12
- 238000000034 method Methods 0.000 claims abstract description 12
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 7
- 239000010936 titanium Substances 0.000 claims abstract description 7
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 64
- 239000008367 deionised water Substances 0.000 claims description 43
- 229910021641 deionized water Inorganic materials 0.000 claims description 43
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 43
- YRKCREAYFQTBPV-UHFFFAOYSA-N acetylacetone Chemical compound CC(=O)CC(C)=O YRKCREAYFQTBPV-UHFFFAOYSA-N 0.000 claims description 30
- 239000002243 precursor Substances 0.000 claims description 30
- YHWCPXVTRSHPNY-UHFFFAOYSA-N butan-1-olate;titanium(4+) Chemical compound [Ti+4].CCCC[O-].CCCC[O-].CCCC[O-].CCCC[O-] YHWCPXVTRSHPNY-UHFFFAOYSA-N 0.000 claims description 15
- 239000001267 polyvinylpyrrolidone Substances 0.000 claims description 15
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 claims description 15
- 229920000036 polyvinylpyrrolidone Polymers 0.000 claims description 15
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical group O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 6
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical compound [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 claims description 6
- 230000032683 aging Effects 0.000 claims description 5
- 229910052751 metal Inorganic materials 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 4
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 3
- 238000003756 stirring Methods 0.000 claims description 3
- 239000000956 alloy Substances 0.000 claims description 2
- 229910045601 alloy Inorganic materials 0.000 claims description 2
- 229910052710 silicon Inorganic materials 0.000 claims description 2
- 239000010703 silicon Substances 0.000 claims description 2
- 229910052715 tantalum Inorganic materials 0.000 claims description 2
- 239000007788 liquid Substances 0.000 claims 1
- 230000005284 excitation Effects 0.000 abstract description 18
- 238000003491 array Methods 0.000 abstract description 9
- 238000004528 spin coating Methods 0.000 abstract description 6
- 239000000463 material Substances 0.000 abstract description 5
- 230000004043 responsiveness Effects 0.000 abstract description 4
- 238000000137 annealing Methods 0.000 abstract description 2
- 238000001027 hydrothermal synthesis Methods 0.000 abstract description 2
- 210000002199 attachment cell Anatomy 0.000 abstract 1
- 210000004027 cell Anatomy 0.000 abstract 1
- -1 polytetrafluoroethylene Polymers 0.000 description 8
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 8
- 239000004810 polytetrafluoroethylene Substances 0.000 description 8
- 238000010521 absorption reaction Methods 0.000 description 3
- 238000003795 desorption Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000001878 scanning electron micrograph Methods 0.000 description 3
- 229910001069 Ti alloy Inorganic materials 0.000 description 2
- 239000012620 biological material Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 206010064571 Gene mutation Diseases 0.000 description 1
- 102000011759 adducin Human genes 0.000 description 1
- 108010076723 adducin Proteins 0.000 description 1
- 231100000481 chemical toxicant Toxicity 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000012407 engineering method Methods 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 238000005424 photoluminescence Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 239000003440 toxic substance Substances 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Luminescent Compositions (AREA)
Abstract
本发明公开的具有可见光响应的量子点/二氧化钛复合纳米点阵列在基底表面,复合纳米点阵列中的每个纳米点由二氧化钛包裹可见光响应量子点构成,复合纳米点的尺寸为50~200nm,密度为0.31×1010~3.01×1010cm-2。其制备过程为一步法,即在配制旋涂液时加入量子点,通过溶胶-凝胶旋涂法将其旋涂于基板表面,水热法或直接退火制备量子点/二氧化钛复合纳米点阵列,工艺简单,易于实现。通过调节量子点的种类及其激发波长,可调节复合纳米点阵列对光的响应性及利用率;并利用不同波长的可见光改变材料表面的亲疏水性,从而实现后期的细胞脱附,为可见光脱附细胞提供了可能。The quantum dot/titanium dioxide composite nano-dot array with visible light response disclosed by the present invention is on the surface of the substrate. Each nano-dot in the composite nano-dot array is composed of titanium dioxide-wrapped visible light-responsive quantum dots. The size of the composite nano-dot is 50-200nm, and the density 0.31×10 10 ~3.01×10 10 cm -2 . The preparation process is a one-step method, that is, adding quantum dots when preparing the spin-coating solution, spin-coating it on the surface of the substrate by sol-gel spin-coating method, and preparing quantum dot/titanium dioxide composite nano-dot arrays by hydrothermal method or direct annealing. The process is simple and easy to realize. By adjusting the type of quantum dots and their excitation wavelength, the responsiveness and utilization rate of the composite nanodot array to light can be adjusted; and visible light of different wavelengths can be used to change the hydrophilicity and hydrophobicity of the surface of the material, so as to achieve later cell detachment and detachment for visible light. Attachment cells offer the possibility.
Description
技术领域 technical field
本发明属于生物医用薄膜领域,具体涉及可见光响应性能的量子点/二氧化钛复合纳米点阵列及其制备方法。 The invention belongs to the field of biomedical thin films, and in particular relates to a quantum dot/titanium dioxide composite nano-dot array with visible light response performance and a preparation method thereof.
背景技术 Background technique
近年来,由于现有组织工程方法的局限,细胞片层组织工程技术受到人们的广泛关注。传统的温敏系统通过改变温度获得细胞片层技术发展迅速,但缺陷是可能存在有毒化学物质的残留。改变表面的电荷及亲疏水性即可实现细胞脱附。因此,利用光改变某种材料表面的亲疏水性,是一种更优异的获得细胞片层的方法。二氧化钛无毒,具有优异的生物相容性和化学稳定性。锐钛矿型二氧化钛的禁带宽度为3.2 eV,紫外光可改变材料表面的亲疏水性。所以,用UV365 nm光照射二氧化钛纳米点薄膜可成功获得细胞片层(Yi Hong, Mengfei Yu, Wenjian Weng, et al. Light-induced cell detachment for cell sheet technology, Biomaterials , 34 (2013) 11-18)。但是,紫外光对细胞存在一定的毒性并可能造成基因突变,故这种方法也存在一定缺陷。因此,可见光脱附细胞受到关注。 In recent years, due to the limitations of existing tissue engineering methods, cell sheet tissue engineering technology has attracted widespread attention. The traditional temperature-sensitive system obtains cell sheets by changing the temperature, and the technology develops rapidly, but the disadvantage is that there may be residues of toxic chemicals. Cell detachment can be achieved by changing the charge and hydrophobicity of the surface. Therefore, using light to change the hydrophilicity and hydrophobicity of the surface of a certain material is a more excellent method to obtain cell sheets. Titanium dioxide is non-toxic, has excellent biocompatibility and chemical stability. The band gap of anatase titanium dioxide is 3.2 eV, and ultraviolet light can change the hydrophilicity and hydrophobicity of the surface of the material. Therefore, cell sheets can be successfully obtained by irradiating titanium dioxide nanodot films with UV365 nm light (Yi Hong, Mengfei Yu, Wenjian Weng, et al. Light-induced cell detachment for cell sheet technology, Biomaterials, 34 (2013) 11-18) . However, ultraviolet light has certain toxicity to cells and may cause gene mutation, so this method also has certain defects. Therefore, visible light desorbed cells have attracted attention.
量子点具有很强的光致发光,同时具有上转换和下转换的荧光特性,以及电子的给体和受体特性。在量子点/二氧化钛复合纳米点阵列系统中,量子点的上转换荧光特性和电子的给体/受体性能能够改善二氧化钛的可见光响应性,为其在可见光脱附细胞领域提供了可能。 Quantum dots have strong photoluminescence, up-conversion and down-conversion fluorescence properties, and electron donor and acceptor properties. In the quantum dot/titanium dioxide composite nanodot array system, the upconversion fluorescence characteristics of quantum dots and the electron donor/acceptor properties can improve the visible light responsiveness of titanium dioxide, which provides the possibility for it to be used in the field of visible light desorption cells. the
在二氧化钛纳米点系统中掺杂了量子点,通过相分离将量子点包在纳米点中,形成对可见光响应的生物材料,通过改变量子点的种类、激发波长及制备工艺来调控复合纳米点阵列结构及对可见光的响应,研究细胞与材料或细胞与细胞之间的相互作用,对于细胞片层脱附、组织工程、细胞生物传感器等的发展都有重要的意义。 Quantum dots are doped in the titanium dioxide nanodot system, and the quantum dots are wrapped in the nanodots by phase separation to form biomaterials that respond to visible light, and the composite nanodot array can be regulated by changing the type of quantum dots, excitation wavelength and preparation process The structure and response to visible light, and the study of the interaction between cells and materials or between cells are of great significance for the development of cell sheet desorption, tissue engineering, and cell biosensors.
发明内容 Contents of the invention
本发明的目的是提供一种可见光响应的量子点/二氧化钛复合纳米点阵列及其制备方法。 The object of the present invention is to provide a visible light responsive quantum dot/titanium dioxide composite nano-dot array and a preparation method thereof.
本发明的具有可见光响应的量子点/二氧化钛复合纳米点阵列在基底表面,复合纳米点阵列中的每个纳米点由二氧化钛包裹可见光响应量子点构成,复合纳米点的尺寸为50~200 nm,密度为0.31×1010~3.01×1010 cm-2。 The quantum dot/titanium dioxide composite nano-dot array with visible light response of the present invention is on the surface of the substrate. Each nano-dot in the composite nano-dot array is composed of titanium dioxide-wrapped visible light-responsive quantum dots. The size of the composite nano-dot is 50-200 nm, and the density 0.31×10 10 ~3.01×10 10 cm -2 .
上述的基底可以为石英玻璃、硅片、钽片或医用钛金属及其合金。 The aforementioned substrate can be quartz glass, silicon wafer, tantalum wafer or medical titanium metal and its alloys.
所述的可见光响应量子点是激发波长为360~500 nm 的C量子点、CdS量子点、CdSe/ZnS量子点或CdS/ZnS量子点。 The visible light responsive quantum dots are C quantum dots, CdS quantum dots, CdSe/ZnS quantum dots or CdS/ZnS quantum dots with an excitation wavelength of 360-500 nm.
本发明的具有可见光响应的量子点/二氧化钛复合纳米点阵列的制备方法,有以下两种方案: The preparation method of the quantum dot/titanium dioxide composite nano-dot array with visible light response of the present invention has the following two schemes:
方案1 plan 1
具有可见光响应的量子点/二氧化钛复合纳米点阵列的制备方法,包括以下步骤: A method for preparing a quantum dot/titanium dioxide composite nano-dot array with visible light response, comprising the following steps:
1) 在5~10 mL乙醇中依次加入5~100 μL乙酰丙酮,1~100 μL去离子水,30~300 μL浓度为5 μg/mL的量子点溶液,100~1000 μL钛酸四丁酯,0.1~0.5 g聚乙烯吡咯烷酮,室温下搅拌,乙醇定容至10 mL,得前驱体溶胶; 1) Add 5~100 μL acetylacetone, 1~100 μL deionized water, 30~300 μL quantum dot solution with a concentration of 5 μg/mL, and 100~1000 μL tetrabutyl titanate in 5~10 mL ethanol in sequence , 0.1-0.5 g polyvinylpyrrolidone, stirred at room temperature, and distilled to 10 mL with ethanol to obtain a precursor sol;
2) 取10~20 μL前驱体溶胶以4000~10000 rpm的速度旋涂在基底表面,然后将该样品置于马弗炉中,在400~700℃保持0.5~10 h,取出,去离子水冲洗、干燥;或者将样品室温陈化2~24 h后,放入水热釜内胆中,加入水热釜内胆体积60~95%的去离子水,在100~300℃下保持1~20 h,取出,去离子水冲洗、干燥。 2) Spin-coat 10-20 μL of precursor sol on the surface of the substrate at a speed of 4000-10000 rpm, then place the sample in a muffle furnace, keep it at 400-700 °C for 0.5-10 h, take it out, and deionized water Rinse and dry; or age the sample at room temperature for 2-24 hours, put it into the inner tank of the hydrothermal kettle, add deionized water with 60-95% of the volume of the inner tank of the hydrothermal kettle, and keep it at 100-300°C for 1~ After 20 h, take it out, rinse with deionized water, and dry.
方案2 Scenario 2
具有可见光响应的量子点/二氧化钛复合纳米点阵列的制备方法,包括以下步骤: A method for preparing a quantum dot/titanium dioxide composite nano-dot array with visible light response, comprising the following steps:
1) 在1~5 mL乙醇中加入100~1000 μL钛酸四丁酯及30~300 μL浓度为5 μg/mL的量子点溶液进行预混,得到预混液; 1) Add 100~1000 μL tetrabutyl titanate and 30~300 μL quantum dot solution with a concentration of 5 μg/mL in 1~5 mL ethanol for premixing to obtain a premixed solution;
2) 在1~10 mL乙醇中依次加入5~100 μL乙酰丙酮,1~100 μL去离子水,步骤1)制得的预混液,0.1~0.5 g聚乙烯吡咯烷酮,室温下搅拌,乙醇定容至10 mL,得前驱体溶胶; 2) Add 5-100 μL of acetylacetone, 1-100 μL of deionized water, 0.1-0.5 g of polyvinylpyrrolidone in turn to 1-10 mL of ethanol, stir at room temperature, and constant volume in ethanol to 10 mL to obtain the precursor sol;
3) 取10~20 μL前驱体溶胶以4000~10000 rpm的速度旋涂在基底表面,然后将该样品置于马弗炉中, 400~700℃保持0.5~10 h,取出,去离子水冲洗、干燥;或者将样品室温陈化2~24 h后,放入水热釜内胆中,加入水热釜内胆体积60~95%的去离子水,在100~300℃下保持1~20 h,取出,去离子水冲洗、干燥。 3) Spin-coat 10-20 μL precursor sol on the surface of the substrate at a speed of 4000-10000 rpm, then place the sample in a muffle furnace, keep it at 400-700°C for 0.5-10 h, take it out, and rinse with deionized water , dry; or after aging the sample at room temperature for 2-24 hours, put it into the inner tank of the hydrothermal kettle, add deionized water with 60-95% of the volume of the inner tank of the hydrothermal kettle, and keep it at 100-300°C for 1-20 h, take it out, rinse with deionized water, and dry.
本发明通过二氧化钛与量子点复合提高了二氧化钛对可见光的响应性:本发明制备过程为一步法,即在配制旋涂液时加入量子点,通过溶胶-凝胶旋涂法将其旋涂于基板表面,水热法或直接退火制备量子点/二氧化钛复合纳米点阵列。通过调节量子点的种类及其激发波长,可调节复合纳米点阵列对光的响应性及利用率;并利用不同波长的可见光改变材料表面的亲疏水性,从而实现后期的细胞脱附。因此,本发明制备方法简单,易于实现,为可见光脱附细胞提供了可能。 The present invention improves the responsiveness of titanium dioxide to visible light by compounding titanium dioxide and quantum dots: the preparation process of the present invention is a one-step method, that is, adding quantum dots when preparing the spin coating solution, and spin coating it on the substrate by sol-gel spin coating method Surface, hydrothermal method or direct annealing to prepare quantum dots/titania composite nanodot arrays. By adjusting the type of quantum dots and their excitation wavelength, the responsiveness and utilization of the composite nanodot array to light can be adjusted; and visible light of different wavelengths can be used to change the hydrophilicity and hydrophobicity of the surface of the material, so as to achieve later cell detachment. Therefore, the preparation method of the present invention is simple and easy to implement, and provides the possibility for visible light desorption of cells.
附图说明 Description of drawings
图1是二氧化钛纳米点阵列的SEM图。 Figure 1 is a SEM image of a titania nano-dot array.
图2是激发波长为360 nm的C量子点/二氧化钛复合纳米点阵列的SEM图。 Figure 2 is the SEM image of the C quantum dots/titanium dioxide composite nanodot array with an excitation wavelength of 360 nm.
图3是激发波长为470 nm的C量子点/二氧化钛复合纳米点阵列的SEM图。 Figure 3 is the SEM image of the C quantum dots/titanium dioxide composite nanodot array with an excitation wavelength of 470 nm.
图4是实施例1、实施例2和实施例3的UV-Vis曲线。 Fig. 4 is the UV-Vis curve of embodiment 1, embodiment 2 and embodiment 3.
the
具体实施方式 Detailed ways
下面结合实施例和附图来详细说明本发明,但本发明并不仅限于此。 The present invention will be described in detail below in conjunction with the embodiments and accompanying drawings, but the present invention is not limited thereto.
实施例1 Example 1
1) 在5 mL乙醇中依次加入62 μL乙酰丙酮,36 μL去离子水,100 μL钛酸四丁酯,0.4 g聚乙烯吡咯烷酮,室温下搅拌,乙醇定容至10 mL,得前驱体溶胶。 1) Add 62 μL of acetylacetone, 36 μL of deionized water, 100 μL of tetrabutyl titanate, and 0.4 g of polyvinylpyrrolidone to 5 mL of ethanol in sequence, stir at room temperature, and dilute the volume of ethanol to 10 mL to obtain a precursor sol.
2) 取20 μL上述前驱体溶胶以8000 rpm的速度旋涂在石英玻璃表面;将该样品置于马弗炉中,500℃保持1 h后取出,去离子水冲洗、干燥,获得二氧化钛纳米点阵列(见图1)。其UV-Vis曲线见图4实线,吸收限为401 nm。 2) Spin-coat 20 μL of the above precursor sol on the surface of quartz glass at a speed of 8000 rpm; place the sample in a muffle furnace, keep it at 500 °C for 1 h, take it out, rinse with deionized water, and dry to obtain titanium dioxide nanodots array (see Figure 1). Its UV-Vis curve is shown in the solid line in Figure 4, and the absorption limit is 401 nm.
实施例2 Example 2
1) 在5 mL乙醇中依次加入100 μL乙酰丙酮,1 μL去离子水,36 μL激发波长为360 nm、浓度为5 μg/mL的C量子点,680 μL钛酸四丁酯,0.1 g聚乙烯吡咯烷酮,室温下搅拌,乙醇定容至10 mL,得前驱体溶胶。 1) Add 100 μL of acetylacetone, 1 μL of deionized water, 36 μL of C quantum dots with an excitation wavelength of 360 nm and a concentration of 5 μg/mL in 5 mL of ethanol, 680 μL of tetrabutyl titanate, 0.1 g of poly Vinylpyrrolidone was stirred at room temperature, and the volume was adjusted to 10 mL with ethanol to obtain the precursor sol.
2) 取15 μL上述前驱体溶胶以6000 rpm的速度旋涂在硅金属基板表面;将该样品置于马弗炉中,700℃保持0.5 h后取出,去离子水冲洗、干燥,获得C量子点/二氧化钛复合纳米点阵列(见图2)。其中二氧化钛纳米点尺寸范围在70~200 nm。图4短划线为激发波长为360 nm的C量子点/二氧化钛复合纳米点阵列的UV-Vis曲线,其吸收限为419 nm,和实施例1不含可见光响应量子点的二氧化钛纳米点阵列相比发生明显红移。 2) Spin-coat 15 μL of the above precursor sol on the surface of the silicon metal substrate at a speed of 6000 rpm; place the sample in a muffle furnace, keep it at 700°C for 0.5 h, take it out, rinse it with deionized water, and dry it to obtain C quantum dot/titania composite nanodot array (see Figure 2). Among them, the titanium dioxide nanodot size ranges from 70 to 200 nm. Fig. 4 dashed line is the UV-Vis curve of the C quantum dot/titanium dioxide composite nano-dot array that excitation wavelength is 360 nm, and its absorption limit is 419 nm, and embodiment 1 does not contain the titanium dioxide nano-dot array phase of visible light response quantum dot significantly red-shifted.
实施例3 Example 3
1) 在5 mL乙醇中依次加入62 μL乙酰丙酮,100 μL去离子水,30 μL激发波长为470 nm、浓度为5 μg/mL的C量子点,1000 μL钛酸四丁酯,0.5 g聚乙烯吡咯烷酮,室温下搅拌,乙醇定容至10 mL,得前驱体溶胶。 1) Add 62 μL acetylacetone, 100 μL deionized water, 30 μL C quantum dots with an excitation wavelength of 470 nm and a concentration of 5 μg/mL to 5 mL ethanol, 1000 μL tetrabutyl titanate, 0.5 g poly Vinylpyrrolidone was stirred at room temperature, and the volume was adjusted to 10 mL with ethanol to obtain the precursor sol.
2) 取10 μL上述前驱体溶胶以10000 rpm的速度旋涂在钽金属基板表面;将该样品置于马弗炉中,400℃保持10 h后取出,去离子水冲洗、干燥,获得C量子点/二氧化钛复合纳米点阵列(图3)。其中二氧化钛纳米点尺寸范围在70~200 nm。图4虚线为激发波长为470 nm的C量子点/二氧化钛复合纳米点阵列的UV-Vis曲线,其吸收限为431 nm,和实施例1二氧化钛纳米点阵列相比发生明显红移。 2) Spin-coat 10 μL of the above precursor sol on the surface of the tantalum metal substrate at a speed of 10,000 rpm; place the sample in a muffle furnace, keep it at 400°C for 10 h, take it out, rinse it with deionized water, and dry it to obtain C quantum dot/titania composite nanodot array (Fig. 3). Among them, the titanium dioxide nanodot size ranges from 70 to 200 nm. The dotted line in Figure 4 is the UV-Vis curve of the C quantum dot/titanium dioxide composite nanodot array with an excitation wavelength of 470 nm, and its absorption limit is 431 nm, which is significantly red-shifted compared with the titanium dioxide nanodot array in Example 1.
实施例4 Example 4
1) 在5 mL乙醇中依次加入5 μL乙酰丙酮,36 μL去离子水,300 μL激发波长为450 nm、浓度为5 μg/mL的CdS量子点,680 μL钛酸四丁酯,0.5 g聚乙烯吡咯烷酮,室温下搅拌,乙醇定容至10 mL,得前驱体溶胶。 1) Add 5 μL acetylacetone, 36 μL deionized water, 300 μL CdS quantum dots with an excitation wavelength of 450 nm and a concentration of 5 μg/mL, 680 μL tetrabutyl titanate, 0.5 g poly Vinylpyrrolidone was stirred at room temperature, and the volume was adjusted to 10 mL with ethanol to obtain the precursor sol.
2) 取15 μL上述前驱体溶胶以4000 rpm的速度旋涂在医用钛金属基板表面;将该样品室温陈化6 h后,放入聚四氟乙烯内胆的水热釜中,加入内胆体积80%的去离子水,100℃保持20 h后取出,获得CdS量子点/二氧化钛复合纳米点阵列。 2) Take 15 μL of the above precursor sol and spin-coat it on the surface of the medical titanium metal substrate at a speed of 4000 rpm; after aging the sample at room temperature for 6 h, put it into a hydrothermal kettle with a polytetrafluoroethylene liner, add the liner 80% volume of deionized water was kept at 100°C for 20 h and then taken out to obtain CdS quantum dots/titanium dioxide composite nanodot arrays.
实施例5 Example 5
1) 在3 mL乙醇中加入36 μL激发波长为500 nm、浓度为5 μg/mL的CdSe/ZnS量子点及680 μL钛酸四丁酯预混;在4 mL乙醇中依次加入62 μL乙酰丙酮、36 μL去离子水、上述预混液及0.4 g聚乙烯吡咯烷酮,室温下搅拌,乙醇定容至10 mL,得前驱体溶胶。 1) Add 36 μL of CdSe/ZnS quantum dots with an excitation wavelength of 500 nm and a concentration of 5 μg/mL and 680 μL of tetrabutyl titanate premixed in 3 mL of ethanol; add 62 μL of acetylacetone in 4 mL of ethanol in sequence , 36 μL of deionized water, the above premix solution and 0.4 g of polyvinylpyrrolidone, stirred at room temperature, and dilute to 10 mL with ethanol to obtain the precursor sol.
2) 取15 μL上述前驱体溶胶以8000 rpm的速度旋涂在医用钛合金基板表面;将该样品室温陈化2 h后,放入聚四氟乙烯内胆的水热釜中,加入内胆体积60%的去离子水,120℃保持2 h后取出,获得CdSe/ZnS量子点/二氧化钛复合纳米点阵列。 2) Take 15 μL of the above precursor sol and spin-coat it on the surface of the medical titanium alloy substrate at a speed of 8000 rpm; after aging the sample at room temperature for 2 h, put it into a hydrothermal kettle with a polytetrafluoroethylene liner, add the liner 60% volume of deionized water was kept at 120°C for 2 h and then taken out to obtain CdSe/ZnS quantum dots/TiO2 composite nanodot arrays.
实施例6 Example 6
1) 在3 mL乙醇中加入72 μL激发波长为500 nm、浓度为5 μg/mL的CdS/ZnS量子点及680 μL钛酸四丁酯预混;在4mL乙醇中依次加入62 μL乙酰丙酮、100 μL去离子水、上述预混液及0.4 g聚乙烯吡咯烷酮,室温下搅拌,乙醇定容至10 mL,得前驱体溶胶。 1) Add 72 μL CdS/ZnS quantum dots with an excitation wavelength of 500 nm and a concentration of 5 μg/mL and 680 μL tetrabutyl titanate premixed in 3 mL ethanol; add 62 μL acetylacetone, 100 μL of deionized water, the above premix solution and 0.4 g of polyvinylpyrrolidone were stirred at room temperature, and the volume was adjusted to 10 mL with ethanol to obtain the precursor sol.
2) 取15 μL上述前驱体溶胶以8000 rpm的速度旋涂在钽金属基板表面;将该样品室温陈化24 h后,放入聚四氟乙烯内胆的水热釜中,加入内胆体积95%的去离子水,300℃保持3 h后取出,,获得CdS/ZnS量子点/二氧化钛复合纳米点阵列。 2) Take 15 μL of the above precursor sol and spin-coat it on the surface of the tantalum metal substrate at a speed of 8000 rpm; after aging the sample at room temperature for 24 h, put it into a hydrothermal kettle with a polytetrafluoroethylene liner, add the volume of the liner 95% deionized water was kept at 300°C for 3 h and then taken out to obtain CdS/ZnS quantum dots/TiO2 composite nanodot arrays.
实施例7 Example 7
1) 在5 mL乙醇中依次加入5 μL乙酰丙酮,36 μL去离子水,36 μL激发波长为450 nm、浓度为5 μg/mL的CdS量子点,680 μL钛酸四丁酯,0.5 g聚乙烯吡咯烷酮,室温下搅拌,乙醇定容至10 mL,得前驱体溶胶。 1) In 5 mL ethanol, add 5 μL acetylacetone, 36 μL deionized water, 36 μL CdS quantum dots with an excitation wavelength of 450 nm and a concentration of 5 μg/mL, 680 μL tetrabutyl titanate, 0.5 g poly Vinylpyrrolidone was stirred at room temperature, and the volume was adjusted to 10 mL with ethanol to obtain the precursor sol.
2) 取15 μL上述前驱体溶胶以8000 rpm的速度旋涂在石英玻璃表面;将该样品室温陈化2 h,放入聚四氟乙烯内胆的水热釜中,加入内胆体积60%的去离子水,120℃保持2 h后取出,去离子水冲洗、干燥,获得CdS量子点/二氧化钛复合纳米点阵列。 2) Take 15 μL of the above precursor sol and spin-coat it on the surface of quartz glass at a speed of 8000 rpm; age the sample at room temperature for 2 h, put it into a hydrothermal kettle with a polytetrafluoroethylene liner, and add 60% of the volume of the liner The deionized water was kept at 120°C for 2 h, then taken out, rinsed with deionized water, and dried to obtain a CdS quantum dot/titanium dioxide composite nanodot array.
实施例8 Example 8
1) 在5 mL乙醇中依次加入5 μL乙酰丙酮,36 μL去离子水,36 μL激发波长为360 nm、浓度为5 μg/mL的C量子点,680 μL钛酸四丁酯,0.5 g聚乙烯吡咯烷酮,室温下搅拌,乙醇定容至10 mL,得前驱体溶胶。 1) In 5 mL ethanol, add 5 μL acetylacetone, 36 μL deionized water, 36 μL C quantum dots with an excitation wavelength of 360 nm and a concentration of 5 μg/mL, 680 μL tetrabutyl titanate, 0.5 g poly Vinylpyrrolidone was stirred at room temperature, and the volume was adjusted to 10 mL with ethanol to obtain the precursor sol.
2) 取15 μL上述前驱体溶胶以8000 rpm的速度旋涂在石英玻璃表面;将该样品室温陈化24 h,放入聚四氟乙烯内胆的水热釜中,加入内胆体积95%的去离子水,300℃保持3 h后取出,去离子水冲洗、干燥,获得C量子点/二氧化钛复合纳米点阵列。 2) Spin-coat 15 μL of the above precursor sol on the surface of quartz glass at a speed of 8000 rpm; age the sample at room temperature for 24 h, put it into a hydrothermal kettle with a polytetrafluoroethylene liner, and add 95% of the volume of the liner The deionized water was kept at 300°C for 3 h, then taken out, rinsed with deionized water, and dried to obtain C quantum dots/titanium dioxide composite nanodot arrays.
实施例9 Example 9
1) 在5 mL乙醇中依次加入5 μL乙酰丙酮,36 μL去离子水,36 μL激发波长为470 nm、浓度为5 μg/mL的C量子点,680 μL钛酸四丁酯,0.5 g聚乙烯吡咯烷酮,室温下搅拌,乙醇定容至10 mL,得前驱体溶胶。 1) Add 5 μL acetylacetone, 36 μL deionized water, 36 μL C quantum dots with an excitation wavelength of 470 nm and a concentration of 5 μg/mL, 680 μL tetrabutyl titanate, 0.5 g poly Vinylpyrrolidone was stirred at room temperature, and the volume was adjusted to 10 mL with ethanol to obtain the precursor sol.
2) 取15 μL上述前驱体溶胶以8000 rpm的速度旋涂在石英玻璃表面;将该样品室温陈化24 h,放入聚四氟乙烯内胆的水热釜中,加入内胆体积80%的去离子水,300℃保持3 h后取出,去离子水冲洗、干燥,获得C量子点/二氧化钛复合纳米点阵列。 2) Spin-coat 15 μL of the above precursor sol on the surface of quartz glass at a speed of 8000 rpm; age the sample at room temperature for 24 h, put it into a hydrothermal kettle with a polytetrafluoroethylene liner, and add 80% of the volume of the liner The deionized water was kept at 300°C for 3 h, then taken out, rinsed with deionized water, and dried to obtain C quantum dots/titanium dioxide composite nanodot arrays.
实施例10 Example 10
在3 mL乙醇中加入36 μL激发波长为500 nm、浓度为5 μg/mL的的CdSe/ZnS量子点及680 μL钛酸四丁酯预混;在4mL乙醇中依次加入62 μL乙酰丙酮,36 μL去离子水,上述预混液及0.4 g聚乙烯吡咯烷酮,室温下搅拌,乙醇定容至10 mL,得前驱体溶胶。 Add 36 μL of CdSe/ZnS quantum dots with an excitation wavelength of 500 nm and a concentration of 5 μg/mL and 680 μL of tetrabutyl titanate premixed into 3 mL of ethanol; μL of deionized water, the above premix solution and 0.4 g of polyvinylpyrrolidone were stirred at room temperature, and the volume was adjusted to 10 mL with ethanol to obtain the precursor sol.
2) 取15 μL上述前驱体溶胶以8000 rpm的速度旋涂在钛金属基板表面;将该样品室温陈化24 h,放入聚四氟乙烯内胆的水热釜中,加入内胆体积80%的去离子水,120℃保持3 h后取出,去离子水冲洗、干燥,获得CdS/ZnS量子点/二氧化钛复合纳米点阵列。 2) Take 15 μL of the above precursor sol and spin-coat it on the surface of the titanium metal substrate at a speed of 8000 rpm; age the sample at room temperature for 24 h, put it into a hydrothermal kettle with a polytetrafluoroethylene liner, and add an inner liner with a volume of 80 % deionized water, kept at 120°C for 3 h, took out, rinsed with deionized water, and dried to obtain CdS/ZnS quantum dots/titanium dioxide composite nanodot arrays.
实施例11 Example 11
在3 mL乙醇中加入36 μL激发波长为500 nm、浓度为5 μg/mL的CdS/ZnS量子点及680 μL钛酸四丁酯预混;在4mL乙醇中依次加入62 μL乙酰丙酮(AcAc),36 μL去离子水,上述预混液及0.4 g聚乙烯吡咯烷酮,室温下搅拌,乙醇定容至10 mL,得前驱体溶胶。 Add 36 μL of CdS/ZnS quantum dots with an excitation wavelength of 500 nm and a concentration of 5 μg/mL in 3 mL of ethanol and 680 μL of tetrabutyl titanate for premixing; add 62 μL of acetylacetone (AcAc) in sequence in 4 mL of ethanol , 36 μL of deionized water, the above premix solution and 0.4 g of polyvinylpyrrolidone, stirred at room temperature, and dilute to 10 mL with ethanol to obtain the precursor sol.
2) 取15 μL上述前驱体溶胶以8000 rpm的速度旋涂在钛合金基板表面;将上述样品陈化24 h,放入聚四氟乙烯内胆的水热釜中,加入内胆体积80%的去离子水,120℃保持2 h后取出,去离子水冲洗、干燥,获得CdS/ZnS量子点/二氧化钛复合纳米点阵列。 2) Spin-coat 15 μL of the above precursor sol on the surface of the titanium alloy substrate at a speed of 8000 rpm; age the above sample for 24 h, put it into a hydrothermal kettle with a polytetrafluoroethylene liner, and add 80% of the volume of the liner deionized water, kept at 120°C for 2 h, then taken out, rinsed with deionized water, and dried to obtain CdS/ZnS quantum dots/titanium dioxide composite nanodot arrays.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410769605.7A CN104449698B (en) | 2014-12-15 | 2014-12-15 | Quantum dot/titanium dioxide composite nanodot array having visible-light response and preparation method of quantum dot/titanium dioxide composite nanodot array |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410769605.7A CN104449698B (en) | 2014-12-15 | 2014-12-15 | Quantum dot/titanium dioxide composite nanodot array having visible-light response and preparation method of quantum dot/titanium dioxide composite nanodot array |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104449698A true CN104449698A (en) | 2015-03-25 |
CN104449698B CN104449698B (en) | 2017-02-22 |
Family
ID=52896464
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410769605.7A Active CN104449698B (en) | 2014-12-15 | 2014-12-15 | Quantum dot/titanium dioxide composite nanodot array having visible-light response and preparation method of quantum dot/titanium dioxide composite nanodot array |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104449698B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106085948A (en) * | 2016-06-16 | 2016-11-09 | 浙江大学 | A kind of method of the cell/cell thin utilizing radiation of visible light to obtain In vitro culture |
CN107326001A (en) * | 2017-07-26 | 2017-11-07 | 浙江大学 | A kind of photoresponse extracellular matrix laminated film and preparation method thereof |
CN109762517A (en) * | 2019-02-01 | 2019-05-17 | 浙江大学 | A kind of ultraviolet/visible light responsive graphene/titania/Si substrate and preparation method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102738395A (en) * | 2012-04-18 | 2012-10-17 | 北京理工大学 | Electric bistable device based on wide-bandgap oxide coated quantum dots |
CN103537302A (en) * | 2013-10-01 | 2014-01-29 | 大连理工大学 | Method for preparing compound nanometer photocatalyst by adopting CdSe quantum dot |
CN104087928A (en) * | 2013-12-25 | 2014-10-08 | 周婧 | Photoresponsive nanostructure film with high visible light transmittance and application thereof |
-
2014
- 2014-12-15 CN CN201410769605.7A patent/CN104449698B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102738395A (en) * | 2012-04-18 | 2012-10-17 | 北京理工大学 | Electric bistable device based on wide-bandgap oxide coated quantum dots |
CN103537302A (en) * | 2013-10-01 | 2014-01-29 | 大连理工大学 | Method for preparing compound nanometer photocatalyst by adopting CdSe quantum dot |
CN104087928A (en) * | 2013-12-25 | 2014-10-08 | 周婧 | Photoresponsive nanostructure film with high visible light transmittance and application thereof |
Non-Patent Citations (3)
Title |
---|
MENNY SHALOM等: "Core/CdS Quantum Dot/Shell Mesoporous Solar Cells with Improved Stability and Efficiency Using an Amorphous TiO2 Coating", 《J. PHYS. CHEM. C》 * |
YI HONG等: "Light-induced cell detachment for cell sheet technology", 《BIOMATERIALS》 * |
YI HONG等: "Low temperature preparation of TiO2 nanodot film on substrates", 《THIN SOLID FILMS》 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106085948A (en) * | 2016-06-16 | 2016-11-09 | 浙江大学 | A kind of method of the cell/cell thin utilizing radiation of visible light to obtain In vitro culture |
CN106085948B (en) * | 2016-06-16 | 2019-10-29 | 浙江大学 | A method of obtaining cell/cell thin of in vitro culture using radiation of visible light |
CN107326001A (en) * | 2017-07-26 | 2017-11-07 | 浙江大学 | A kind of photoresponse extracellular matrix laminated film and preparation method thereof |
CN107326001B (en) * | 2017-07-26 | 2020-06-16 | 浙江大学 | A kind of light-responsive extracellular matrix composite film and preparation method thereof |
CN109762517A (en) * | 2019-02-01 | 2019-05-17 | 浙江大学 | A kind of ultraviolet/visible light responsive graphene/titania/Si substrate and preparation method thereof |
CN109762517B (en) * | 2019-02-01 | 2020-10-16 | 浙江大学 | A kind of ultraviolet/visible light responsive graphene/titania/Si substrate and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN104449698B (en) | 2017-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Feng et al. | Ta3N5 nanotube arrays for visible light water photoelectrolysis | |
Gao et al. | An efficient method to form heterojunction CdS/TiO2 photoelectrodes using highly ordered TiO2 nanotube array films | |
Mor et al. | Vertically oriented Ti− Fe− O nanotube array films: toward a useful material architecture for solar spectrum water photoelectrolysis | |
Cao et al. | Nanoporous thermochromic VO2 (M) thin films: controlled porosity, largely enhanced luminous transmittance and solar modulating ability | |
CN104596994B (en) | Europium-doped titanium dioxide/graphene oxide composite film and preparation method thereof | |
CN103732534B (en) | Cellular structure body and manufacture method thereof | |
CN100593861C (en) | Dye sensitized nano crystal hull solar cell photoelectric pole and preparation method thereof | |
CN101393160A (en) | A kind of biofunctional multilayer membrane modified electrode and preparation method thereof | |
CN104449698B (en) | Quantum dot/titanium dioxide composite nanodot array having visible-light response and preparation method of quantum dot/titanium dioxide composite nanodot array | |
CN108054282A (en) | Zinc doping nickel oxide nanoparticle hole transmission layer inverts perovskite solar cell and preparation method | |
JP2015199065A (en) | Photocatalyst and method for producing the same | |
CN103480357B (en) | Rubidium ion doped nanometer titanium dioxide photocatalyst and preparation method thereof | |
CN102660763B (en) | Preparation method and application of a high catalytic property TiO2 nanotube array film | |
CN107890861B (en) | Preparation method of titanium dioxide lamella/graphene composite film with {001} crystal face | |
CN109382083A (en) | Carbon nano tube-doped titania nanotube catalysis material and preparation method thereof | |
CN101774539A (en) | Method for preparing nanometer composite film consisting of titanium dioxide nanotube and nanocrystalline | |
CN102021630B (en) | Coaxial heterogeneous ceric dioxide nanotube-titanium dioxide nanotube array thin film | |
Lu et al. | Core/shell quantum-dot-photosensitized nano-TiO2 films: fabrication and application to the damage of cells and DNA | |
Matsuda et al. | Formation and characterization of titania nanosheet-precipitated coatings via sol− gel process with hot water treatment under vibration | |
CN102881455B (en) | Based on the transparency electrode preparation method of titania nanotube | |
CN102503163A (en) | Preparation method for titanium dioxide films with super-hydrophilic property under visible light | |
CN104591271B (en) | A kind of method for preparing titanium dioxide microporous film | |
CN103566931A (en) | Photocatalytic material with visible-light response function as well as preparation method and application thereof | |
CN108031461A (en) | A kind of titanium zirconium mixed oxide nanotube and its in-situ preparation method | |
KR20090032565A (en) | Method for manufacturing titanium oxide aerogel thin film or thick film used as electrode support of transparent solar cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |