CN104409558B - 一种基于CdS纳米棒纳米光电器件的制备方法 - Google Patents

一种基于CdS纳米棒纳米光电器件的制备方法 Download PDF

Info

Publication number
CN104409558B
CN104409558B CN201410493542.7A CN201410493542A CN104409558B CN 104409558 B CN104409558 B CN 104409558B CN 201410493542 A CN201410493542 A CN 201410493542A CN 104409558 B CN104409558 B CN 104409558B
Authority
CN
China
Prior art keywords
nano
nanometer rods
cds
electrode
cds nanometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410493542.7A
Other languages
English (en)
Other versions
CN104409558A (zh
Inventor
李培刚
宋佳
钟丹霞
王顺利
汪鹏超
朱志艳
沈静琴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Sci Tech University ZSTU
Original Assignee
Zhejiang Sci Tech University ZSTU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Sci Tech University ZSTU filed Critical Zhejiang Sci Tech University ZSTU
Priority to CN201410493542.7A priority Critical patent/CN104409558B/zh
Publication of CN104409558A publication Critical patent/CN104409558A/zh
Application granted granted Critical
Publication of CN104409558B publication Critical patent/CN104409558B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明涉及一种纳米光电器件的制备方法,具体是指一种基于胶体化学合成硫化镉纳米棒的纳米光电器件的制备方法。本发明是通过微纳米加工技术,在具有200nmSiO2层的单晶硅(Si)衬底上制备出具有纳米间隙的Au电极,然后采用介电电泳(DEP)的方法,室温下于电极之间组装CdS纳米棒,纳米光电器的光电性能测试结果显示该器件具有很好的光电响应。本发明的优点是:胶体化学法装置简单,并可以规模化生产,制备的纳米棒性能稳定;由于只用几个纳米棒来构建器件,器件反应灵敏;另外,该制备工艺具有可控性强,操作简单,普适性好等特点,具有很大的应用前景。

Description

一种基于CdS纳米棒纳米光电器件的制备方法
技术领域
本发明涉及一种纳米光电器件的制备方法,具体是指一种基于几个硫化镉纳米棒的纳米光电器件的制备方法。
技术背景
近些年来,由于纳米材料与纳米技术集中体现了小尺寸、复杂构型、高集成度和强相互作用以及高表面积等现代科学技术发展的特点,得到了迅速的发展,故纳米材料和纳米技术将得到广泛的应用。社会发展和经济振兴对高科技的需求越来越迫切,元器件的超微化、高密度集成和高空间分辨率等要求材料的尺寸越来越小,性能越来越高。能够制造出性能稳定,反应灵敏的纳米器件这一目标吸引了越来越多的科研工作者的目光。
硫化镉(CdS)是一种直接带隙半导体(带宽2.4eV)材料,而CdS纳米棒由于具有尺寸小,比表面大,量子尺寸效应显著,这使得纳米体系的光,热,电等物理特性与常规的块体材料不同,出现许多新奇特性。已被广泛地应用于各种光电器件的制备。研究表明,CdS纳米棒在太阳能电池,纳米激光器以及纳米光导器件领域具有广泛的应用前景。目前,国内外许多课题组己经在开展纳米CdS光电器件的研究工作,这方面的研究主要集中在CdS薄膜光电器件上面,对于单个或少量纳米棒的研究比较少。CdS薄膜光电器件制备工艺简单,然而器件性能稳定性,加工工艺重复性较差,且器件响应时间较长,这严重影响了器件的实用性。本文利用胶体化学方法合成的CdS纳米棒结合纳米技术制备了CdS纳米棒纳米光电器件。该器件具有性能稳定性好,反应灵敏,加工工艺重复性好,体积小、结构牢固等优点,具有很大的应用前景。
发明内容
本发明的目的是提供一种可控性强,效率高、普适性好、仅利用几个CdS纳米棒制备纳米光电器件的工艺。
本发明的一种基于CdS纳米棒纳米光电器件的制备方法,采用微纳米加工技术,步骤如下:
1)制备CdS纳米棒:采用胶体化学种子生长法合成CdS纳米棒。
2)硅衬底预处理:对镀有200nmSiO2绝缘薄膜的P型(100)硅片,用丙酮、乙醇和去离子水分别超声清洗15分钟,并真空干燥。
3)器件电极的制备:采用电子束光刻和电子束蒸发技术在Si-SiO2衬底表面制备器件的蝴蝶电极,电极间隔为100nm,采用Ti,Au作为电极材料,先在硅衬底上沉积50nm厚度的Ti,再在Ti上沉积100nm厚度的Au。
4)组装CdS纳米棒:在电极之间采用介电电泳的方法,可控的组装CdS纳米棒。介电电泳组装电压为5伏特,频率为80~100hz,捕获时间为60s、120s。
5)对构建的CdS纳米棒纳米光电器件进行光电学性能测试:将探针点在两个电极上,电极之间加电压3~4伏特,测得CdS纳米棒的I-t特性曲线,通过控制激光照射的开关发现器件具有良好的光电响应。
作为优选,上述制备方法步骤(4)中组装电压为5伏特,频率为80Hz,捕获时间为60s效果最好。
作为优选,上述制备方法步骤(5)中电极之间加电压3伏特效果最好。
本发明的优点:
1、本发明制备过程中,所制备的CdS纳米棒具有优良的光电特性;
2、本发明制备的纳米光电器件性能稳定,反应灵敏,具有好的潜在应用;
3、本发明采用微纳米加工技术制备CdS纳米棒光电器件,工艺可控性强,操作简单,且重复测试具有可恢复性。
附图说明
图1是用本发明方法制得的CdS纳米棒的X射线衍射(XRD)谱图。
图2是用本发明方法制得的CdS纳米棒的透射电镜图片(TEM)。
图3是用本发明方法制得的CdS纳米棒的紫外吸收光谱图。
图4是用本发明方法制得的Au电极扫描电镜(SEM)照片。
图5是用本实验方法制得的组装CdS纳米棒的电极扫描电镜(SEM)照片。
图6是用本发明方法测得的电极电压为3V的I-t曲线图。
具体实施方式
以下结合实例进一步说明本发明。
实施例1
(1)合成CdS种子:TOPO(3.299g)、ODPA(0.603g)、CdO(0.100g)混合在50ml烧瓶中,加热到150℃在真空中放置1h。在氮气的保护下溶液加热到320℃,CdO溶解溶液变为无色透明。当温度达到320℃时注入(TMS)2S(0.170g),TBP(3g)。反应进行7min后移除加热套。合成后的纳米晶体在甲醇中沉淀,通过它在甲苯中的再溶解和增加甲醇沉淀进行反复清洗,最终纳米晶体溶解在TOP中。(2)合成CdS纳米棒:TOPO(3g),ODPA(0.29g)和HPA(0.08g)还有CdO(0.093g)一起放入50ml烧瓶中,加热到150℃在真空中放置1h。在氮气的保护下溶液加热到300℃以上,CdO溶解溶液变为无色透明,当温度达到350℃时快速注入1.5gTOP、硫前导(0.12gS+1.5gTOP)。注入后温度下降至270-300℃恢复2分钟后达到350℃。纳米棒生长8分钟后,移除加热套。反应结束后用甲苯和甲醇进行清洗提纯。由图1 CdS纳米棒的X射线衍射(XRD)谱图看出CdS纳米棒为六方纤锌矿结构,从图2 CdS纳米棒TEM可以看出,所得样品均为棒状,棒的尺寸大小较均匀,直径才5nm左右,长度范围在60nm~80nm之间。从图3纳米棒的紫外吸收光谱图看出CdS纳米棒吸收峰在469nm。(3)组装CdS纳米棒:先将制备好的电极。用用丙酮、乙醇和去离子水分别超声清洗15分钟,并真空干燥。由图4中电极扫描电镜(SEM)照片可看到电极间距为100纳米。将用胶体化学种子生长法合成的CdS纳米棒溶于甲苯中,制成浓度为10-7M的CdS纳米棒甲苯溶液。接着将制备好的电极芯片浸入上述溶液中,采用介电电泳(DEP)的方法,组装电压为5V,频率为80Hz,捕获时间为60s。组装完成后将芯片用去离子水轻轻冲洗,放在真空干燥箱中干燥。组装后电极如图5。(4)光电性能测试:电极两端施加3V电压,控制蓝色激光开关,得到图6 CdS纳米棒的I-t曲线,发现控制蓝色激光开关,电流瞬时发生变化。。
实施例2
步骤(1)(2)合成CdS纳米棒的方法,纳米棒的结构,成分和光学性能结果均与实施例1相同。(3)组装CdS纳米棒:先将制备好的电极。用用丙酮、乙醇和去离子水分别超声清洗15分钟,并真空干燥。由图6中电极扫描电镜(SEM)照片可看到电极间距为100纳米。将用胶体化学种子生长法合成的CdS纳米棒溶于甲苯中,制成浓度为10-7M的CdS纳米棒甲苯溶液。接着将制备好的电极芯片浸入上述溶液中,采用介电电泳(DEP)的方法,组装电压为5V,频率为80Hz,捕获时间为120s。组装完成后将芯片用去离子水轻轻冲洗,放在真空干燥箱中干燥。(4)光电性能测试:电极两端施加3V电压,控制蓝色激光开关得到CdS纳米棒的I-t曲线。测试结果均与实施例1类似。
实施例3
步骤(1)(2)合成CdS纳米棒的方法,纳米棒的结构,成分和光学性能结果均与实施例1相同。(3)组装CdS纳米棒:先将制备好的电极。用用丙酮、乙醇和去离子水分别超声清洗15分钟,并真空干燥。由图6中电极扫描电镜(SEM)照片可看到电极间距为100纳米。将用胶体化学种子生长法合成的CdS纳米棒溶于甲苯中,制成浓度为10-7M的CdS纳米棒甲苯溶液。接着将制备好的电极芯片浸入上述溶液中,采用介电电泳(DEP)的方法,组装电压为5V,频率为90Hz,捕获时间为60s。组装完成后将芯片用去离子水轻轻冲洗,放在真空干燥箱中干燥。(4)光电性能测试:电极两端施加3V电压,控制蓝色激光开关得到CdS纳米棒的I-t曲线。测试结果均与实施例1类似。
实施例4
步骤(1)(2)合成CdS纳米棒的方法,纳米棒的结构,成分和光学性能结果均与实施例1相同。(3)组装CdS纳米棒:先将制备好的电极。用用丙酮、乙醇和去离子水分别超声清洗15分钟,并真空干燥。由图6中电极扫描电镜(SEM)照片可看到电极间距为100纳米。将用胶体化学种子生长法合成的CdS纳米棒溶于甲苯中,制成浓度为10-7M的CdS纳米棒甲苯溶液。接着将制备好的电极芯片浸入上述溶液中,采用介电电泳(DEP)的方法,组装电压为5V,频率为90Hz,捕获时间为120s。组装完成后将芯片用去离子水轻轻冲洗,放在真空干燥箱中干燥。(4)光电性能测试:电极两端施加3V电压,控制蓝色激光开关得到CdS纳米棒的I-t曲线。测试结果均与实施例1类似。
实施例5
步骤(1)(2)合成CdS纳米棒的方法,纳米棒的结构,成分和光学性能结果均与实施例1相同。(3)组装CdS纳米棒:先将制备好的电极。用用丙酮、乙醇和去离子水分别超声清洗15分钟,并真空干燥。由图6中电极扫描电镜(SEM)照片可看到电极间距为100纳米。将用胶体化学种子生长法合成的CdS纳米棒溶于甲苯中,制成浓度为10-7M的CdS纳米棒甲苯溶液。接着将制备好的电极芯片浸入上述溶液中,采用介电电泳(DEP)的方法,组装电压为5V,频率为100Hz,捕获时间为60s。组装完成后将芯片用去离子水轻轻冲洗,放在真空干燥箱中干燥。(4)光电性能测试:电极两端施加3V电压,控制蓝色激光开关得到CdS纳米棒的I-t曲线。测试结果均与实施例1类似。
实施例6
步骤(1)(2)合成CdS纳米棒的方法,纳米棒的结构,成分和光学性能结果均与实施例1相同。(3)组装CdS纳米棒:先将制备好的电极。用用丙酮、乙醇和去离子水分别超声清洗15分钟,并真空干燥。由图6中电极扫描电镜(SEM)照片可看到电极间距为100纳米。将用胶体化学种子生长法合成的CdS纳米棒溶于甲苯中,制成浓度为10-7M的CdS纳米棒甲苯溶液。接着将制备好的电极芯片浸入上述溶液中,采用介电电泳(DEP)的方法,组装电压为5V,频率为100Hz,捕获时间为120s。组装完成后将芯片用去离子水轻轻冲洗,放在真空干燥箱中干燥。(4)光电性能测试:电极两端施加3V电压,控制蓝色激光开关得到CdS纳米棒的I-t曲线。测试结果均与实施例1类似。
实施例7
步骤(1)(2)合成CdS纳米棒的方法,纳米棒的结构,成分和光学性能结果均与实施例1相同。(3)组装CdS纳米棒:先将制备好的电极。用用丙酮、乙醇和去离子水分别超声清洗15分钟,并真空干燥。由图6中电极扫描电镜(SEM)照片可看到电极间距为100纳米。将用胶体化学种子生长法合成的CdS纳米棒溶于甲苯中,制成浓度为10-7M的CdS纳米棒甲苯溶液。接着将制备好的电极芯片浸入上述溶液中,采用介电电泳(DEP)的方法,组装电压为5V,频率为80Hz,捕获时间为60s。组装完成后将芯片用去离子水轻轻冲洗,放在真空干燥箱中干燥。(4)光电性能测试:电极两端施加4V电压,控制蓝色激光开关得到CdS纳米棒的I-t曲线。测试结果均与实施例1类似。

Claims (1)

1.一种基于CdS纳米棒纳米光电器件的制备方法,其特征在于包括如下步骤:
1)制备CdS纳米棒:采用胶体化学种子生长法合成CdS纳米棒;其中所述的胶体化学种子生长法包括两步:一、合成CdS种子:将TOPO、ODPA、CdO混合在烧瓶中,加热到150°C在真空中放置1h;在氮气的保护下溶液加热到320°C溶解,再注入(TMS)2S、TBP;反应进行7min后移除加热;合成后的纳米晶体在甲醇中沉淀,通过在甲苯中的再溶解和增加甲醇沉淀进行反复清洗,最终纳米晶体溶解在TOP中;二、合成CdS纳米棒:将TOPO、ODPA、HPA、CdO一起放入烧瓶中,加热到150°C在真空中放置1h;在氮气的保护下溶液加热到300°C 以上溶解,当温度达到350°C时快速注入TOP 、硫前导;注入后温度下降至270-300°C, 恢复2分钟后达到350°C;纳米棒生长8分钟后,移除加热套;反应结束后用甲苯和甲醇进行清洗提纯,即可;
2)硅衬底预处理:对镀有SiO2绝缘薄膜的P型(100)硅片,用丙酮、乙醇和去离子水分别超声清洗15分钟,并真空干燥;
3)器件电极的制备:采用电子束光刻和电子束蒸发技术在Si-SiO2衬底表面制备器件的蝴蝶电极,电极间隔为100nm,采用Ti,Au作为电极材料,先在硅衬底上沉积50nm厚度的Ti,再在Ti上沉积100nm厚度的Au;
4)组装CdS纳米棒:在电极之间采用介电电泳的方法,可控的组装CdS纳米棒,介电电泳组装电压为5伏特,频率为80hz,捕获时间为60s;即可得到产品。
CN201410493542.7A 2014-12-21 2014-12-21 一种基于CdS纳米棒纳米光电器件的制备方法 Expired - Fee Related CN104409558B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410493542.7A CN104409558B (zh) 2014-12-21 2014-12-21 一种基于CdS纳米棒纳米光电器件的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410493542.7A CN104409558B (zh) 2014-12-21 2014-12-21 一种基于CdS纳米棒纳米光电器件的制备方法

Publications (2)

Publication Number Publication Date
CN104409558A CN104409558A (zh) 2015-03-11
CN104409558B true CN104409558B (zh) 2017-02-22

Family

ID=52647171

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410493542.7A Expired - Fee Related CN104409558B (zh) 2014-12-21 2014-12-21 一种基于CdS纳米棒纳米光电器件的制备方法

Country Status (1)

Country Link
CN (1) CN104409558B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111072056B (zh) * 2018-10-22 2022-02-11 中国科学院大连化学物理研究所 液相CdS纳米棒尺寸控制生长方法
CN112897575A (zh) * 2019-12-03 2021-06-04 中国科学院深圳先进技术研究院 基底上大面积形成二维硫化镉的方法与结构

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009126952A2 (en) * 2008-04-11 2009-10-15 Northeastern University Large scale nanoelement assembly method for making nanoscale circuit interconnects and diodes
CN103803525A (zh) * 2014-01-13 2014-05-21 河北联合大学 一种高自动化程度的碳纳米管组装方法
CN103848404A (zh) * 2014-01-09 2014-06-11 江苏大学 一种纳米棒单层自组装的制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007106189A2 (en) * 2006-03-10 2007-09-20 The Trustees Of Columbia University In The City Of New York Method and system to position carbon nanotubes using ac dielectrophoresis
CN100412537C (zh) * 2006-05-09 2008-08-20 北京大学 基于碳纳米管的生物传感器的制备方法
KR100822992B1 (ko) * 2007-03-19 2008-04-16 광주과학기술원 나노선 전계효과 트랜지스터 및 그 제조 방법
US8877636B1 (en) * 2010-02-26 2014-11-04 The United States Of America As Represented By The Adminstrator Of National Aeronautics And Space Administration Processing of nanostructured devices using microfabrication techniques
CN103531482B (zh) * 2013-10-31 2016-02-03 中国科学院上海微系统与信息技术研究所 石墨烯场效应管的制作方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009126952A2 (en) * 2008-04-11 2009-10-15 Northeastern University Large scale nanoelement assembly method for making nanoscale circuit interconnects and diodes
CN103848404A (zh) * 2014-01-09 2014-06-11 江苏大学 一种纳米棒单层自组装的制备方法
CN103803525A (zh) * 2014-01-13 2014-05-21 河北联合大学 一种高自动化程度的碳纳米管组装方法

Also Published As

Publication number Publication date
CN104409558A (zh) 2015-03-11

Similar Documents

Publication Publication Date Title
Huang et al. Large-scale synthesis of flowerlike ZnO nanostructure by a simple chemical solution route and its gas-sensing property
Mehrabian et al. UV detecting properties of hydrothermal synthesized ZnO nanorods
Van Hieu Comparative study of gas sensor performance of SnO2 nanowires and their hierarchical nanostructures
He et al. Crystal-plane dependence of critical concentration for nucleation on hydrothermal ZnO nanowires
CN104638049B (zh) 一种p型石墨烯/n型锗纳米锥阵列肖特基结红外光电探测器及其制备方法
Sun et al. Photo-induced Ag deposition on periodically poled lithium niobate: Concentration and intensity dependence
Kornyushchenko et al. Two step technology for porous ZnO nanosystem formation for potential use in hydrogen gas sensors
Liu et al. Suspended MoS2 photodetector using patterned sapphire substrate
CN104409561B (zh) 一种基于微球光学谐振增强的硅薄膜光探测器及其制备方法
CN104409558B (zh) 一种基于CdS纳米棒纳米光电器件的制备方法
Kumar et al. Low temperature growth of SnO2 nanowires by electron beam evaporation and their application in UV light detection
Fan et al. UV photodetectors based on 3D periodic Au-decorated nanocone ZnO films
CN103030097B (zh) 基于静电场自聚焦的圆片级低维纳米结构的制备方法
Akgun et al. Hydrothermal zinc oxide nanowire growth with different zinc salts
Ge et al. Preparation and anti-reflection performance of porous silicon/gold nanocomposite structures
CN112326624A (zh) 掺杂二维半导体纳米材料在表面拉曼散射增强中的应用
CN106784318A (zh) 甲氨基卤化物‑碳纳米管半导体光敏传感器及制备方法
CN104152851A (zh) 一种结构可控碲单质纳米材料的制备方法
CN107344730A (zh) 一种氧化锌纳米柱阵列的制备方法
Mukherjee et al. Photo-induced exciton generation in polyvinylpyrrolidone encapsulated Ag2S core-shells: Electrochemical deposition, regular shape and high order of particle size distribution
CN103972330B (zh) 一种CdS量子点光电探测单元的制备方法
Šimurda et al. Morphology of CdSe films prepared by chemical bath deposition: The role of substrate
Rosli et al. Influence of metal catalyst for zinc oxide nanostructures grown by TCVD method for extended-gate FET sensor application
Foo et al. Fabrication and characterization of ZnO thin films by sol-gel spin coating method for pH measurement
CN111653647A (zh) 一种叉指电极的制备方法及其在光电探测领域的应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170222

Termination date: 20181221