CN104408022B - The method for solving of shallow tunnel surrouding rock stress and the Explicit Analytic Solutions of displacement - Google Patents

The method for solving of shallow tunnel surrouding rock stress and the Explicit Analytic Solutions of displacement Download PDF

Info

Publication number
CN104408022B
CN104408022B CN201410765074.4A CN201410765074A CN104408022B CN 104408022 B CN104408022 B CN 104408022B CN 201410765074 A CN201410765074 A CN 201410765074A CN 104408022 B CN104408022 B CN 104408022B
Authority
CN
China
Prior art keywords
mrow
msup
msubsup
mfrac
msub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410765074.4A
Other languages
Chinese (zh)
Other versions
CN104408022A (en
Inventor
韩凯航
张成平
张顶立
王剑晨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Jiaotong University
Original Assignee
Beijing Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Jiaotong University filed Critical Beijing Jiaotong University
Priority to CN201410765074.4A priority Critical patent/CN104408022B/en
Publication of CN104408022A publication Critical patent/CN104408022A/en
Application granted granted Critical
Publication of CN104408022B publication Critical patent/CN104408022B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

The invention discloses shallow tunnel surrouding rock stress and the method for solving of the Explicit Analytic Solutions of displacement, this method is based on Complex Function Method, the progression form of z-plane analytical function is solved using inverse mapping functions, and cauchy riemann equation (C R conditions) is combined to the analytical function derivation in shallow tunnel surrouding rock stress and the implicit analytic solutions of displacement, draw the series explicit expression of shallow tunnel stress and displacement function;Compared with implicit analytic solutions, the Explicit Analytic Solutions are directly perceived, are easy to be used by engineering staff, and its program calculation amount is also smaller, and engineering measurement formation displacement and the result of calculation goodness of fit of display analytic solutions are high, demonstrate the correctness and practicality of Explicit Analytic Solutions.

Description

The method for solving of shallow tunnel surrouding rock stress and the Explicit Analytic Solutions of displacement
Technical field
The present invention relates to Urban underground Tunnel engineering, more particularly to the explicit of a kind of shallow tunnel surrouding rock stress and displacement The method for solving of analytic solutions.
Background technology
, will for building for the city tunnel of representative with city underground and road tunnel etc. with the continuous development of urban transportation It can greatly increase, often buried depth is shallower in this kind of tunnel, and comprehensive by Complicated Loads such as the constructions of structures in ground and stratum makees With the formation displacement influence factor in work progress is more, and Accurate Prediction formation displacement is more difficult.With people's environmental consciousness Constantly enhancing, formation displacement caused by Construction of City Tunnel and its influence control problem to surrounding environment oneself filled by related scholar Divide and pay attention to, and accurately prediction formation displacement is effective premise for controlling Construction on Environment influence degree before constructing tunnel.It is existing Using Complex Function Method analysis shallow tunnel peripheral rock stress and the thinking of displacement in technology, the calculating of bipolar coordinate method is avoided On difficulty, it also avoid in image method on singular point assume deficiency, also directly give displacement while stress field is provided The Exact of field.But the solution is related to the mappings repeatedly of two complex planes when solving, stress and displacement solution can not directly by The function representation of R domains internal coordinate (x, y) before conformal projection, some following inconvenience be present:1. the solution needs certain specialty reason By knowledge, if not the professional of research complex function, no image of Buddha Peck empirical equations are directly used by engineering staff like that, And stress and displacement can be tried to achieve by directly inputting formation parameter for Explicit Analytic Solutions, engineering staff, this just makes engineering Personnel are unnecessary to be taken a lot of time to study its complicated mapping principle;2. Verruijt solution procedurees are related to two complex planes Mapping repeatedly, computational efficiency is low, and solution procedure is complicated, and program calculation amount is big, and Explicit Analytic Solutions, can directly by stress and Displacement is programmed for the function of R domains internal coordinate (x, y) before conformal projection, and amount of calculation is smaller;3. Verruijt solutions are not directly perceived, solving Surrouding rock stress caused by constructing tunnel and during displacement under the conditions of bearing formation, it is poor that it is superimposed applicability.
Accordingly, it is desirable to provide the method for solving of a kind of shallow tunnel surrouding rock stress and the Explicit Analytic Solutions of displacement, to overcome Above-mentioned problems of the prior art.
The content of the invention
The technical problem to be solved in the present invention is to provide a kind of shallow tunnel surrouding rock stress and the Explicit Analytic Solutions of displacement Method for solving, to overcome above-mentioned problems of the prior art.
In order to solve the above technical problems, the present invention uses following technical proposals
The method for solving of shallow tunnel surrouding rock stress and the Explicit Analytic Solutions of displacement, it is characterised in that the step of this method Including
S1, based on Complex Function Method, establish the nothing of shallow tunnel surrouding rock stress and displacement on z-plane and embody form Analytical functionAnd ψ1, and shallow tunnel reservoir stress and the calculation formula of displacement (z):
Wherein, σxx, σyy, σxyFor reservoir stress, ux, uyFor stratum position Move,And ψ1(z) two nothings for z-plane embody the analytical function of form, and μ is modulus of shearing, and κ is Poisson's ratio phase Relation number (κ=3-4 υ), υ are Poisson's ratio, and i is imaginary number constant;
S2, utilize conformal mapping functionWherein, α is by cavern radius r and the cavern center of circle The parameter that buried depth h ratio defines,Nothing on z-plane is embodied to the analytical function of formAnd ψ1 (z) analytical function for embodying form being converted into ζ planesWith ψ (ζ), the relation of two groups of analytical functions isWithAnalytical function φ (ζ) and ψ (ζ) concrete form is respectivelyWithWherein, a0, ak, bk, c0, ck, dkPhysics meaning Justice is tunnel cavern Boundary condition coefficient;
S3, using inverse mapping functions by ζ plane analytical functionsIt is converted into Complex Function Method on z-plane and has with ψ (ζ) There is the analytical function of concrete formAnd ψ1(z), and to the progression form of z-plane analytical function solve;
S4, based on Cauchy-Riemann equations, to the analytical function with the form that embodiesAnd ψ1(z) asked Lead;
S5, by the analytical function with concrete formAnd ψ1(z) derived function substitutes into the shallow tunnel stratum should In power and the calculation formula of displacement, the display analytic solutions of shallow tunnel reservoir stress and displacement are obtained.
Preferably, the step S3 includes
To formulaInverse mapping is carried out, obtains inverse mapping functions If z=x+iy, then the formula can be deformed into:Wherein,
By formulaIt is converted into plural ζ triangular form
By the correlation method of the power computing of plural number Then understand:
By analytical functionWith
The form of real and imaginary parts is converted into, if a0=a '0i, ak=a 'ki,bk=b 'ki,c0=c '0i,ck=c 'ki,dk=d 'ki., then have,
After simplified,
Wherein,
Preferably, the step S4 includes
It is right when f (z)=u (x, y)+iv (x, y) can be micro- in point z=x+iy
With
Derivation is carried out, is obtained
Preferably, the step S5 includes
Will
With
Substitute into formula
Obtain
Beneficial effects of the present invention are as follows:
Technical scheme of the present invention utilizes inverse mapping functions by ζ plane analytical functionsZ-plane is converted into ψ (ζ) Analytical function with the form that embodiesAnd ψ1(z), with reference to Cauchy-Riemann equations (C-R conditions) to based on multiple change letter Analytical function derivation in number method shallow tunnel surrouding rock stress and the implicit analytic solutions of displacement, has drawn stress function and displacement function Series explicit expression form;The Explicit Analytic Solutions are directly perceived, are easy to be used by engineering staff, and the programming meter of more implicit analytic solutions Calculation amount is small.
Technical scheme of the present invention is based on case history, and shallow tunnel surrouding rock stress and displacement Explicit Analytic Solutions are carried out Application, and the calculated results of Explicit Analytic Solutions and engineering measurement formation displacement have been subjected to comparative analysis, demonstrate aobvious The correctness and practicality of formula analytic solutions.
Brief description of the drawings
The embodiment of the present invention is described in further detail below in conjunction with the accompanying drawings;
Fig. 1 shows a kind of schematic diagram of the method for solving of the Explicit Analytic Solutions of shallow tunnel surrouding rock stress and displacement;
Fig. 2 shows the schematic diagram of " black box theory ";
Fig. 3-a are shown in embodiment to the analytic solutions and actual measurement vertical displacement comparison diagram of No. 4 lines in San Francisco;
Fig. 3-b are shown in embodiment to the analytic solutions and measured level displacement comparison figure of No. 4 lines in San Francisco;
Fig. 4-a are shown in embodiment to the analytic solutions and actual measurement vertical displacement comparison diagram of No. 2 lines in San Francisco;
Fig. 4-b are shown in embodiment to the analytic solutions and measured level displacement comparison figure of No. 2 lines in San Francisco.
Embodiment
The invention discloses a kind of shallow tunnel surrouding rock stress and the method for solving of the Explicit Analytic Solutions of displacement, based on multiple change Function method, the progression form of z-plane analytical function is solved using inverse mapping functions, and combine Cauchy-Riemann equations (C-R conditions) To the analytical function derivation in shallow tunnel surrouding rock stress and the implicit analytic solutions of displacement, shallow tunnel stress field and displacement letter are drawn Several series Explicit Analytic Solutions.By with engineering measurement date comprision, verify the correctness and practicality of Explicit Analytic Solutions.
First, based on Complex Function Method, be converted into the solution of plane problem the problem of shallow tunnel stress and displacement, can be with The nothing for being expressed as parsing everywhere in region R (the half-plane y < 0 for removing hole) embodies the analytical function of formWith ψ1(z), shallow tunnel stress solution and displacement solution can determine according to formula (1a), formula (1b) and formula (1c).
Wherein, σxx, σyy, σxyFor reservoir stress, ux, uyFor formation displacement,ψ1(z) for two of z-plane without tool The analytical function of body expression-form, μ are modulus of shearing, and κ is Poisson's ratio coefficient correlation (κ=3-4 υ), and υ is Poisson's ratio, and i is imaginary number Constant;
Due to z-plane analytical functionAnd ψ1(z) there is no concrete form, therefore shallow tunnel stress solution and the meter of displacement Formula (1a) to (1c) solution do not have concrete outcome, it is necessary to map that in ζ planes, obtain with embodying form Analytical functionWith ψ (ζ) concrete form, then the analytical function of z-plane is converted back into by inverse mapping functions, obtains parsing letter NumberAnd ψ1(z) embody form.
The conformal mapping function that z-plane is converted into ζ planes is:
In formula, α is the parameter defined by cavern radius r and cavern center of circle buried depth h ratio (r/h), can be represented For:
Nothing on z-plane is embodied to the analytical function of formψ1(z) it is converted into having specifically in ζ planes The analytical function of expression-formWith ψ (ζ), the relation of two groups of analytical functions isWithAnalytical functionThere is concrete form with ψ (ζ), determined by following two formula:
Wherein, a0, ak, bk, c0, ck, dkPhysical significance be tunnel cavern Boundary condition coefficient, these coefficients are passed by following Apply-official formula determines:
Wherein:
u0Physical significance be:The value of the uniform radial contraction on tunnel cavern border.
udPhysical significance be:The value of the ovalization deformation on tunnel cavern border.
However, as shown in Fig. 2 the coordinate of every can use (x, y) to represent in mapping forefoot area R, in mapping rear region γ often The coordinate of point can use (ζ, η) to represent.Solution procedure is related to the mapping of two complex planes, i.e., if desired for the stress for asking a bit (x, y) place Or shift value, phase must be re-mapped back after obtaining value first with corresponding point (ζ, η) is obtained in mapping function to region γ (x, the y) point answered.That is, in solution procedure stress and displacement solution can not directly by R domains internal coordinate before conformal projection (x, Y) function representation, for engineering staff application be inconvenient.
Shallow tunnel surrouding rock stress and the Explicit Analytic Solutions of displacement derive
The present invention using in the γ domains after conformal projection as a "black box", as shown in Figure 2, it is intended to draw and use conformal projection The stress and the explicit expression function of displacement field that preceding R domains internal coordinate (x, y) represents, thereby retaining prior art solving precision Meanwhile the form of a brief and practical is provided for engineer applied personnel.Therefore, using inverse mapping functions by ζ plane analytical functionsψ (ζ) is converted into the analytical function for embodying form of z-planeψ1(z), with reference to Cauchy-Riemann equations (C-R conditions) carries out derivation to the analytical function in shallow tunnel surrouding rock stress in the prior art and the implicit analytic solutions of displacement, will Analytical function with concrete formAnd ψ1(z) derived function substitutes into the shallow tunnel reservoir stress and the meter of displacement Calculate in formula, obtain the display analytic solutions of shallow tunnel reservoir stress and displacement.What Explicit Analytic Solutions derived comprises the following steps that
(1) solution of z-plane analytical function progression form
Inverse mapping functions are formula (2) accordingly:
If setting z=x+i y, formula (5) can be deformed into:
Wherein:
Then conversion type (6) is that plural ζ triangular form is as follows:
From the related rule of the power computing of plural number:
According to the symmetry of problem, all coefficients are pure imaginary number, for convenience of the derivation after (simplification), by analytical function The form of real and imaginary parts is converted into, can be set:
a0=a '0i,ak=a 'ki,bk=b 'ki,c0=c '0i,ck=c 'ki,dk=d 'ki。 (9)
Then analytical function formula (4a) and formula (4b) can be deformed into:
Simplified style (10a) and formula (10b), and obtained in view of formula (4a) and formula (4b):
Wherein:
(2) according to Cauchy-Riemann equations to analytical function derivation
Becauseψ (ζ) is analytical function, is understood according to Cauchy-Riemann equations (C-R conditions):When f (z)=u (x, Y) when point z=x+iy can be micro-, its derivative can be calculated+iv (x, y) by following formula:
Then can be rightAnd ψ 1 (z) [i.e. formula (11a) and formula (11b)] derivation, derivation obtain:
(3) shallow tunnel surrouding rock stress and displacement solve
Formula (13a), formula (13b) and formula (13c) are substituted into formula (1a), formula (1b) and formula (1c) and obtain stress function and displacement letter Several explicit expressions:
In view of the foregoing it is apparent that in formula (14a)-formula (14e), will be " black as one in the γ domains after conformal projection Case ", stress and displacement function Explicit Analytic Solutions, its right and left are all the forms in R domains before mapping, for engineering staff, no Need to study its theoretical principle, can be as Peck empirical equations, by directly inputting parameter, you can directly pass through coordinate (x, y) tries to achieve the value of respective point.In formula (14a)-formula (14e), contained input parameter can be divided into two groups:1. tunnel geometry and stratum Parameter:E, μ, ν, κ, h, r, a.Formally, because it is containing the main body function that all coordinates (x, y) are Explicit Analytic Solutions expression formula Part, it is determined that the geometry of function;2. deformation boundaries conditional correlation coefficient:ɑ0, ɑk, bk, c0, ck, dk, can be by tunnel border Deformation condition determines.Formally, its coefficient divided for main body correspondence department, it is determined that the physical dimension size of function.Therefore, Explicit Analytic Solutions can clearly study the affecting laws of Different Strata parameter and deformation boundaries condition to analytic solutions.Formula (14a)-formula In (14e), programming process pertains only to map preceding complex plane, and the more implicit analytic solutions of computational efficiency are high, and solution procedure is simple, Ke Yitong Cross and directly input formation parameter to try to achieve the stress of gained and displacement.Stress and displacement directly can be programmed for by Explicit Analytic Solutions With the function of coordinate (x, y) in R domains before conformal projection, amount of calculation is smaller, and computational efficiency is high.
Below by one group of embodiment, the present invention will be further described:
To illustrate the practicality of Explicit Analytic Solutions, now quote following two groups of tunnel examples and analyzed.Table 1 gives two groups The physical dimension in tunnel, Physical And Mechanical Indexes of The Typical etc..In engineering, the displacement of eyeball measures frequently with extension meter and inclinator, can obtain The level of monitoring point and vertical displacement on horizontal and vertical survey line in stratum.With derivation Explicit Analytic Solutions formula formula (14a)- Formula (14e), a large amount of stratum each point displacement datas succinctly can be easily proposed, now carry out engineering measurement data and analytic solutions pair Than interpretation of result is as follows:
The tunnel physical dimension of table 1 and formation parameter
(1) the threaded list road N-2 bid sections of San Francisco 4
The threaded list road N-2 bid sections of San Francisco 4 build a diameter of 3.56m tunnel using a diameter of 3.7m EPB shield machines. During the engineering construction, using the vertical and horizontal displacement of 23 measuring point measurement stratums of instrument layout, as shown in Figure 3.Red spots For formula measured data, solid black lines are the curve that Explicit Analytic Solutions are made every 1m extraction data bus connections.
(2) the threaded list road N-2 bid sections of San Francisco 2
Not lose the generality of analytic solutions, same method goes to study the threaded list road N-2 bid section Explicit Analytic Solutions of San Francisco 2 With surveying stratum settlement, as shown in Figure 4.
From Fig. 3 and Fig. 4, most eyeballs all overlap with Explicit Analytic Solutions, show the present invention derive based on The Explicit Analytic Solutions of Complex Function Method can predict formation displacement caused by constructing tunnel well.
Analyzed more than visible, show that the advantage of analytic solutions is engineering staff can be facilitated to make a plurality of earth's surface and ground The internal survey line of layer, to system research stratum intrinsic displacement changing rule, practicality is good, and the settlement prediction to Construction of City Tunnel has Significance.Moreover, if the reservoir stress under the load actions such as the construction of structures in ground and stratum and displacement are studied, more implicitly For analytic solutions, various loads can be more easily superimposed, so as to greatly improve complex condition constructing tunnel reservoir stress And the computational efficiency of displacement.
In summary, technical scheme of the present invention utilizes inverse mapping functions by ζ plane analytical functionsTurn with ψ (ζ) Turn in Complex Function Method z-plane analytical function in R domainsAnd ψ1(z), with reference to Cauchy-Riemann equations (C-R conditions) to shallow The analytical function derivation in tunnel surrounding stress and the implicit analytic solutions of displacement is buried, has drawn the series of stress function and displacement function Explicit expression form;The Explicit Analytic Solutions are directly perceived, are easy to be used by engineering staff, and the program calculation amount of more implicit analytic solutions It is small.
Technical scheme of the present invention is based on case history, and shallow tunnel surrouding rock stress and displacement Explicit Analytic Solutions are carried out Application, and the calculated results of Explicit Analytic Solutions and engineering measurement formation displacement have been subjected to comparative analysis, demonstrate aobvious The correctness and practicality of formula analytic solutions.
Obviously, the above embodiment of the present invention is only intended to clearly illustrate example of the present invention, and is not pair The restriction of embodiments of the present invention, for those of ordinary skill in the field, may be used also on the basis of the above description To make other changes in different forms, all embodiments can not be exhaustive here, it is every to belong to this hair Row of the obvious changes or variations that bright technical scheme is extended out still in protection scope of the present invention.

Claims (3)

1. the method for solving of shallow tunnel surrouding rock stress and the Explicit Analytic Solutions of displacement, it is characterised in that wrap the step of this method Include
S1, based on Complex Function Method, establish the solution that the nothing of shallow tunnel surrouding rock stress and displacement on z-plane embodies form Analyse functionAnd ψ1, and shallow tunnel reservoir stress and the calculation formula of displacement (z):
Wherein, σxx, σyy, σxyFor reservoir stress, ux, uyFor formation displacement,And ψ1(z) two nothings for z-plane embody the analytical function of form, and μ is modulus of shearing, and κ is Poisson's ratio phase relation Number, κ=3-4 υ, υ are Poisson's ratio, and i is imaginary number constant;
S2, utilize conformal mapping functionWherein, α is by Tunnel chamber radius r and tunnel cavern The parameter that center of circle buried depth h ratio defines,Nothing on z-plane is embodied to the analytical function of formWith ψ1(z) analytical function for embodying form being converted into ζ planesWith ψ (ζ), the relation of two groups of analytical functions isWith ψ (ζ)=ψ1(ω (ζ))=ψ1(z), analytical functionConcrete form with ψ (ζ) is respectivelyWithWherein, a0, ak, bk, c0, ck, dkPhysical significance For tunnel cavern Boundary condition coefficient;
S3, using inverse mapping functions by ζ plane analytical functionsBeing converted into ψ (ζ) in Complex Function Method on z-plane has tool The analytical function of body formAnd ψ1(z), and to the progression form of z-plane analytical function solve;
S4, based on Cauchy-Riemann equations, to the analytical function with the form that embodiesAnd ψ1(z) derivation is carried out;
S5, by the analytical function with concrete formAnd ψ1(z) derived function substitute into the shallow tunnel reservoir stress and In the calculation formula of displacement, the display analytic solutions of shallow tunnel reservoir stress and displacement are obtained;
The step S3 includes
To formulaInverse mapping is carried out, obtains inverse mapping functionsIf z=x + i y, then the formula can be deformed into:Wherein,
By formulaIt is converted into plural ζ triangular form
By the phase of the power computing of plural number Rule is closed to understand:
By analytical functionWithIt is converted into real and imaginary parts Form, if a0=a '0i,ak=a 'ki,bk=b 'ki,c0=c '0i,ck=c 'ki,dk=d 'kI, then have,
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <mi>&amp;psi;</mi> <mrow> <mo>(</mo> <mi>&amp;zeta;</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>c</mi> <mn>0</mn> </msub> <mo>+</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>&amp;infin;</mi> </munderover> <msub> <mi>c</mi> <mi>k</mi> </msub> <msup> <mi>&amp;zeta;</mi> <mi>k</mi> </msup> <mo>+</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>&amp;infin;</mi> </munderover> <msub> <mi>d</mi> <mi>k</mi> </msub> <msup> <mi>&amp;zeta;</mi> <mrow> <mo>-</mo> <mi>k</mi> </mrow> </msup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <msubsup> <mi>c</mi> <mn>0</mn> <mo>&amp;prime;</mo> </msubsup> <mi>i</mi> <mo>+</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>&amp;infin;</mi> </munderover> <msubsup> <mi>c</mi> <mi>k</mi> <mo>&amp;prime;</mo> </msubsup> <mi>i</mi> <msup> <mrow> <mo>(</mo> <msqrt> <mrow> <msup> <mi>U</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>V</mi> <mn>2</mn> </msup> </mrow> </msqrt> <mo>)</mo> </mrow> <mi>k</mi> </msup> <mo>{</mo> <mi>cos</mi> <mo>&amp;lsqb;</mo> <mi>k</mi> <mrow> <mo>(</mo> <mi>arccos</mi> <mfrac> <mi>U</mi> <msqrt> <mrow> <msup> <mi>U</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>V</mi> <mn>2</mn> </msup> </mrow> </msqrt> </mfrac> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>+</mo> <mi>i</mi> <mi>sin</mi> <mo>&amp;lsqb;</mo> <mi>k</mi> <mrow> <mo>(</mo> <mi>arccos</mi> <mfrac> <mi>U</mi> <msqrt> <mrow> <msup> <mi>U</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>V</mi> <mn>2</mn> </msup> </mrow> </msqrt> </mfrac> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>}</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>&amp;infin;</mi> </munderover> <msubsup> <mi>d</mi> <mi>k</mi> <mo>&amp;prime;</mo> </msubsup> <mi>i</mi> <msup> <mrow> <mo>(</mo> <msqrt> <mrow> <msup> <mi>U</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>V</mi> <mn>2</mn> </msup> </mrow> </msqrt> <mo>)</mo> </mrow> <mrow> <mo>-</mo> <mi>k</mi> </mrow> </msup> <mo>{</mo> <mi>cos</mi> <mo>&amp;lsqb;</mo> <mrow> <mo>(</mo> <mo>-</mo> <mi>k</mi> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>arccos</mi> <mfrac> <mi>U</mi> <msqrt> <mrow> <msup> <mi>U</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>V</mi> <mn>2</mn> </msup> </mrow> </msqrt> </mfrac> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>+</mo> <mi>i</mi> <mi>sin</mi> <mo>&amp;lsqb;</mo> <mrow> <mo>(</mo> <mo>-</mo> <mi>k</mi> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>arccos</mi> <mfrac> <mi>U</mi> <msqrt> <mrow> <msup> <mi>U</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>V</mi> <mn>2</mn> </msup> </mrow> </msqrt> </mfrac> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>}</mo> </mrow> </mtd> </mtr> </mtable> </mfenced>
After simplified, Wherein,
<mrow> <msub> <mi>W</mi> <mn>1</mn> </msub> <mo>=</mo> <msup> <mrow> <mo>&amp;lsqb;</mo> <mfrac> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mi>y</mi> <mo>+</mo> <mi>a</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mi>y</mi> <mo>-</mo> <mi>a</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </mfrac> <mo>&amp;rsqb;</mo> </mrow> <mfrac> <mi>k</mi> <mn>2</mn> </mfrac> </msup> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mo>&amp;lsqb;</mo> <mi>k</mi> <mi>a</mi> <mi>r</mi> <mi>c</mi> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mrow> <mo>(</mo> <mfrac> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>y</mi> <mn>2</mn> </msup> <mo>-</mo> <msup> <mi>a</mi> <mn>2</mn> </msup> </mrow> <msqrt> <mrow> <msup> <mi>x</mi> <mn>4</mn> </msup> <mo>+</mo> <msup> <mi>y</mi> <mn>4</mn> </msup> <mo>+</mo> <msup> <mi>a</mi> <mn>4</mn> </msup> <mo>+</mo> <mn>2</mn> <msup> <mi>a</mi> <mn>2</mn> </msup> <msup> <mi>x</mi> <mn>2</mn> </msup> <mo>+</mo> <mn>2</mn> <msup> <mi>x</mi> <mn>2</mn> </msup> <msup> <mi>y</mi> <mn>2</mn> </msup> <mo>-</mo> <mn>2</mn> <msup> <mi>a</mi> <mn>2</mn> </msup> <msup> <mi>y</mi> <mn>2</mn> </msup> </mrow> </msqrt> </mfrac> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>,</mo> </mrow>
<mrow> <msub> <mi>W</mi> <mn>2</mn> </msub> <mo>=</mo> <msup> <mrow> <mo>&amp;lsqb;</mo> <mfrac> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mi>y</mi> <mo>+</mo> <mi>a</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mi>y</mi> <mo>-</mo> <mi>a</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </mfrac> <mo>&amp;rsqb;</mo> </mrow> <mrow> <mo>-</mo> <mfrac> <mi>k</mi> <mn>2</mn> </mfrac> </mrow> </msup> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mo>&amp;lsqb;</mo> <mrow> <mo>(</mo> <mo>-</mo> <mi>k</mi> <mo>)</mo> </mrow> <mi>a</mi> <mi>r</mi> <mi>c</mi> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mrow> <mo>(</mo> <mfrac> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>y</mi> <mn>2</mn> </msup> <mo>-</mo> <msup> <mi>a</mi> <mn>2</mn> </msup> </mrow> <msqrt> <mrow> <msup> <mi>x</mi> <mn>4</mn> </msup> <mo>+</mo> <msup> <mi>y</mi> <mn>4</mn> </msup> <mo>+</mo> <msup> <mi>a</mi> <mn>4</mn> </msup> <mo>+</mo> <mn>2</mn> <msup> <mi>a</mi> <mn>2</mn> </msup> <msup> <mi>x</mi> <mn>2</mn> </msup> <mo>+</mo> <mn>2</mn> <msup> <mi>x</mi> <mn>2</mn> </msup> <msup> <mi>y</mi> <mn>2</mn> </msup> <mo>-</mo> <mn>2</mn> <msup> <mi>a</mi> <mn>2</mn> </msup> <msup> <mi>y</mi> <mn>2</mn> </msup> </mrow> </msqrt> </mfrac> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>,</mo> </mrow>
<mrow> <msub> <mi>W</mi> <mn>3</mn> </msub> <mo>=</mo> <msup> <mrow> <mo>&amp;lsqb;</mo> <mfrac> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mi>y</mi> <mo>+</mo> <mi>a</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mi>y</mi> <mo>-</mo> <mi>a</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </mfrac> <mo>&amp;rsqb;</mo> </mrow> <mfrac> <mi>k</mi> <mn>2</mn> </mfrac> </msup> <mi>sin</mi> <mo>&amp;lsqb;</mo> <mi>k</mi> <mi>arccos</mi> <mrow> <mo>(</mo> <mfrac> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>y</mi> <mn>2</mn> </msup> <mo>-</mo> <msup> <mi>a</mi> <mn>2</mn> </msup> </mrow> <msqrt> <mrow> <msup> <mi>x</mi> <mn>4</mn> </msup> <mo>+</mo> <msup> <mi>y</mi> <mn>4</mn> </msup> <mo>+</mo> <msup> <mi>a</mi> <mn>4</mn> </msup> <mo>+</mo> <mn>2</mn> <msup> <mi>a</mi> <mn>2</mn> </msup> <msup> <mi>x</mi> <mn>2</mn> </msup> <mo>+</mo> <mn>2</mn> <msup> <mi>x</mi> <mn>2</mn> </msup> <msup> <mi>y</mi> <mn>2</mn> </msup> <mo>-</mo> <mn>2</mn> <msup> <mi>a</mi> <mn>2</mn> </msup> <msup> <mi>y</mi> <mn>2</mn> </msup> </mrow> </msqrt> </mfrac> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>,</mo> </mrow>
<mrow> <msub> <mi>W</mi> <mn>4</mn> </msub> <mo>=</mo> <msup> <mrow> <mo>&amp;lsqb;</mo> <mfrac> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mi>y</mi> <mo>+</mo> <mi>a</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mi>y</mi> <mo>-</mo> <mi>a</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </mfrac> <mo>&amp;rsqb;</mo> </mrow> <mrow> <mo>-</mo> <mfrac> <mi>k</mi> <mn>2</mn> </mfrac> </mrow> </msup> <mi>sin</mi> <mo>&amp;lsqb;</mo> <mrow> <mo>(</mo> <mo>-</mo> <mi>k</mi> <mo>)</mo> </mrow> <mi>arccos</mi> <mrow> <mo>(</mo> <mfrac> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>y</mi> <mn>2</mn> </msup> <mo>-</mo> <msup> <mi>a</mi> <mn>2</mn> </msup> </mrow> <msqrt> <mrow> <msup> <mi>x</mi> <mn>4</mn> </msup> <mo>+</mo> <msup> <mi>y</mi> <mn>4</mn> </msup> <mo>+</mo> <msup> <mi>a</mi> <mn>4</mn> </msup> <mo>+</mo> <mn>2</mn> <msup> <mi>a</mi> <mn>2</mn> </msup> <msup> <mi>x</mi> <mn>2</mn> </msup> <mo>+</mo> <mn>2</mn> <msup> <mi>x</mi> <mn>2</mn> </msup> <msup> <mi>y</mi> <mn>2</mn> </msup> <mo>-</mo> <mn>2</mn> <msup> <mi>a</mi> <mn>2</mn> </msup> <msup> <mi>y</mi> <mn>2</mn> </msup> </mrow> </msqrt> </mfrac> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>.</mo> </mrow>
2. method for solving according to claim 1, it is characterised in that the step S4 includes
It is right when f (z)=u (x, y)+iv (x, y) can be micro- in point z=x+iy
With
Derivation is carried out, is obtained
<mrow> <msubsup> <mi>&amp;psi;</mi> <mn>1</mn> <mo>&amp;prime;</mo> </msubsup> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> <mo>=</mo> <mo>{</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>&amp;infin;</mi> </munderover> <msubsup> <mi>c</mi> <mi>k</mi> <mo>&amp;prime;</mo> </msubsup> <mfrac> <mo>&amp;part;</mo> <mrow> <mo>&amp;part;</mo> <mi>x</mi> </mrow> </mfrac> <msub> <mi>W</mi> <mn>1</mn> </msub> <mo>+</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>&amp;infin;</mi> </munderover> <msubsup> <mi>d</mi> <mi>k</mi> <mo>&amp;prime;</mo> </msubsup> <mfrac> <mo>&amp;part;</mo> <mrow> <mo>&amp;part;</mo> <mi>x</mi> </mrow> </mfrac> <msub> <mi>W</mi> <mn>2</mn> </msub> <mo>}</mo> <mi>i</mi> <mo>-</mo> <mo>{</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>&amp;infin;</mi> </munderover> <msubsup> <mi>c</mi> <mi>k</mi> <mo>&amp;prime;</mo> </msubsup> <mfrac> <mo>&amp;part;</mo> <mrow> <mo>&amp;part;</mo> <mi>x</mi> </mrow> </mfrac> <msub> <mi>W</mi> <mn>3</mn> </msub> <mo>+</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>&amp;infin;</mi> </munderover> <msubsup> <mi>d</mi> <mi>k</mi> <mo>&amp;prime;</mo> </msubsup> <mfrac> <mo>&amp;part;</mo> <mrow> <mo>&amp;part;</mo> <mi>x</mi> </mrow> </mfrac> <msub> <mi>W</mi> <mn>4</mn> </msub> <mo>}</mo> <mo>,</mo> </mrow>
3. method for solving according to claim 2, it is characterised in that the step S5 includes
Will
With
Substitute into formula
In, obtain
<mrow> <msub> <mi>&amp;sigma;</mi> <mrow> <mi>x</mi> <mi>x</mi> </mrow> </msub> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>&amp;infin;</mi> </munderover> <mo>&amp;lsqb;</mo> <mrow> <mo>(</mo> <mo>-</mo> <mn>2</mn> <msubsup> <mi>a</mi> <mi>k</mi> <mo>&amp;prime;</mo> </msubsup> <mo>+</mo> <msubsup> <mi>c</mi> <mi>k</mi> <mo>&amp;prime;</mo> </msubsup> <mo>)</mo> </mrow> <mfrac> <mo>&amp;part;</mo> <mrow> <mo>&amp;part;</mo> <mi>x</mi> </mrow> </mfrac> <msub> <mi>W</mi> <mn>3</mn> </msub> <mo>+</mo> <mrow> <mo>(</mo> <mo>-</mo> <mn>2</mn> <msubsup> <mi>b</mi> <mi>k</mi> <mo>&amp;prime;</mo> </msubsup> <mo>+</mo> <msubsup> <mi>d</mi> <mi>k</mi> <mo>&amp;prime;</mo> </msubsup> <mo>)</mo> </mrow> <mfrac> <mo>&amp;part;</mo> <mrow> <mo>&amp;part;</mo> <mi>x</mi> </mrow> </mfrac> <msub> <mi>W</mi> <mn>4</mn> </msub> <mo>-</mo> <mi>y</mi> <mrow> <mo>(</mo> <msubsup> <mi>a</mi> <mi>k</mi> <mo>&amp;prime;</mo> </msubsup> <mfrac> <msup> <mo>&amp;part;</mo> <mn>2</mn> </msup> <mrow> <mo>&amp;part;</mo> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </mfrac> <msub> <mi>W</mi> <mn>1</mn> </msub> <mo>+</mo> <msubsup> <mi>b</mi> <mi>k</mi> <mo>&amp;prime;</mo> </msubsup> <mfrac> <msup> <mo>&amp;part;</mo> <mn>2</mn> </msup> <mrow> <mo>&amp;part;</mo> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </mfrac> <msub> <mi>W</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mi>x</mi> <mrow> <mo>(</mo> <msubsup> <mi>a</mi> <mi>k</mi> <mo>&amp;prime;</mo> </msubsup> <mfrac> <msup> <mo>&amp;part;</mo> <mn>2</mn> </msup> <mrow> <mo>&amp;part;</mo> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </mfrac> <msub> <mi>W</mi> <mn>3</mn> </msub> <mo>+</mo> <msubsup> <mi>b</mi> <mi>k</mi> <mo>&amp;prime;</mo> </msubsup> <mfrac> <msup> <mo>&amp;part;</mo> <mn>2</mn> </msup> <mrow> <mo>&amp;part;</mo> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </mfrac> <msub> <mi>W</mi> <mn>4</mn> </msub> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>,</mo> </mrow>
<mrow> <msub> <mi>&amp;sigma;</mi> <mrow> <mi>y</mi> <mi>y</mi> </mrow> </msub> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>&amp;infin;</mi> </munderover> <mo>&amp;lsqb;</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <msubsup> <mi>a</mi> <mi>k</mi> <mo>&amp;prime;</mo> </msubsup> <mo>+</mo> <msubsup> <mi>c</mi> <mi>k</mi> <mo>&amp;prime;</mo> </msubsup> <mo>)</mo> </mrow> <mfrac> <mo>&amp;part;</mo> <mrow> <mo>&amp;part;</mo> <mi>x</mi> </mrow> </mfrac> <msub> <mi>W</mi> <mn>3</mn> </msub> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <msubsup> <mi>b</mi> <mi>k</mi> <mo>&amp;prime;</mo> </msubsup> <mo>+</mo> <msubsup> <mi>d</mi> <mi>k</mi> <mo>&amp;prime;</mo> </msubsup> <mo>)</mo> </mrow> <mfrac> <mo>&amp;part;</mo> <mrow> <mo>&amp;part;</mo> <mi>x</mi> </mrow> </mfrac> <msub> <mi>W</mi> <mn>4</mn> </msub> <mo>+</mo> <mi>y</mi> <mrow> <mo>(</mo> <msubsup> <mi>a</mi> <mi>k</mi> <mo>&amp;prime;</mo> </msubsup> <mfrac> <msup> <mo>&amp;part;</mo> <mn>2</mn> </msup> <mrow> <mo>&amp;part;</mo> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </mfrac> <msub> <mi>W</mi> <mn>1</mn> </msub> <mo>+</mo> <msubsup> <mi>b</mi> <mi>k</mi> <mo>&amp;prime;</mo> </msubsup> <mfrac> <msup> <mo>&amp;part;</mo> <mn>2</mn> </msup> <mrow> <mo>&amp;part;</mo> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </mfrac> <msub> <mi>W</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mi>x</mi> <mrow> <mo>(</mo> <msubsup> <mi>a</mi> <mi>k</mi> <mo>&amp;prime;</mo> </msubsup> <mfrac> <msup> <mo>&amp;part;</mo> <mn>2</mn> </msup> <mrow> <mo>&amp;part;</mo> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </mfrac> <msub> <mi>W</mi> <mn>3</mn> </msub> <mo>+</mo> <msubsup> <mi>b</mi> <mi>k</mi> <mo>&amp;prime;</mo> </msubsup> <mfrac> <msup> <mo>&amp;part;</mo> <mn>2</mn> </msup> <mrow> <mo>&amp;part;</mo> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </mfrac> <msub> <mi>W</mi> <mn>4</mn> </msub> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>,</mo> </mrow>
<mrow> <msub> <mi>&amp;sigma;</mi> <mrow> <mi>x</mi> <mi>y</mi> </mrow> </msub> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>&amp;infin;</mi> </munderover> <mo>&amp;lsqb;</mo> <msubsup> <mi>c</mi> <mi>k</mi> <mo>&amp;prime;</mo> </msubsup> <mfrac> <mo>&amp;part;</mo> <mrow> <mo>&amp;part;</mo> <mi>x</mi> </mrow> </mfrac> <msub> <mi>W</mi> <mn>1</mn> </msub> <mo>+</mo> <msubsup> <mi>d</mi> <mi>k</mi> <mo>&amp;prime;</mo> </msubsup> <mfrac> <mo>&amp;part;</mo> <mrow> <mo>&amp;part;</mo> <mi>x</mi> </mrow> </mfrac> <msub> <mi>W</mi> <mn>2</mn> </msub> <mo>+</mo> <mi>x</mi> <mrow> <mo>(</mo> <msubsup> <mi>a</mi> <mi>k</mi> <mo>&amp;prime;</mo> </msubsup> <mfrac> <msup> <mo>&amp;part;</mo> <mn>2</mn> </msup> <mrow> <mo>&amp;part;</mo> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </mfrac> <msub> <mi>W</mi> <mn>1</mn> </msub> <mo>+</mo> <msubsup> <mi>b</mi> <mi>k</mi> <mo>&amp;prime;</mo> </msubsup> <mfrac> <msup> <mo>&amp;part;</mo> <mn>2</mn> </msup> <mrow> <mo>&amp;part;</mo> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </mfrac> <msub> <mi>W</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mi>y</mi> <mrow> <mo>(</mo> <msubsup> <mi>a</mi> <mi>k</mi> <mo>&amp;prime;</mo> </msubsup> <mfrac> <msup> <mo>&amp;part;</mo> <mn>2</mn> </msup> <mrow> <mo>&amp;part;</mo> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </mfrac> <msub> <mi>W</mi> <mn>3</mn> </msub> <mo>+</mo> <msubsup> <mi>b</mi> <mi>k</mi> <mo>&amp;prime;</mo> </msubsup> <mfrac> <msup> <mo>&amp;part;</mo> <mn>2</mn> </msup> <mrow> <mo>&amp;part;</mo> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </mfrac> <msub> <mi>W</mi> <mn>4</mn> </msub> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>,</mo> </mrow>
<mrow> <msub> <mi>u</mi> <mi>y</mi> </msub> <mo>=</mo> <msup> <mrow> <mo>(</mo> <mn>2</mn> <mi>&amp;mu;</mi> <mo>)</mo> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo>{</mo> <mrow> <mo>(</mo> <msubsup> <mi>&amp;kappa;a</mi> <mn>0</mn> <mo>&amp;prime;</mo> </msubsup> <mo>+</mo> <msubsup> <mi>c</mi> <mn>0</mn> <mo>&amp;prime;</mo> </msubsup> <mo>)</mo> </mrow> <mo>+</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>&amp;infin;</mi> </munderover> <mo>&amp;lsqb;</mo> <mrow> <mo>(</mo> <msubsup> <mi>&amp;kappa;a</mi> <mi>k</mi> <mo>&amp;prime;</mo> </msubsup> <mo>+</mo> <msubsup> <mi>c</mi> <mi>k</mi> <mo>&amp;prime;</mo> </msubsup> <mo>)</mo> </mrow> <msub> <mi>W</mi> <mn>1</mn> </msub> <mo>+</mo> <mrow> <mo>(</mo> <msubsup> <mi>&amp;kappa;b</mi> <mi>k</mi> <mo>&amp;prime;</mo> </msubsup> <mo>+</mo> <msubsup> <mi>d</mi> <mi>k</mi> <mo>&amp;prime;</mo> </msubsup> <mo>)</mo> </mrow> <msub> <mi>W</mi> <mn>2</mn> </msub> <mo>+</mo> <mi>x</mi> <mrow> <mo>(</mo> <msubsup> <mi>a</mi> <mi>k</mi> <mo>&amp;prime;</mo> </msubsup> <mfrac> <mo>&amp;part;</mo> <mrow> <mo>&amp;part;</mo> <mi>x</mi> </mrow> </mfrac> <msub> <mi>W</mi> <mn>1</mn> </msub> <mo>+</mo> <msubsup> <mi>b</mi> <mi>k</mi> <mo>&amp;prime;</mo> </msubsup> <mfrac> <mo>&amp;part;</mo> <mrow> <mo>&amp;part;</mo> <mi>x</mi> </mrow> </mfrac> <msub> <mi>W</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mi>y</mi> <mrow> <mo>(</mo> <msubsup> <mi>a</mi> <mi>k</mi> <mo>&amp;prime;</mo> </msubsup> <mfrac> <mo>&amp;part;</mo> <mrow> <mo>&amp;part;</mo> <mi>x</mi> </mrow> </mfrac> <msub> <mi>W</mi> <mn>3</mn> </msub> <mo>+</mo> <msubsup> <mi>b</mi> <mi>k</mi> <mo>&amp;prime;</mo> </msubsup> <mfrac> <mo>&amp;part;</mo> <mrow> <mo>&amp;part;</mo> <mi>x</mi> </mrow> </mfrac> <msub> <mi>W</mi> <mn>4</mn> </msub> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>}</mo> <mo>,</mo> </mrow>
<mrow> <msub> <mi>u</mi> <mi>x</mi> </msub> <mo>=</mo> <msup> <mrow> <mo>(</mo> <mn>2</mn> <mi>&amp;mu;</mi> <mo>)</mo> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo>{</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>&amp;infin;</mi> </munderover> <mo>&amp;lsqb;</mo> <mrow> <mo>(</mo> <mo>-</mo> <msubsup> <mi>&amp;kappa;a</mi> <mi>k</mi> <mo>&amp;prime;</mo> </msubsup> <mo>+</mo> <msubsup> <mi>c</mi> <mi>k</mi> <mo>&amp;prime;</mo> </msubsup> <mo>)</mo> </mrow> <msub> <mi>W</mi> <mn>3</mn> </msub> <mo>+</mo> <mrow> <mo>(</mo> <mo>-</mo> <msubsup> <mi>&amp;kappa;b</mi> <mi>k</mi> <mo>&amp;prime;</mo> </msubsup> <mo>+</mo> <msubsup> <mi>d</mi> <mi>k</mi> <mo>&amp;prime;</mo> </msubsup> <mo>)</mo> </mrow> <msub> <mi>W</mi> <mn>4</mn> </msub> <mo>+</mo> <mi>x</mi> <mrow> <mo>(</mo> <msubsup> <mi>a</mi> <mi>k</mi> <mo>&amp;prime;</mo> </msubsup> <mfrac> <mo>&amp;part;</mo> <mrow> <mo>&amp;part;</mo> <mi>x</mi> </mrow> </mfrac> <msub> <mi>W</mi> <mn>3</mn> </msub> <mo>+</mo> <msubsup> <mi>b</mi> <mi>k</mi> <mo>&amp;prime;</mo> </msubsup> <mfrac> <mo>&amp;part;</mo> <mrow> <mo>&amp;part;</mo> <mi>x</mi> </mrow> </mfrac> <msub> <mi>W</mi> <mn>4</mn> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mi>y</mi> <mrow> <mo>(</mo> <msubsup> <mi>a</mi> <mi>k</mi> <mo>&amp;prime;</mo> </msubsup> <mfrac> <mo>&amp;part;</mo> <mrow> <mo>&amp;part;</mo> <mi>x</mi> </mrow> </mfrac> <mi>W</mi> <mo>+</mo> <msubsup> <mi>b</mi> <mi>k</mi> <mo>&amp;prime;</mo> </msubsup> <mfrac> <mo>&amp;part;</mo> <mrow> <mo>&amp;part;</mo> <mi>x</mi> </mrow> </mfrac> <msub> <mi>W</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>}</mo> <mo>.</mo> </mrow>
CN201410765074.4A 2014-12-11 2014-12-11 The method for solving of shallow tunnel surrouding rock stress and the Explicit Analytic Solutions of displacement Active CN104408022B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410765074.4A CN104408022B (en) 2014-12-11 2014-12-11 The method for solving of shallow tunnel surrouding rock stress and the Explicit Analytic Solutions of displacement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410765074.4A CN104408022B (en) 2014-12-11 2014-12-11 The method for solving of shallow tunnel surrouding rock stress and the Explicit Analytic Solutions of displacement

Publications (2)

Publication Number Publication Date
CN104408022A CN104408022A (en) 2015-03-11
CN104408022B true CN104408022B (en) 2018-02-02

Family

ID=52645654

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410765074.4A Active CN104408022B (en) 2014-12-11 2014-12-11 The method for solving of shallow tunnel surrouding rock stress and the Explicit Analytic Solutions of displacement

Country Status (1)

Country Link
CN (1) CN104408022B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107194136B (en) * 2017-07-31 2020-09-22 中国水利水电第七工程局成都水电建设工程有限公司 Surrounding rock pressure calculation method suitable for multi-stratum shallow tunnel
CN108319778A (en) * 2018-01-31 2018-07-24 东南大学 A kind of structural parameters Sensitivity Analysis Method based on Complex Function Method
CN110377990B (en) * 2019-07-08 2022-02-08 北京交通大学 Method for solving surrounding rock stress and displacement of shallow tunnel in stratum containing cavity under action of gravity

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8316936B2 (en) * 2007-04-02 2012-11-27 Halliburton Energy Services Inc. Use of micro-electro-mechanical systems (MEMS) in well treatments

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
地面荷载下浅埋隧道围岩应力的复变函数解法;陆文超;《江南大学学报(自然科学版)》;20021225(第4期);第409-413页 *
浅埋隧道围岩应力场的解析解;陆文超等;《力学季刊》;20030330;第24卷(第1期);第50-54页 *
浅埋隧道围岩应力场的计算复变函数求解法;王志良等;《岩土力学》;20100815;第31卷(第S1期);第86-90页 *

Also Published As

Publication number Publication date
CN104408022A (en) 2015-03-11

Similar Documents

Publication Publication Date Title
CN102254349B (en) Method for constructing three-dimensional physical model of sedimentary stratum system by using drilling data
US10921960B2 (en) Mapping geological features using facies-type data manipulation
CN104408022B (en) The method for solving of shallow tunnel surrouding rock stress and the Explicit Analytic Solutions of displacement
CN103150421A (en) Method for simultaneously determining pile position and critical depth of anti-slide pile by using displacement monitoring
Li et al. A possible prediction method to determine the top concealed karst cave based on displacement monitoring during tunnel construction
CN112035939B (en) Rock-soil body parameter random field modeling method for double-side-wall pilot tunnel
CN113223116B (en) Sliding slope geological model based on AutoCAD, construction method and evaluation method
CN104182646B (en) Three dimensional earthquake side slope landslide occurring time forecasting method based on slide displacement analysis
CN108603405A (en) The real-time track carried out using multistation analysis is estimated
Li et al. Inverse calculation of in situ stress in rock mass using the surrogate-model accelerated random search algorithm
CN103148833A (en) Attitude of bed parameters acquisition and calculation methods
CN105095540A (en) Normal plane scanning analytical method for inter-well relative position relations
CN106437677A (en) Coal mine underground drilled hole group drilling quality evaluation method and device
CN105019892A (en) Method for simulating fracture-vug type reservoir body electric logging response
CN104504472A (en) Method and device for predicting productivity of gas storage gas water interaction area
CN104564069B (en) The dynamic settlement prediction in a kind of ground based on square mesh method and reclamation method
CN110610539A (en) Stratum curved surface construction method, device, equipment and storage medium
CN104866682A (en) Ground deformation-based method for inversion of tectonic stress field in shale gas exploration area
CN105178367A (en) Three-dimensional visualization method of final foundation settlement amount
CN103883307A (en) Universal steering drilling method employing target-hitting priority landing control
CN108534766A (en) A kind of improvement computational methods of back traverse
Ma et al. Study on feature storage and storage capacity of underground reservoir based on GMS in MHS area of Beijing, China
CN107239889A (en) A kind of method of the lower mountain area structure vulnerability of quantitative assessment mud-rock flow stress
US20130124162A1 (en) Method of calculating a shape factor of a dual media fractured reservoir model from intensities and orientations of fracture sets for enhancing the recovery of hydrocarbins
CN104156548B (en) A kind of line transfer method with the CAD diagram of underground ventilating inflammable and water delivery line as data source

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant